
Communications in Mathematics

Shaban Sedghi; Nabi Shobkolaei; Ishak Altun
Partial Fuzzy Metric Space and Some Fixed Point Results

Communications in Mathematics, Vol. 23 (2015), No. 2, 131–142

Persistent URL: http://dml.cz/dmlcz/144802

Terms of use:
© University of Ostrava, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144802
http://dml.cz


Communications in Mathematics 23 (2015) 131–142
Copyright c© 2015 The University of Ostrava 131

Partial Fuzzy Metric Space and Some Fixed Point
Results

Shaban Sedghi, Nabi Shobkolaei, Ishak Altun

Abstract. In this paper, we introduce the concept of partial fuzzy metric on
a nonempty set X and give the topological structure and some properties
of partial fuzzy metric space. Then some fixed point results are provided.

1 Introduction and preliminaries
We recall some basic definitions and results from the theory of fuzzy metric spaces,
used in the sequel.

Definition 1. [5] A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm
if it satisfies the following conditions:

1. ∗ is associative and commutative,

2. ∗ is continuous,

3. a ∗ 1 = a for all a ∈ [0, 1],

4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norms are a∗b = ab and a∗b = min{a, b}.

Definition 2. [1] A triple (X,M, ∗) is called a fuzzy metric space (in the sense
of George and Veeramani) if X is a nonempty set, ∗ is a continuous t-norm and
M : X2 × (0,∞) → [0, 1] is a fuzzy set satisfying the following conditions: for all
x, y, z ∈ X and s, t > 0,

1. M(x, y, t) > 0,

2. M(x, y, t) = 1⇔ x = y,
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3. M(x, y, t) = M(y, x, t),

4. M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s),

5. M(x, y, ·) : (0,∞)→ [0, 1] is a continuous mapping

If the fourth condition is replaced by

4′. M(x, z,max{t, s}) ≥M(x, y, t) ∗M(y, z, s),

then the space (X,M, ∗) is said to be a non-Archimedean fuzzy metric space. It
should be noted that any non-Archimedean fuzzy metric space is a fuzzy metric
space.

The following properties of M noted in the theorem below are easy consequences
of the definition.

Theorem 1. Let (X,M, ∗) be a fuzzy metric space.

1. M(x, y, t) is nondecreasing with respect to t for each x, y ∈ X,

2. If M is non-Archimedean, then M(x, y, t) ≥ M(x, z, t) ∗ M(z, y, t) for all
x, y, z ∈ X and t > 0.

Example 1. Let (X, d) be an ordinary metric space and a∗b = ab for all a, b ∈ [0, 1].
Then the fuzzy set M on X2 × (0,∞) defined by

M(x, y, t) = exp

(
−d(x, y)

t

)
,

is a fuzzy metric on X.

Example 2. Let a∗ b = ab for all a, b ∈ [0, 1] and M be the fuzzy set on R+×R+×
(0,∞) (where R+ = (0,∞)) defined by

M(x, y, t) =
min{x, y}
max{x, y}

,

for all x, y ∈ R+. Then (R+,M, ∗) is a fuzzy metric space.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with
centre x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exist t > 0 and
0 < r < 1 such that B(x, r, t) ⊂ A. Then τ is a topology on X (induced by the
fuzzy metricM). A sequence {xn} inX converges to x if and only ifM(xn, x, t)→ 1
as n→∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0. This
definition of Cauchy sequence is identical with that given by George and Veeramani.
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The fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence
is convergent.

The fixed point theory in fuzzy metric spaces started with the paper of Gra-
biec [2]. Later on, the concept of fuzzy contractive mappings, initiated by Gregori
and Sapena in [3], have become of interest for many authors, see, e.g., the papers
[3], [7], [8], [9], [10], [11].

In our paper we present the concept of partial fuzzy metric space and some
properties of it. Then we give some fundamental fixed point theorem on complete
partial fuzzy metric space.

2 Partial fuzzy metric space
In this section we introduce the concept of partial fuzzy metric space and give its
properties.

Definition 3. A partial fuzzy metric on a nonempty set X is a function

PM : X ×X × (0,∞)→ [0, 1]

such that for all x, y, z ∈ X and t, s > 0

(PM1) x = y ⇔ PM (x, x, t) = PM (x, y, t) = PM (y, y, t),

(PM2) PM (x, x, t) ≥ PM (x, y, t),

(PM3) PM (x, y, t) = PM (y, x, t),

(PM4) PM (x, y,max{t, s}) ∗ PM (z, z,max{t, s}) ≥ PM (x, z, t) ∗ PM (z, y, s).

(PM5) PM (x, y, ·) : (0,∞)→ [0, 1] is continuous.

A partial fuzzy metric space is a 3-tuple (X,PM , ∗) such that X is a nonempty
set and PM is a partial fuzzy metric on X. It is clear that, if PM (x, y, t) = 1, then
from (PM1) and (PM2) x = y. But if x = y, PM (x, y, t) may not be 1. A basic
example of a partial fuzzy metric space is the 3-tuple (R+, PM , ∗), where

PM (x, y, t) =
t

t+ max{x, y}

for all t > 0, x, y ∈ R+ and a ∗ b = ab.
From (PM4) for all x, y, z ∈ X and t > 0, we have:

PM (x, y, t) ∗ PM (z, z, t) ≥ PM (x, z, t) ∗ PM (z, y, t).

Let (X,M, ∗) and (X,PM , ∗) be a fuzzy metric space and partial fuzzy metric
space, respectively. Then mappings PMi

: X × X × (0,∞) → [0, 1] (i ∈ {1, 2})
defined by

PM1(x, y, t) = M(x, y, t) ∗ PM (x, y, t)

and
PM2

(x, y, t) = M(x, y, t) ∗ a
are partial fuzzy metrics on X, where 0 < a < 1.
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Theorem 2. The partial fuzzy metric PM (x, y, t) is nondecreasing with respect
to t for each x, y ∈ X and t > 0, if the continuous t-norm ∗ satisfies the following
condition for all a, b, c ∈ [0, 1]

a ∗ b ≥ a ∗ c⇒ b ≥ c.

Proof. From (PM4) for all x, y, z ∈ X and t, s > 0, we have:

PM (x, y,max{t, s}) ∗ PM (z, z,max{t, s}) ≥ PM (x, z, s) ∗ PM (z, y, t).

Let t > s, then taking z = y in above inequality we have

PM (x, y, t) ∗ PM (y, y, t) ≥ PM (x, y, s) ∗ PM (y, y, t),

hence by assume we get PM (x, y, t) ≥ PM (x, y, s). �

It is easy to see that every fuzzy metric is a partial fuzzy metric, but the converse
may not be true. In the following examples, the partial fuzzy metrics fails to satisfy
properties of fuzzy metric.

Example 3. Let (X, p) is a partial metric space in the sense of Matthews [6] and
PM : X ×X × (0,∞)→ [0, 1] be a mapping defined as

PM (x, y, t) =
t

t+ p(x, y)
,

or

PM (x, y, t) = exp

(
−p(x, y)

t

)
.

If a ∗ b = ab for all a, b ∈ [0, 1], then clearly PM is a partial fuzzy metric, but it
may not be a fuzzy metric.

Lemma 1. Let (X,PM , ∗) be a partial fuzzy metric space with a ∗ b = ab for all
a, b ∈ [0, 1]. If we define p : X2 → [0,∞) by

p(x, y) = sup
α∈(0,1)

∫ 1

α

loga(PM (x, y, t)) dt,

then p is a partial metric on X for fixed 0 < a < 1.

Proof. It is clear from the definition that p(x, y) is well defined for each x, y ∈ X
and p(x, y) ≥ 0 for all x, y ∈ X.

1. For all t > 0

p(x, x) = p(x, y) = p(y, y)⇔ PM (x, x, t) = PM (x, y, t) = PM (y, y, t)⇔ x = y.

2. p(x, x) = sup
α∈(0,1)

∫ 1

α

loga(PM (x, x, t)) dt

≤ sup
α∈(0,1)

∫ 1

α

loga(PM (x, y, t)) dt

= p(x, y).
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3. p(x, y) = sup
α∈(0,1)

∫ 1

α

loga(PM (x, y, t)) dt

= sup
α∈(0,1)

∫ 1

α

loga(PM (y, x, t)) dt

= p(y, x).

4. Since
PM (x, y, t)PM (z, z, t) ≥ PM (x, z, t)PM (z, y, t),

and loga is decreasing, it follows that

loga(PM (x, y, t)) + loga(PM (z, z, t)) ≤ loga(PM (x, z, t)) + loga(PM (z, y, t)),

hence

p(x, y) + p(z, z) = sup
α∈(0,1)

∫ 1

α

loga(PM (x, y, t)) dt+ sup
α∈(0,1)

∫ 1

α

loga(PM (z, z, t)) dt

≤ sup
α∈(0,1)

∫ 1

α

loga(PM (x, z, t)) dt+ sup
α∈(0,1)

∫ 1

α

loga(PM (z, y, t)) dt

= p(x, z) + p(z, y).

This proves that p is a partial metric on X. �

Definition 4. Let (X,PM , ∗) be a partial fuzzy metric space.

1. A sequence {xn} in a partial fuzzy metric space (X,PM , ∗) converges to x if
and only if PM (x, x, t) = lim

n→∞
PM (xn, x, t) for every t > 0.

2. A sequence {xn} in a partial fuzzy metric space (X,PM , ∗) is called a Cauchy
sequence if lim

n,m→∞
PM (xn, xm, t) exists.

3. A partial fuzzy metric space (X,PM , ∗) is said to be complete if every Cauchy
sequence {xn} in X converges to a point x ∈ X.

Suppose that {xn} is a sequence in partial fuzzy metric space (X,PM , ∗), then
we define L(xn) = {x ∈ X : xn → x}. In the following example shows that every
convergent sequence {xn} in a partial fuzzy metric space (X,PM , ∗) fails to satisfy
Cauchy sequence. In particular, it shows that the limit of a convergent sequence is
not unique.

Example 4. Let X = [0,∞) and PM (x, y, t) = t
t+max{x,y} , then it is clear that

(X,PM , ∗) is a partial fuzzy metric space where a ∗ b = ab for all a, b ∈ [0, 1]. Let
{xn} = {1, 2, 1, 2, . . . }. Then clearly it is convergent sequence and for every x ≥ 2
we have

lim
n→∞

PM (xn, x, t) = PM (x, x, t),

therefore
L(xn) = {x ∈ X : xn → x} = [2,∞).

but lim
n,m→∞

PM (xn, xm, t) is not exist, that is, {xn} is not Cauchy sequence.
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The following Lemma shows that under certain conditions the limit of a con-
vergent sequence is unique.

Lemma 2. Let {xn} be a convergent sequence in partial fuzzy metric space
(X,PM , ∗) such that a ∗ b ≥ a ∗ c ⇒ b ≥ c for all a, b, c ∈ [0, 1], xn → x and
xn → y. If

lim
n→∞

PM (xn, xn, t) = PM (x, x, t) = PM (y, y, t),

then x = y.

Proof. As

PM (x, y, t) ∗ PM (xn, xn, t) ≥ PM (x, xn, t) ∗ PM (y, xn, t),

taking limit as n→∞, we have

PM (x, y, t) ∗ PM (x, x, t) ≥ PM (x, x, t) ∗ PM (y, y, t).

By given assumptions and from (PM2), we have

PM (y, y, t) ≥ PM (x, y, t) ≥ PM (y, y, t),

which shows that PM (x, y, t) = PM (y, y, t) = PM (x, x, t), therefore x = y. �

Lemma 3. Let {xn} and {yn} be two sequences in partial fuzzy metric space
(X,PM , ∗) such that a ∗ b ≥ a ∗ c⇒ b ≥ c for all a, b, c ∈ [0, 1],

lim
n→∞

PM (xn, x, t) = lim
n→∞

PM (xn, xn, t) = PM (x, x, t),

and
lim
n→∞

PM (yn, y, t) = lim
n→∞

PM (yn, yn, t) = PM (y, y, t),

then lim
n→∞

PM (xn, yn, t) = PM (x, y, t). In particular, for every z ∈ X

lim
n→∞

PM (xn, z, t) = lim
n→∞

PM (x, z, t).

Proof. As

PM (xn, yn, t) ∗ PM (x, x, t) ≥ PM (xn, x, t) ∗ PM (x, yn, t),

therefore

PM (xn, yn, t) ∗ PM (x, x, t) ∗ PM (y, y, t) ≥ PM (xn, x, t) ∗ PM (x, yn, t) ∗ PM (y, y, t)

≥ PM (xn, x, t) ∗ PM (x, y, t) ∗ PM (y, yn, t).

Thus

lim sup
n→∞

PM (xn, yn, t) ∗ PM (x, x, t) ∗ PM (y, y, t)

≥ lim sup
n→∞

PM (xn, x, t) ∗ PM (x, y, t) ∗ lim sup
n→∞

PM (y, yn, t)

= PM (x, x, t) ∗ PM (x, y, t) ∗ PM (y, y, t),
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hence
lim sup
n→∞

PM (xn, yn, t) ≥ PM (x, y, t).

Also, as
PM (x, y, t) ∗ PM (xn, xn, t) ≥ PM (x, xn, t) ∗ PM (xn, y, t),

therefore

PM (x, y, t) ∗ PM (xn, xn, t) ∗ PM (yn, yn, t)

≥ PM (x, xn, t) ∗ PM (xn, y, t) ∗ PM (yn, yn, t)

≥ PM (x, xn, t) ∗ PM (xn, yn, t) ∗ PM (yn, y, t)

Thus

PM (x, y, t) ∗ PM (x, x, t) ∗ PM (y, y, t)

= PM (x, y, t) ∗ lim sup
n→∞

PM (xn, xn, t) ∗ lim sup
n→∞

PM (yn, yn, t)

≥ lim sup
n→∞

PM (x, xn, t) ∗ lim sup
n→∞

PM (xn, yn, t) ∗ lim sup
n→∞

PM (yn, y, t)

= PM (x, x, t) ∗ lim sup
n→∞

PM (xn, yn, t) ∗ PM (y, y, t).

Therefore

PM (x, y, t) ≥ lim sup
n→∞

PM (xn, yn, t).

That is,
lim sup
n→∞

PM (xn, yn, t) = PM (x, y, t).

Similarly, we have
lim sup
n→∞

PM (xn, yn, t) = PM (x, y, t).

Hence the result follows. �

Definition 5. Let (X,PM , ∗) be a partial fuzzy metric space. PM is said to be
upper semicontinuous on X if for every x ∈ X,

PM (p, x, t) ≥ lim sup
n→∞

PM (xn, x, t),

whenever {xn} is a sequence in X which converges to a point p ∈ X.

3 Fixed point results
Let (X,PM , ∗) be a partial fuzzy metric space and ∅ 6= S ⊆ X. Define

δPM
(S, t) = inf

{
PM (x, y, t) : x, y ∈ S

}
for all t > 0. For an An = {xn, xn+1, . . . } in partial fuzzy metric space (X,PM , ∗),
let rn(t) = δPM

(An, t). Then rn(t) is finite for all n ∈ N, {rn(t)} is nonincreasing,
rn(t)→ r(t) for some 0 ≤ r(t) ≤ 1 and also rn(t) ≤ PM (xl, xk, t) for all l, k ≥ n.
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Let F be the set of all continuous functions F : [0, 1]3 × [0, 1] → [−1, 1] such
that F is nondecreasing on [0, 1]3 satisfying the following condition:

• F ((u, u, u), v) ≤ 0 implies that v ≥ γ(u) where γ : [0, 1] → [0, 1] is a nonde-
creasing continuous function with γ(s) > s for s ∈ [0, 1).

Example 5. Let γ(s) = sh for 0 < h < 1, then the functions F defined by

F
(
(t1, t2, t3), t4

)
= γ

(
min{t1, t2, t3}

)
− t4

and

F
(
(t1, t2, t3), t4

)
= γ

( 3∑
i=1

aiti

)
− t4,

where ai ≥ 0,
3∑
i=1

ai = 1, belong to F .

Now we give our main theorem.

Theorem 3. Let (X,PM , ∗) be a complete bounded partial fuzzy metric space,
PM is upper semicontinuous function on X and T be a self map of X satisfying

F
(
PM (x, y, t), PM (Tx, x, t), PM (Tx, y, t), PM (Tx, Ty, t)

)
≤ 0 (1)

for all x, y ∈ X, where F ∈ F . Then T has a unique fixed point p in X and T is
continuous at p.

Proof. Let x0 ∈ X and Txn = xn+1. Let rn(t) = δPM
(An, t), where

An = {xn, xn+1, . . . }. Then we know lim
n→∞

rn(t) = r(t) for some 0 ≤ r(t) ≤ 1.

If xn+1 = xn for some n ∈ N, then T has a fixed point. Assume that xn+1 6= xn
for each n ∈ N. Let k ∈ N be fixed. Taking x = xn−1, y = xn+m−1 in (1) where
n ≥ k and m ∈ N, we have

F

(
PM (xn−1, xn+m−1, t), PM (Txn−1, xn−1, t),

PM (Txn−1, xn+m−1, t), PM (Txn−1, Txn+m−1, t)

)
= F

(
PM (xn−1, xn+m−1, t), PM (xn, xn−1, t),

PM (xn, xn+m−1, t), PM (xn, xn+m, t)

)
≤ 0

Thus we have

F
(
rn−1(t), rn−1(t), rn(t), PM (xn, xn+m, t)

)
≤ 0,

since F is nondecreasing on [0, 1]3. Also, since rn(t) is nonincreasing, we have

F
(
rk−1(t), rk−1(t), rk−1(t), PM (xn, xn+m, t)

)
≤ 0,

which implies that
PM (xn, xn+m, t) ≥ γ(rk−1(t)).
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Thus for all n ≥ k, we have

inf
n≥k

{
PM (xn, xn+m, t)

}
= rk(t) ≥ γ(rk−1(t)).

Letting k →∞, we get r(t) ≥ γ(r(t)). If r(t) 6= 1, then r(t) ≥ γ(r(t)) > r(t), which
is a contradiction. Thus r(t) = 1 and hence limn→∞ γn(t) = 1. Thus given ε > 0,
there exists an n0 ∈ N such that rn(t) > 1 − ε. Then we have for n ≥ n0 and
m ∈ N, PM (xn, xn+m, t) > 1− ε. Therefore, {xn} is a Cauchy sequence in X. By
the completeness of X, there exists a p ∈ X such that

lim
n→∞

PM (xn, p, t) = PM (p, p, t).

Taking x = xn, y = p in (1), we have

F
(
PM (xn, p, t), PM (Txn, p, t), PM (Txn, xn, t), PM (Txn, Tp, t)

)
= F

(
PM (xn, p, t), PM (xn+1, p, t), PM (xn+1, xn, t), PM (xn+1, Tp, t)

)
≤ 0.

Hence, we have

lim sup
n→∞

F
(
PM (xn, p, t), PM (xn+1, p, t), PM (xn+1, xn, t), PM (xn+1, Tp, t)

)
= F

(
PM (p, p, t), PM (p, p, t), 1, lim sup

n→∞
PM (xn+1, Tp, t)

)
≤ 0.

Since

F
(
PM (p, p, t), PM (p, p, t), PM (p, p, t), lim sup

n→∞
PM (xn+1, Tp, t)

)
≤ F

(
PM (p, p, t), PM (p, p, t), 1, lim sup

n→∞
PM (xn+1, Tp, t)

)
≤ 0,

which implies

PM (p, Tp, t) ≥ lim sup
n→∞

PM (xn+1, Tp, t) ≥ γ(PM (p, p, t)).

On the other hand, we have

PM (p, p, t) ≥ PM (p, Tp, t) ≥ γ(PM (p, p, t)).

Hence PM (p, p, t) = 1. Also, since

PM (p, Tp, t) ≥ γ(PM (p, p, t)) = γ(1) = 1,

this implies that PM (p, Tp, t) = 1, therefore, we get Tp = p.
For the uniqueness, let p and w be fixed points of T . Taking x = p, y = w

in (1), we have

F
(
PM (p, w, t), PM (Tp, p, t), PM (Tp,w, t), PM (Tp, Tw, t)

)
= F

(
PM (p, w, t), PM (p, p, t), PM (p, w, t), PM (p, w, t)

)
≤ 0.
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Since F is nondecreasing on [0, 1]3, we have

F
(
PM (p, w, t), PM (p, w, t), PM (p, w, t), PM (p, w, t)

)
≤ 0,

which implies
PM (p, w, t) ≥ γ(PM (p, w, t)) > PM (p, w, t)

which is a contradiction. Thus we have PM (p, w, t) = 1, therefore, p = w. Now,
we show that T is continuous at p. Let {yn} be a sequence in X and lim

n→∞
yn = p.

Taking x = p, y = yn in (1), we have

F
(
PM (p, yn, t), PM (Tp, p, t), PM (Tp, yn, t), PM (Tp, Tyn, t)

)
= F

(
PM (p, yn, t), PM (p, p, t), PM (p, yn, t), PM (p, Tyn, t)

)
≤ 0,

hence

F
(
PM (p, p, t), PM (p, p, t), PM (p, p, t), lim sup

n→∞
PM (p, Tyn, t)

)
= F

 lim sup
n→∞

PM (p, yn, t), lim sup
n→∞

PM (p, p, t),

lim sup
n→∞

PM (p, yn, t), lim sup
n→∞

PM (p, Tyn, t)

 ≤ 0,

which implies

lim sup
n→∞

PM (p, Tyn, t)) ≥ γ(PM (p, p, t)) = γ(1) = 1.

Thus,
lim sup
n→∞

PM (p, Tyn, t) = 1.

Similarly, taking limit inf, we have

lim sup
n→∞

PM (p, Tyn, t) = 1.

Therefore, lim sup
n→∞

PM (Tyn, p, t) = 1, this implies that

lim sup
n→∞

PM (Tyn, Tp, t) = 1 = PM (p, p, t) = PM (Tp, Tp, t).

Thus lim
n→∞

Tyn = p = Tp. Hence T is continuous at p. �

Corollary 1. Let (X,PM , ∗) be a complete bounded partial fuzzy metric space,
m ∈ N and T be a self map of X satisfying for all x, y ∈ X,

F
(
PM (x, y, t), PM (Tmx, x, t), PM (Tmx, y, t), PM (Tmx, Tmy, t)

)
≤ 0

where F ∈ F . Then T has a unique fixed point p in X and Tm is continuous at p.

Proof. From Theorem 3, Tm has a unique fixed point p in X and Tm is continuous
at p. Since Tp = TTmp = TmTp, Tp is also a fixed point of Tm, By the uniqueness
it follows Tp = p. �
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In Theorem 3, if we take F ((t1, t2, t3), t4) = γ(min{t1, t2, t3})− t4 then we have
the next result.

Corollary 2. Let (X,PM , ∗) be a complete bounded partial fuzzy metric space and
T be a self map of X satisfying for all x, y ∈ X,

PM (Tx, Ty, t) ≥ γ
(
min

{
PM (x, y, t), PM (Tx, x, t), PM (Tx, y, t)

})
.

Then T has a unique fixed point p in X and T is continuous at p.

Example 6. Let X = R+. Define PM : X2 × [0,∞)→ [0, 1] by

PM (x, y, t) = exp

(
−max{x, y}

t

)
for all x, y ∈ X and t > 0. Then (X,PM , ∗) is a complete partial fuzzy metric
space where a ∗ b = ab. Define map T : X → X by Tx = x

2 for x ∈ X and let

γ : [0, 1]→ [0, 1] defined by γ(s) = s
1
2 . It is easy to see that

PM (Tx, Ty, t) = exp

(
−

max{x2 ,
y
2}

t

)
=

√
exp

(
−max{x, y}

t

)
=
√
PM (x, y, t)

≥
√

min
{
PM (x, y, t), PM (Tx, x, t), PM (Tx, y, t)

}
.

Thus T satisfy all the hypotheses of Corollary 2 and hence T has a unique fixed
point.

Corollary 3. Let (X,PM , ∗) be a complete bounded partial fuzzy metric space,
m ∈ N and T be a self map of X satisfying for all x, y ∈ X,

PM (Tmx, Tmy, t) ≥ γ
(
min

{
PM (x, y, t), PM (Tmx, x, t), PM (Tmx, y, t)

})
.

Then T has a unique fixed point p in X and and Tm is continuous at p.

Corollary 4. Let (X,PM , ∗) be a complete bounded partial fuzzy metric space and
T be a self map of X satisfying for all x, y ∈ X,

PM (Tx, Ty, t) ≥
√
a1PM (x, y, t) + a2PM (Tx, x, t) + a3PM (Tx, y, t),

such that for every ai ≥ 0,
3∑
i=1

ai = 1. Then T has a unique fixed point p in X and

T is continuous at p.

Corollary 5. Let (X,M, ∗) be a complete bounded fuzzy metric space and T be a
self map of X satisfying for all x, y ∈ X the

F
(
M(x, y, t),M(Tx, x, t),M(Tx, y, t),M(Tx, Ty, t)

)
≤ 0

where F ∈ F . Then T has a unique fixed point p in X and T is continuous at p.
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