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SOME NEW SUMS RELATED TO D.H. LEHMER PROBLEM

Han Zhang,Wenpeng Zhang, Xi’an
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Abstract. About Lehmer’s number, many people have studied its various properties, and
obtained a series of interesting results. In this paper, we consider a generalized Lehmer
problem: Let p be a prime, and let N(k; p) denote the number of all 1 6 ai 6 p − 1 such
that a1a2 . . . ak ≡ 1 mod p and 2 | ai + āi + 1, i = 1, 2, . . . , k. The main purpose of this
paper is using the analytic method, the estimate for character sums and trigonometric sums
to study the asymptotic properties of the counting function N(k; p), and give an interesting
asymptotic formula for it.
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1. Introduction

Let p be an odd prime. For each integer a with 1 6 a 6 p−1, it is clear that there

exists one and only one ā with 0 6 ā 6 p−1 such that aā ≡ 1 mod p. LetN(p) denote

the number of all 1 6 a 6 p − 1 in which a and ā are of opposite parity. Professor

D.H. Lehmer [3] asked us to study N(p) or at least to say something nontrivial

about it. It is known that N(p) ≡ 2 or 0 mod 4 when p ≡ ±1 mod 4. For the sake of

convenience, we call such a number the Lehmer number. Some works related to the

Lehmer number can be found in references [7]–[10]. For example, Zhang [9] and [10]

proved the asymptotic formula

N(p) =
1

2
p+O(p1/2 ln2 p),

where f(x) = O(g(x)) means that the quotient |f(x)/g(x)| is bounded for x > a.

That is, there exists a constant M > 0 such that |f(x)| 6 M |g(x)| for all x > a.
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In this paper, we study two new problems related to the Lehmer number. For any

fixed integer k > 2, we define the sums N(k, p) and M(k, p) as follows:

N(k, p) =
1

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

(1 − (−1)a1+ā1) . . . (1− (−1)ak+āk)

and

M(k, p) =
1

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

(1− (−1)a1+ā1) . . . (1 − (−1)ak+āk).

In fact, the estimation of N(k, p) is a generalization and extension of Lehmer’s prob-

lem. For example, if k = 2, then from the definition of N(2, p) we have

N(2, p) =
1

4

p−1
∑

a=1

p−1
∑

b=1

ab≡1 mod p

(1− (−1)a+ā)(1− (−1)b+b̄)(1.1)

=
1

4

p−1
∑

a=1

(1 − (−1)a+ā)2 =
1

2

p−1
∑

a=1

(1− (−1)a+ā) = N(p).

So N(2, p) is just N(p), the Lehmer number.

Obviously, people will naturally ask for the asymptotic properties of these sums.

In regard to this question, it seems that no authors have studied it yet, at least we

have not seen any related result before. The problems are interesting, because they

are actually the Lehmer problem with some conditions.

In this paper, we shall use the analytic method and the properties of trigonometric

sums to study the asymptotic properties of N(k, p) and M(k, p), and give two sharp

asymptotic formulae for them. Namely, we shall prove the following two conclusions:

Theorem 1. Let p be an odd prime. Then for any integer k > 2, we have the

asymptotic formula

N(k, p) =























































1

2
p+O(p1/2 ln2 p) if k = 2,

1

8
p2 +O(p3/2 ln6 p) if k = 3,

1

2k
pk−1 +O

(

pk−3/2
(1

2
+

3 ln2 p

2
√
p

)k

ln2 p
)

+O
( (3

√
p ln2 p)k

2k

)

if k > 4,

where the constant O does not depend on k.
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Theorem 2. Let p be an odd prime. Then for any integer k > 4, we have the

asymptotic formula

M(k, p) =
1

2k
(p− 1)k−1

p
+O(2kpk/2 ln2k p).

It is clear that if k > 5, then Theorem 2 yields an asymptotic formula forM(k, p).

In particular, for k = 5 and 7, we have the following two corollaries:

Corollary 1. Let p be an odd prime. Then we have the asymptotic formula

M(5, p) =
1

32
p3 +O(p5/2 ln10 p).

Corollary 2. Let p be an odd prime. Then we have the asymptotic formula

M(7, p) =
1

128
p5 − 3

64
p4 +O(p7/2 ln14 p).

2. Several lemmas

In this section, we shall give several lemmas which are necessary in the proofs

of our theorems. Hereinafter, we shall use many properties of Gauss sums and

trigonometric sums. All these prerequisities can be found in references [1] and [5],

so they will not be repeated here. First we have the following:

Lemma 1. Let p be an odd prime. Then for any character χ mod p and any

integers m and n, we have the estimate

p−1
∑

a=1

χ(a) exp
(ma+ nā

p

)

6 2p1/2(m,n, p)1/2,

where (m,n, p) denotes the greatest common divisor of m, n and p.

P r o o f. From the methods of [2], [4] and [6] with some minor modifications we

may immediately deduce the estimate

p−1
∑

a=1

χ(a) exp
(ma+ nā

p

)

6 2(m,n, p)1/2p1/2.

�
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Lemma 2. Let p be an odd prime, and let χ be any character mod p. Then for

any integer m, we have the estimate

∣

∣

∣

∣

p−1
∑

a=1

(−1)a+āχ(a) exp
(ma

p

)

∣

∣

∣

∣

6 3p1/2 ln2 p.

P r o o f. For any integer r with (r, p) = 1, from Lemma 1 and the trigonometric

identities

(2.1)

p
∑

a=1

exp
(ma

p

)

=

{

p if (p,m) = p,

0 if (p,m) = 1

and

p−1
∑

a=1

(−1)a exp
(−ra

p

)

=

1− exp
(−r

p

)

1 + exp
(−r

p

)

=

i sin
(

πr

p

)

cos
(

πr

p

)

,

we have

p−1
∑

a=1

(−1)a+āχ(a) exp
(ma

p

)

=
1

p2

p−1
∑

a=1

p−1
∑

b=1

ab≡1 mod p

χ(a) exp
(ma

p

)

×
p−1
∑

c=1

p−1
∑

d=1

(−1)c+d

p
∑

r=1

exp
(r(a − c)

p

)

p
∑

s=1

exp
(s(b− d)

p

)

=
1

p2

p−1
∑

r=1

p−1
∑

s=1

(p−1
∑

a=1

χ(a) exp
((r +m)a+ sā

p

)

)

×
(p−1
∑

c=1

(−1)c exp
(−rc

p

)

)(p−1
∑

d=1

(−1)d exp
(−sd

p

)

)

6
2
√
p

p2

p−1
∑

r=1

p−1
∑

s=1

2
∣

∣

∣
1 + exp

(−r

p

)∣

∣

∣

2
∣

∣

∣
1 + exp

(−s

p

)∣

∣

∣

6
2
√
p

p2

p−1
∑

r=1

p−1
∑

s=1

1
∣

∣

∣
sin

(

π

2
− rπ

p

)∣

∣

∣

1
∣

∣

∣
sin

(

π

2
− sπ

p

)∣

∣

∣

6
2
√
p

p2

p−1
∑

r=1

p−1
∑

s=1

p

|p− 2r|
p

|p− 2s| 6 3p1/2 ln2 p.

This proves Lemma 2. �
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Lemma 3. Let p be an odd prime, and let k > 3 be any fixed integer. Then for

any integer 1 6 i 6 k, we have the estimate

∣

∣

∣

∣

∣

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

(−1)a1+ā1 . . . (−1)ai+āi

∣

∣

∣

∣

∣

= O(3ipk/2 ln2i p).

P r o o f. From the properties of Gauss sums we have

p−1
∑

b=1

χ(b) exp
(rb

p

)

= χ̄(r)τ(χ).

Note that |τ(χ)| = √
p, if χ is not a principal character mod p. From (2.1), Lemma 2

and the orthogonality of characters mod p we have

∣

∣

∣

∣

∣

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

(−1)a1+ā1 . . . (−1)ai+āi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

p
∑

r=1

∑

χ mod p

p−1
∑

a1=1

. . .

p−1
∑

ak=1

(−1)a1+ā1 . . . (−1)ai+āiχ(a1 . . . ak)

× exp
(r(a1 + a2 + . . .+ ak)

p

)

∣

∣

∣

∣

∣

1

p(p− 1)

=
1

p(p− 1)

∣

∣

∣

∣

∣

p
∑

r=1

∑

χ mod p

(p−1
∑

a=1

(−1)a+āχ(a) exp
(ra

p

)

)i(p−1
∑

b=1

χ(b) exp
(rb

p

)

)k−i
∣

∣

∣

∣

∣

=
1

p(p− 1)

∣

∣

∣

∣

∣

p
∑

r=1

∑

χ mod p

χ̄k−i(r)

(p−1
∑

a=1

(−1)a+āχ(a) exp
(ra

p

)

)i

τk−i(χ)

∣

∣

∣

∣

∣

6
1

p(p− 1)

p
∑

r=1

∑

χ mod p

3ipk/2 ln2i p = 3ipk/2 ln2i p.

This proves Lemma 3. �

Lemma 4. Let p be an odd prime, and let k > 3 be any fixed integer. Then we

have the asymptotic formula

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

1 =
(p− 1)k−1

p
+O(pk/2−1).

919



P r o o f. From (2.1) and the orthogonality of characters mod p we have

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

1 =
1

p(p− 1)

p
∑

r=1

∑

χ mod p

(p−1
∑

a=1

χ(a) exp
(ra

p

)

)k

=
(p− 1)k

p(p− 1)
+

1

p(p− 1)

p−1
∑

r=1

∑

χ mod p

χ̄k(r)τk(χ)

=
(p− 1)k−1

p
+

(−1)k

p
+

1

p

∑

χ mod p

χk=χ0

τk(χ) =
(p− 1)k−1

p
+O(pk/2−1),

where χ0 denotes the principal character mod p. This proves Lemma 4. �

3. Proofs of the theorems

In this section, we shall complete the proofs of our theorems.

P r o o f. First we prove Theorem 1. If k = 2, then from (1.1) and Lemma 2 with

χ = χ0, the principal character mod p, we have the asymptotic formula

N(2, p) =
1

2

p−1
∑

a=1

(1− (−1)a+ā) =
1

2
(p− 1) +O(p1/2 ln2 p)(3.1)

=
1

2
p+O(p1/2 ln2 p).

If k > 3, then from Lemma 2, the orthogonality of characters mod p, the definition

of N(k, p) and the binomial expansion we have

N(k, p) =
1

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

(1− (−1)a1+ā1) . . . (1− (−1)ak+āk)(3.2)

=
1

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

1− k

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

(−1)a1+ā1

+
k(k − 1)

2k+1

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

(−1)a1+ā1(−1)a2+ā2 + . . .

+
1

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

(−1)k(−1)a1+ā1(−1)a2+ā2 . . . (−1)ak+āk
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=
1

2k
(p− 1)k−1 − k

2k
(p− 1)k−2

(p−1
∑

a=1

(−1)a+ā

)

+
k(k − 1)

2k+1
(p− 1)k−3

(p−1
∑

a=1

(−1)a+ā

)2

+ . . .

+
(−1)k

2k
1

p− 1

∑

χ mod p

(p−1
∑

a=1

(−1)a+āχ(a)

)k

=
1

2k
(p− 1)k−1 +O

(

pk−1

2k

k−1
∑

i=1

(

k

i

)

(3
√
p ln2 p

p

)i
)

+O
( (3

√
p ln2 p)k

2k

)

=
1

2k
pk−1 +O

(

pk−3/2
(1

2
+

3 ln2 p

2
√
p

)k−1

ln2 p
)

+O
( (3

√
p ln2 p)k

2k

)

.

Combining (3.1) and (3.2) we may immediately deduce the asymptotic formula

N(k, p) =



































1

2
p+O(p1/2 ln2 p) if k = 2,

1

8
p2 + O(p3/2 ln6 p) if k = 3,

1

2k
pk−1 +O

(

pk−3/2
(1

2
+

3 ln2 p

2
√
p

)k

ln2 p
)

+O
( (3

√
p ln2 p)k

2k

)

if k > 4.

This proves Theorem 1. �

P r o o f. Now we prove Theorem 2. For any integer k > 4, from the definition of

M(k, p), Lemma 4, Lemma 5 and the binomial expansion we have

M(k, p) =
1

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

(1− (−1)a1+ā1) . . . (1− (−1)ak+āk)

=
1

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

1− k

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

(−1)a1+ā1

+
k(k − 1)

2k+1

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

(−1)a1+ā1(−1)a2+ā2 + . . .

+
(−1)k

2k

p−1
∑

a1=1

. . .

p−1
∑

ak=1

a1a2...ak≡1 mod p

p | a1+a2+...+ak

(−1)a1+ā1(−1)a2+ā2 . . . (−1)ak+āk
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=
(p− 1)k−1

2kp
+O

(

1

2k

k
∑

i=1

(

k

i

)

3ipk/2 ln2i p

)

=
(p− 1)k−1

2kp
+O(2kpk/2 ln2k p).

This completes the proof of Theorem 2. �

Acknowledgement. The authors would like to thank the referee for his/her very

helpful and detailed comments, which have significantly improved the presentation

of this paper.

References

[1] T.M.Apostol: Introduction to Analytic Number Theory. Undergraduate Texts in Math-
ematics, Springer, New York, 1976.

[2] S.Chowla: On Kloosterman’s sum. Norske Vid. Selsk. Forhdl. 40 (1967), 70–72.
[3] R.K.Guy: Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Math-
ematics, I. Problem Books in Mathematics, Springer, New York, 1994.

[4] A.V.Malyšev: A generalization of Kloosterman sums and their estimates. Vestnik
Leningrad. Univ. 15 (1960), 59–75.

[5] C.Pan, C. Pan: Goldbach Conjecture. Science Press, Beijing, 1992.
[6] A.Weil: Sur les courbes algébriques et les variétés qui s’en déduisent. Actualités Sci.
Ind. 1041, deuxieme partie, § IV, Hermann et Cie., Paris, 1948 (In French.); Publ. Inst.
Math. Univ. Strasbourg, 7 (1945).

[7] W.Zhang: A mean value related to D.H. Lehmer’s problem and the Ramanujan’s sum.
Glasg. Math. J. 54 (2012), 155–162.

[8] W.Zhang: A problem of D.H. Lehmer and its mean square value formula. Japan J.
Math., New Ser. 29 (2003), 109–116.

[9] W.Zhang: A problem of D.H. Lehmer and its generalization. II. Compos. Math. 91
(1994), 47–56.

[10] W.Zhang: On a problem of D.H.Lehmer and its generalization. Compos. Math. 86
(1993), 307–316.

Authors’ address: H a n Z h a n g, We n p e n g Z h a n g, School of Mathematics, North-
west University, Xuefu Avenue No. 1, Chang’an, Xi’an, Shaanxi, 710127, P.R. China, e-mail:
micohanzhang@gmail.com, wpzhang@nwu.edu.cn.

922


		webmaster@dml.cz
	2020-07-03T21:50:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




