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The Morse-Sard-Brown Theorem for Functionals on
Bounded Fréchet-Finsler Manifolds

Kaveh Eftekharinasab

Abstract. In this paper we study Lipschitz-Fredholm vector fields on
bounded Fréchet-Finsler manifolds. In this context we generalize the Morse-
-Sard-Brown theorem, asserting that if M is a connected smooth bounded
Fréchet-Finsler manifold endowed with a connection K and if ξ is a smooth
Lipschitz-Fredholm vector field on M with respect to K which satisfies con-
dition (WCV), then, for any smooth functional l on M which is associated
to ξ, the set of the critical values of l is of first category in R. Therefore,
the set of the regular values of l is a residual Baire subset of R.

1 Introduction
The notion of a Fredholm vector field on a Banach manifold B with respect to a
connection on B was introduced by Tromba [13]. Such vector fields arise naturally
in non-linear analysis from variational problems. There are geometrical objects
such as harmonic maps, geodesics and minimal surfaces which arise as the zeros
of a Fredholm vector field. Therefore, it would be valuable to study the critical
points of functionals which are associated to Fredholm vector fields. In [12], Tromba
proved the Morse-Sard-Brown theorem for this type of functionals in the case of
Banach manifolds. Such a theorem would have applications to problems in the
calculus of variations in the large such as Morse theory [11] and index theory [13].

The purpose of this paper is to extend the theorem of Tromba [12, Theorem 1
(MSB)] to a new class of generalized Fréchet manifolds, the class of the so-called
bounded Fréchet manifolds, which was introduced in [8]. Such spaces arise in ge-
ometry and physical field theory and have many desirable properties. For instance,
the space of all smooth sections of a fibre bundle (over closed or noncompact man-
ifolds), which is the foremost example of infinite dimensional manifolds, has the
structure of a bounded Fréchet manifold, see [8, Theorem 3.34]. The idea to intro-
duce this category of manifolds was to overcome some permanent difficulties (i.e.,
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problems of intrinsic nature) in the theory of Fréchet spaces. For example, the lack
of a non-trivial topological group structure on the general linear group of a Fréchet
space. As for the importance of bounded Fréchet manifolds, we refer to [3], [4]
and [8].

Essentially, to define the index of Fredholm vector fields we need the stability of
Fredholm operators under small perturbations, but this is unobtainable in the case
of proper Fréchet spaces (non-normable spaces) in general, see [3]. Also, we need a
subtle notion of a connection via a connection map, but (because of the aforemen-
tioned problem) such a connection can not be constructed for Fréchet manifolds
in general (cf. [2]). However, in the case of bounded Fréchet manifolds under
the global Lipschitz assumption on Fredholm operators, the stability of Lipschitz-
-Fredholm operators was established in [3]. In addition, the notion of a connection
via a connection map was defined in [4]. By using these results, we introduce the
notion of a Lipschitz-Fredholm vector field in Section 3. With regard to a kind of
compactness assumption (condition (WCV)), which one needs to impose on vector
fields, we will be interested in manifolds which admit a Finsler structure. We then
define Finsler structures for bounded Fréchet manifolds in Section 4. Finally, after
we explained all subsequent portions for proving the Morse-Sard-Brown theorem,
we formulate the theorem in the setting of Finsler manifolds in Section 5. A key
point in the proof of the theorem is Proposition 2 which in its simplest form says
that a Lipschitz-Fredholm vector field ξ near origin locally has a representation of
the form ξ(u, v) = (u, η(u, v)), where η is a smooth map. Indeed, this is a conse-
quence of the inverse function theorem (Theorem 3). One of the most important
advantage of the category of bounded Fréchet manifold is the availability of the
inverse function theorem of Nash and Moser (see [8]).

Morse theory and index theories for Fréchet manifolds have not been developed.
Nevertheless, our approach provides some essential tools (such as connection maps,
covariant derivatives, Finsler structures) which would create a proper framework
for these theories.

2 Preliminaries
In this section we summarize all the necessary preliminary material that we need
for a self-contained presentation of the paper. We shall work in the category of
smooth manifolds and bundles. We refer to [4] for the basic geometry of bounded
Fréchet manifolds.

A Fréchet space (F, d) is a complete metrizable locally convex space whose
topology is defined by a complete translation-invariant metric d. A metric with
absolutely convex balls will be called a standard metric. Note that every Fréchet
space admits a standard metric which defines its topology: If (αn) is an arbitrary
sequence of positive real numbers converging to zero and if (ρn) is any sequence of
continuous seminorms defining the topology of F , then

dα, ρ(e, f) := sup
n∈N

αn
ρn(e− f)

1 + ρn(e− f)
(1)

is a metric on F with the desired properties. We shall always define the topology
of Fréchet spaces with this type of metrics. Let (E, g) be another Fréchet space
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and let Lg,d(E,F ) be the set of all linear maps L : E → F such that

Lip(L)g,d := sup
x∈E\{0}

d(L(x), 0)

g(x, 0)
<∞.

We abbreviate Lg(E) := Lg,g(E,E) and write Lip(L)g = Lip(L)g,g for L ∈ Lg(E).
The metric Dg,d defined by

Dg,d : Lg,d(E,F )× Lg,d(E,F ) −→ [0,∞), (L,H) 7→ Lip(L−H)g,d , (2)

is a translation-invariant metric on Ld,g(E,F ) turning it into an Abelian topological
group (see [6, Remark 1.9]). The latter is not a topological vector space in general,
but a locally convex vector group with absolutely convex balls. The topology on
Ld,g(E,F ) will always be defined by the metric Dg,d. We shall always equip the
product of any finite number k of Fréchet spaces (Fi, di), 1 ≤ i ≤ k, with the
maximum metric

dmax

(
(x1, . . . , xk), (y1, . . . , yk)

)
:= max

1≤i≤k
di(xi, yi).

Let E,F be Fréchet spaces, U an open subset of E and P : U → F a continuous
map. Let CL(E,F ) be the space of all continuous linear maps from E to F
topologized by the compact-open topology. We say P is differentiable at a point
p ∈ U if there exists a linear map dP (p) : E → F such that

dP (p)h = lim
t→0

P (p+ th)− P (p)

t
,

for all h ∈ E. If P is differentiable at all points p ∈ U , if dP (p) : U → CL(E,F )
is continuous for all p ∈ U and if the induced map

P ′ : U × E → F, (u, h) 7→ dP (u)h

is continuous in the product topology, then we say that P is Keller-differentiable.
We define P (k+1) : U × Ek+1 → F inductively by

P (k+1)(u, f1, ..., fk+1) = lim
t→0

P (k)(u+ tfk+1)(f1, ..., fk)− P (k)(u)(f1, ..., fk)

t
.

If P is Keller-differentiable, dP (p) ∈ Ld,g(E,F ) for all p ∈ U , and the induced
map dP (p) : U → Ld,g(E,F ) is continuous, then P is called b-differentiable. We
say P is MC0 and write P 0 = P if it is continuous. We say P is an MC1 and write
P (1) = P ′ if it is b-differentiable. Let Ld,g(E,F )0 be the connected component
of Ld,g(E,F ) containing the zero map. If P is b-differentiable and if V ⊆ U is
a connected open neighbourhood of x0 ∈ U , then P ′(V ) is connected and hence
contained in the connected component P ′(x0)+Ld,g(E,F )0 of P ′(x0) in Ld,g(E,F ).
Thus,

P ′|V − P ′(x0) : V → Ld,g(E,F )0
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is again a map between subsets of Fréchet spaces. This makes possible a recursive
definition: If P is MC1 and V can be chosen for each x0 ∈ U such that

P ′|V − P ′(x0) : V → Ld,g(E,F )0

is MCk−1, then P is called an MCk-map. We make a piecewise definition of P (k)

by P (k)|V := (P ′|V − P ′(x0))
(k−1) for x0 and V as before. The map P is MC∞ if

it is MCk for all k ∈ N0. We shall denote the derivative of P at p by DP (p).
A bounded Fréchet manifold is a second countable Hausdorff space with an atlas

of coordinate charts taking their values in Fréchet spaces such that the coordinate
transition functions are all MC∞-maps.

3 Lipschitz-Fredholm vector fields
Throughout the paper we assume that (F, d) is a Fréchet space and M is a bounded
Fréchet manifold modelled on F . Let (Uα, ϕα)α∈A be a compatible atlas for M .
The latter gives rise to a trivializing atlas (π−1

M (Uα), ψα)α∈A on the tangent bundle
πM : TM →M , with

ψα : π−1
M (Uα)→ ϕα(Uα)× F, j1

p(f) 7→
(
ϕα(p), (ϕα ◦ f)′(0)

)
,

where j1
p(f) stands for the 1-jet of an MC∞-mapping f : R → M that sends

zero to p ∈ M . Let N be another bounded Fréchet manifold and h : M → N
an MCk-map. The tangent map Th : TM → TN is defined by Th(j1

p(f)) =
j1
h(p)(h ◦ f). Let ΠTM : T (TM) → TM be an ordinary tangent bundle over TM

with the corresponding trivializing atlas
(
Π−1
TM (π−1

M (Uα)), ψ̃α
)
α∈A. A connection

map on the tangent bundle TM (possible also for general vector bundles) was
defined in [4]. It is a smooth bundle morphism

K : T (TM)→ TM

such that the maps τα : ϕα(Uα)× F → Ld(F ) defined by the local forms

Kα := ψα ◦ K ◦ (ψ̃α)−1 : ϕα(Uα)× F × F × F → ϕα(Uα)× F, α ∈ A (3)

of K by the rule
Kα(f, g, h, k) = (f, k + τα(f, g) · h),

are smooth. A connection on M is a connection map on its tangent bundle πM :
TM → M . A connection K is linear if and only if it is linear on the fibres of
the tangent map. Locally Tπ is the map Uα × F × F × F → Uα × F defined by
Tπ(f, ξ, h, γ) = (f, h), hence locally its fibres are the spaces {f} × F × {h} × F .
Therefore, K is linear on these fibres if and only if the maps (g, k) 7→ k+ τα(f, g)h
are linear, and this means that the mappings τα need to be linear with respect to
their second variables.

A linear connection K is determined by the family (Γα)α∈A of its Christoffel
symbols consisting of smooth mappings

Γα : ϕα(Uα)→ L(F × F ;F ), p 7→ Γα(p)

defined by Γα(p)(g, h) = τα(p, g)h.
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Remark 1. If ϕ : U ⊂ M → F is a local coordinate chart for M , then a vector
field ξ on M induces a vector field ξ on F called the local representative of ξ by
the formula ξ(x) = Tϕ · ξ(ϕ−1(x)). Here and in what follows we use ξ itself to
denote this local representation.

In the following we adopt Elliason’s definition of a covariant derivative [5].

Definition 1. Let πM : TM →M be the tangent bundle of M . Let N be a bounded
Fréchet manifold modelled on F , λ : N →M a Fréchet vector bundle with fibre F ,
and Kλ a connection map on TN . If ξ : M → N is a smooth section of λ, we
define the covariant derivative of ξ at p ∈M to be the bundle map ∇ξ : TM → N
given by

∇ξ(p) = Kλ ◦ Tpξ, Tpξ = Tξ|TpM .

In a local coordinate chart (U,Φ) we have

∇ξ(x) · y = D ξ(x) · y + ΓΦ(x) · (y, ξ(x)),

where ΓΦ is the Christoffel symbol for Kλ with respect to the chart (U,Φ).

The covariant derivative ∇ξ(p) is a linear map from the tangent space TpM to
Fp := λ−1(p). This is because it is the combination of the tangent map Tpξ that
maps TpM linearly into Tξ(p)N with Kλ which is a linear map from Tξ(p)N to Fp.

Definition 2. ([3], Definition 3.2) Let (F, d) and (E, g) be Fréchet spaces. A map ϕ
in Lg,d(E,F ) is called a Lipschitz-Fredholm operator if it satisfies the following
conditions:

1. The image of ϕ is closed.

2. The dimension of the kernel of ϕ is finite.

3. The co-dimension of the image of ϕ is finite.

We denote by LF(E,F ) the set of all Lipschitz-Fredholm operators from E into F .
For ϕ ∈ LF(E,F ) we define the index of ϕ as follows:

Indϕ = dim kerϕ− codim Imgϕ.

Theorem 1. ([3], Theorem 3.2) LF(E,F ) is open in Lg,d(E,F ) with respect to
the topology defined by the metric (2). Furthermore, the function T → IndT is
continuous on LF(E,F ), and hence it is constant on the connected components of
LF(E,F ).

Now we define a Lipschitz-Fredholm vector field on M with respect to a connection
on M .

Definition 3. A smooth vector field ξ : M → TM is called Lipschitz-Fredholm with
respect to a connection K : T (TM)→ TM if for each p ∈M , ∇ξ(p) : TpM → TpM
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is a linear Lipschitz-Fredholm operator. The index of ξ at p is defined to be the
index of ∇ξ(p), that is

Ind∇ξ(p) = dim ker∇ξ(p)− codim Img∇ξ(p).

By Theorem 1, if M is connected, then the index is independent of the choice of p,
and the common value is called the index of ξ. If M is not connected, then the
index is constant on its components, and we shall require it to be the same on all
these components.

Remark 2. Note that the notion of a Lipschitz-Fredholm vector field depends on
the choice of the connection K. If p is a zero of ξ, ξ(p) = 0, then by Definition 1
we have ∇ξ(p) = D ξ(p), and hence the covariant derivative at p does not depend
on K. In this case, the derivative of ξ at p, D ξ(p), can be viewed as a linear
endomorphism from TpM into itself.

4 Finsler structures
A Finsler structure on a bounded Fréchet manifold M is defined in the same way
as in the case of Fréchet manifolds (see [1] for the definition of Fréchet-Finsler
manifolds). However, we need a countable family of seminorms on its Fréchet model
space F which defines the topology of F . As mentioned in the Preliminaries, we
always define the topology of a Fréchet space by a metric with absolutely convex
balls. One reason for this consideration is that a metric with this property can give
us back the original seminorms. More precisely:

Remark 3. ([8], Theorem 3.4) Assume that (E, g) is a Fréchet space and g is a
metric with absolutely convex balls. Let Bg1

i

(0) :=
{
y ∈ E | g(y, 0) < 1

i

}
, and

suppose that (Ui)i∈N is a family of convex subsets of Bg1
i

(0). Define the Minkowski

functionals

‖v‖i := inf

{
ε > 0

∣∣∣∣ ε ∈ R,
1

ε
· v ∈ Ui

}
.

These Minkowski functionals are continuous seminorms on E. A collection (‖v‖i)i∈N
of these seminorms gives the topology of E.

Definition 4. Let F be as before. Let X be a topological space and V = X × F
the trivial bundle with fibre F over X. A Finsler structure for V is a collection of
functions ‖·‖n : V → R+, n ∈ N, such that

1. For any fixed b ∈ X, ‖(b, x)‖n = ‖x‖nb is a collection of seminorms on F
which gives the topology of F .

2. Given K > 1 and x0 ∈ X, there exits a neighborhood U of x0 such that

1

K
‖f‖nx0

5 ‖f‖nx 5 K‖f‖nx0
(4)

for all x ∈ U , n ∈ N, f ∈ F .
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Let πM : TM → M be the tangent bundle of M and let ‖·‖n : TM → R+,
n ∈ N, be a family of functions. We say that (‖·‖n)n∈N is a Finsler structure for
TM if for a given m0 ∈ M and any open neighborhood U of m0 which trivializes
the tangent bundle TM , i.e., there exists a diffeomorphism

ψ : π−1
M (U) ≈ U ×

(
Fm0

:= π−1
M (m0)

)
,

the family (‖·‖n ◦ ψ−1)n∈N is a Finsler structure for U × Fm0 .

Definition 5. A bounded Fréchet-Finsler manifold is a bounded Fréchet manifold
together with a Finsler structure on its tangent bundle.

Proposition 1. Let N be a paracompact bounded Fréchet manifold modelled on
a Fréchet space (E, g). If all seminorms ‖·‖i, i ∈ N, (which are defined as in
Remark 3) are smooth maps on E \ {0}, then N admits a partition of unity.
Moreover, N admits a Finsler structure.

Proof. See [1], Propositions 3 and 4. �

If (‖·‖n)n∈N is a Finsler structure for M then eventually we can obtain a graded
Finsler structure, denoted again by (‖·‖n)n∈N, for M (see [1]). Let (‖·‖n)n∈N be
a graded Finsler structure for M . We define the length of piecewise MC1-curve
γ : [a, b]→M by

Ln(γ) =

∫ b

a

‖γ′(t)‖nγ(t) dt.

On each connected component of M , the distance is defined by

ρn(x, y) = inf
γ
Ln(γ),

where the infimum is taken over all continuous piecewise MC1-curve connecting x
to y. Thus, we obtain an increasing sequence of pseudometrics ρn(x, y) and define
the distance ρ by

ρ(x, y) =

n=∞∑
n=1

1

2n
· ρn(x, y)

1 + ρn(x, y)
. (5)

Lemma 1. ([1], Lemma 2) A family (σi)i∈N of pseudometrics on F defines
a unique topology T such that for every sequence (xn)n∈N ⊂ F , we have xn → x
in the topology T if and only if σi(xn, x) → 0, for all i ∈ N. The topology is
Hausdorff if and only if x = y when all σi(x, y) = 0. In addition,

σ(x, y) =

∞∑
n=1

1

2n
· σn(x, y)

1 + σn(x, y)

is a pseudometric on F , which defines the same topology.

With the aid of this lemma, the proof of the following theorem is quite similar
to the proof given for Banach manifolds (cf. [10]).
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Theorem 2. Suppose M is a connected manifold endowed with a Finsler structure
(‖·‖n)n∈N. Then the distance ρ defined by (5) is a metric for M . Furthermore, the
topology induced by this metric coincides with the original topology of M .

Proof. The distance ρ is pseudometric by Lemma 1. We prove that ρ(x0, y0) > 0
if x0 6= y0. Let (‖·‖n)n∈N be the family of all seminorms on F (which are defined
as in Remark 3). Given x0 ∈M , let ϕ : U → F be a chart for M with x0 ∈ U and
ϕ(x0) = u0. Let y0 ∈M , and let γ : [a, b]→M be an MC1-curve connecting x0 to
y0. Let Br(u0) be a ball with center u0 and radius r > 0. Choose r small enough
so that U := ϕ−1(Br(u0)) ⊂ U and for a given K > 1,

1

K
‖f‖nx0

5 ‖f‖nx 5 K‖f‖nx0
,

for all x ∈ U , n ∈ N, f ∈ F . Let I = [a, b] and µ(t) := ϕ ◦ γ(t). If γ(I) ⊂ U , then
let β = b. Otherwise, let β be the first t > 0 such that ‖µ(t) − u0‖n = r for all
n ∈ N. Then, since for every x ∈ U the map φ(x) : TxM → F given by j1

x 7→ ϕ(x)
is a homeomorphism, it follows that for all n ∈ N we have∫ b

a

‖γ′(t)‖nγ(t) dt ≥ 1

K

∫ β

a

‖φ−1(x) ◦ µ′(t)‖nx0
dt ≥ k1

∫ β

a

‖µ′(t))‖ndt

≥ k1‖
∫ β

a

µ′(t)dt‖n = k1‖µ(β)− µ(a)‖n for some k1 > 0.

(The last inequality follows from [7, Theorem 2.1.1].) Thereby, if x0 6= y0 then
ρn(x0, y0) > 0 and hence ρ(x0, y0) > 0. Now we prove that the topology induced
by ρ coincides with the topology of M . By virtue of Lemma 1, we only need to
show that (ρn)n∈N induces the topology which is consistent with the topology of
M . If xi → x0 in M then eventually xi ∈ U . Define λi : [0, 1]→ U , an MC1-curve
connecting x0 to xi, by λi(t) := tϕ(xi). Then, for all n ∈ N

ρn(xi, x0) ≤ Ln(λi) =

∫ 1

0

‖λ′i‖nλi(t)
dt =

∫ 1

0

‖ϕ(xi)‖ntϕ(xi)
dt

≤ K
∫ 1

0

‖ϕ(xi)‖nx0
dt = K‖ϕ(xi)‖n.

But ϕ(xi) → 0 as xi → x0, thereby ρn(xi, x0) → 0 for all n ∈ N. Conversely, if
for all n ∈ N, ρn(xi, x0)→ 0 then eventually we can choose r small enough so that
xi ∈ U . Then, for all n ∈ N we have ‖ϕ(xi)‖nx0

≤ Kρn(xi, x0) so ‖ϕ(xi)‖nx0
→ 0 in

Tx0M , whence ϕ(xi)→ 0. Therefore, xi → x0 in U and hence in M . �

The metric ρ is called the Finsler metric for M .

5 Morse-Sard-Brown Theorem
In this section we prove the Morse-Sard-Brown theorem for functionals on bounded
Fréchet-Finsler manifolds. The proof relies on the following inverse function theo-
rem.
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Theorem 3 (Inverse Function Theorem for MCk-maps). ([6], Proposition 7.1)
Let (E, g) be a Fréchet space with standard metric g. Let U ⊂ E be open, x0 ∈ U
and f : U ⊂ E → E an MCk-map, k ≥ 1. If f ′(x0) ∈ Aut (E), then there exists an
open neighbourhood V ⊆ U of x0 such that f(V ) is open in E and f |V : V → f(V )
is an MCk-diffeomorphism.

The following consequence of this theorem is an important technical tool.

Proposition 2 (Local representation). Let F1, F2 be Fréchet spaces and U an open
subset of F1 × F2 with (0, 0) ∈ U . Let E2 be another Fréchet space and
φ : U → F1 × E2 an MC∞-map with φ(0, 0) = (0, 0). Assume that the par-
tial derivative D1 φ(0, 0) : F1 → F1 is linear isomorphism. Then there exists a local
MC∞-diffeomorphism ψ from an open neighbourhood V1 × V2 ⊆ F1 × F2 of (0, 0)
onto an open neighbourhood of (0, 0) contained in U such that

φ ◦ ψ(u, v) = (u, µ(u, v)),

where µ : V1 × V2 → E2 is an MC∞-mapping.

Proof. Let φ = φ1 × φ2, where φ1 : U → F1 and φ2 : U → E2. By assumption we
have D1 φ1(0, 0) = D1 φ(0, 0)|F1

∈ Iso(F1, F1). Define the map

g : U ⊂ F1 × F2 → F1 × E2, g(u1, u2) :=
(
φ1(u1, u2), u2

)
locally at (0, 0). Then, for all u = (u1, u2) ∈ U, f1 ∈ F1, f2 ∈ F2 we have

D g(u) · (f1, f2) =

(
D1 φ1(u) D2 φ1(u)

0 IdE2

)(
f1

f2

)
,

and hence D g(u) is a linear isomorphism at (0, 0). By the inverse function theorem,
there are open sets U ′ and V = V1× V2 and an MC∞-diffeomorphism Ψ : V → U ′

such that (0, 0) ∈ U ′ ⊂ U, g(0, 0) ∈ V ⊂ F1 × E2, and Ψ−1 = g|U ′ . Hence if
(u, v) ∈ V , then

(u, v) = (g ◦Ψ)(u, v) = g
(
Ψ1(u, v),Ψ2(u, v)

)
=
(
φ1 ◦Ψ1(u, v),Ψ2(u, v)

)
,

where Ψ = Ψ1 × Ψ2. This shows that Ψ2(v, v) = v and (φ1 ◦ Ψ)(u, v) = u. If
η = φ2 ◦Ψ, then

(φ ◦Ψ)(u, v) =
(
φ1 ◦Ψ(u, v), φ2 ◦Ψ(u, v)

)
= (u, η(u, v)).

This completes the proof. �

In the sequel, we assume that M is connected and it is endowed with a Finsler
structure (‖·‖n)n∈N and the induced Finsler metric ρ.

Definition 6. Let l : M → R be an MC∞-functional and ξM → TM a smooth
vector field. By saying that l and ξ are associated we mean D l(p) = 0 if and only
if ξ(p) = 0. A point p ∈ M is called a critical point for l if D l(p) = 0. The
corresponding value l(p) is called a critical value. Values other than critical are
called regular values. The set of all critical points of l is denoted by Critl.
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The following is our version of the compactness condition due to Tromba [11].

Condition 1 (CV). Let (mi)i∈N be a bounded sequence in M . We say that a vector
field ξ : M → TM satisfies condition (CV) if ‖ξ(mi)‖n → 0 for all n ∈ N implies
that (mi)i∈N has a convergent subsequence.

If ξ satisfies condition (CV) then the set of its zeros in any closed bounded set is
compact (see [11, Proposition 1, p. 55]). This property turns out to be important.
We then say ξ satisfies condition (WCV) if the set of its zeros in any closed bounded
set is compact.

A subset G of a Fréchet space E is called topologically complemented or split
in E if there is another subspace H of E such that E is homeomorphic to the
topological direct sum G ⊕ H. In this case we call H a topological complement
of G in F .

We need the following facts:

Theorem 4. ([8], Theorem 3.14) Let E be a Fréchet space. Then

1. Every finite-dimensional subspace of E is closed.

2. Every closed subspace G ⊂ E with codim(G) = dim(E/G) <∞ is topologi-
cally complemented in E.

3. Every finite-dimensional subspace of E is topologically complemented.

4. Every linear isomorphism G⊕H → E between the direct sum of two closed
subspaces and E, is a homeomorphism.

The proof of the Morse-Sard-Brown theorem requires Proposition 2 and Theorem 4.
Except the arguments which involve these results and the Finslerian nature of
manifolds, the rest of arguments are similar to that of Banach manifolds case,
see [12, Theorem 1].

Theorem 5 (Morse-Sard-Brown Theorem). Assume that (M,ρ) is endowed with
a connection K. Let ξ be a smooth Lipschitz-Fredholm vector field on M with
respect to K which satisfies condition (WCV). Then, for any MC∞-functional l
on M which is associated to ξ, the set of its critical values l(Critl) is of first category
in R. Therefore, the set of the regular values of l is a residual Baire subset of R.

Proof. We can assume M =
⋃
i∈NMi, where all the Mi’s are closed bounded balls

of radius i about some fixed point m0 ∈ M . The boundedness and the radii of
balls are relative to the Finsler metric ρ. Thus to conclude the proof it suffices to
show that the image l(CB) of the set CB of the zeros of ξ in some bounded set B is
compact without interior. If, in addition, B is closed, then CB is compact because
ξ satisfies condition (WCV).

Let B be a closed bounded set and let CB as before. If p ∈ CB then eventually
ξ(p) = 0. Since CB is compact we only need to show that for a bounded neigh-
bourhood U of p, l(CB ∩ U) is compact without interior. In other words, we can
work locally. Therefore, we may assume without loss of generality that p = 0 ∈ F
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and ξ, l are defined locally on an open neighbourhood of p. An endomorphism
D ξ(p) : F → F is a Lipschitz-Fredholm operator because ξ is a Lipschitz-Fredholm
vector field (see Remark 2). Thereby, in the light of Theorem 4 it has a split
image F1 with a topological complement F2 and a split kernel E2 with a topo-
logical complement E1. Moreover, D ξ(p) maps E1 isomorphically onto F1 so we
can identify F1 with E1. Then, by Proposition 2, there is an open neighborhood
U ⊂ E1×E2 of p such that ξ(u, v) = (u, η(u, v)) for all (u, v) ∈ U , where η : U → F2

is an MC∞-map. Thus, if ξ(u, v) = 0 = (u, η(u, v)) then u = 0. Therefore, in this
local representation, the zeros of ξ (and hence the critical points of l) in U are in
U1 := U ∩ ({0} × E2). The restriction of l, lU1

: U1 → R, is again MC∞ and
CB ∩ U = CB ∩ U1 so l(CB ∩ U) = l(CB ∩ U1).

We have for some constant k ∈ N, dimU1 = dimE2 = k because ξ(p) is
a Lipschitz-Fredholm operator and E2 is its kernel. Thus, by the classical Sard
theorem, l(CB ∩ U1) has measure zero (note that MCk-differentiability implies
the usual Ck-differentiability for maps of finite dimensional manifolds). Therefore,
since CB ∩ U1 is compact it follows that l(CB ∩ U1) is compact without interior
and hence l(CB ∩ U) is compact without interior. �

Remark 4. From the preceding proof we see that dimF2 = m, where m ∈ N is
constant. Thus, the index of ξ is the Ind ξ = dimE2 − dimF2 = k −m.
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