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Abstract. This paper deals with the problem of risk measurement under mixed operation.
For this purpose, we divide the basic risks into several groups based on the actual situation.
First, we calculate the bounds for the subsum of every group of basic risks, then we obtain
the bounds for the total sum of all the basic risks. For the dependency relationships between
the basic risks in every group and all of the subsums, we give different copulas to describe
them. The bounds for the aggregated risk under mixed operation and the algorithm for
numerical simulation are given in this paper. In addition, the convergence of the algorithm
is proved and some numerical simulations are presented.
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1. Introduction

Risk measurement has attracted researchers’ attention since the Mean-Variance

Model was built by Markowitz [16] and the risk of a portfolio was represented by its

variance in his paper. The research concerning risk measurement became more im-

portant after the economic globalization and financial crisis, which led to bankruptcy

of many large corporations and then severely impacted the whole country’s economy.

More and more methods for risk measuring are also put forward, such as the Value

at Risk (VaR), which was proposed by J. P.Morgan Company in 1994 for the first

time and is now used by researchers as a main measure of risk. In recent years,

the research of risk measurement mainly focuses on the aggregated risk, which is

defined as Ψ(X), where X = (X1, . . . , Xd) denotes a d-dimensional random vector
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composed of d basic risks and a measurable function Ψ: R
d → R represents the

operation of aggregation. When Ψ(X) =
∑d

i=1 Xi, the aggregated risk can be inter-

preted as the sum of basic risks, which is just the aggregated risk we study in this

paper.

There are many results concerning the problem of the sum of n dependent risks

based on VaR, which mainly consider the situation when the marginal distributions

of the dependent risks are given but their joint distribution is totally unknown or

only partly given. For example, Rüschendorf [19] got the bounds for the sum of

n dependent risks for the homogeneous case and the uniform or binomial marginal

distribution while n > 3; Denuit et al. [6] and Embrechts et al. [7] gave the so-called

standard bounds for the sum of dependent risks; Wang et al. [22] calculated the

bounds of the sum of n dependent risks under the condition that all the dependent

risks have the same marginal distribution function, which has monotone density on

its support and satisfies mean condition; Embrechts et al. [8] used the properties

of copula and the methods of mathematical statistics to yield the VaR bounds of

the sum of n dependent risks for n = 2 and the upper bound for n > 3 in the

homogeneous and inhomogeneous cases, respectively. In addition, Wang et al. [21]

found the bounds of the sum of n dependent risks for any given marginal distribution

and proved the necessary and sufficient condition using the notion of jointly mixable

distributions. More details about the sum of dependent risks and other aggregated

risks can be found in Junker et al. [14], Joe et al. [13], Heilpern [12], Skoglund et

al. [20], Hashorva [11], Bernard et al. [4], among others.

Since 1980’s, many countries have successfully implemented mixed operation in

financial and banking industries to avoid the financial crisis. At the same time, the

study of mixed operation has attracted many scholars’ attention and there are many

results about it till now. Allen et al. [1] estimated a global cost function for interna-

tional banks to test for both input and output inefficiencies and suggested that for

banks in 15 countries, the prevalence of input X-inefficiencies far outweighed that

of output inefficiencies. Moreover, they found that the distribution-free model over-

estimated the magnitude of X-inefficiencies relative to the stochastic cost frontier

approach and large banks in separated banking countries had the largest measure

of input inefficiency amounting to 27.5 percent of total costs, as well as significant

levels of diseconomies of scale. All other banks have X-inefficiency levels around

fifteen percent of total costs with slight economies of scale for small banks; Berger

et al. [3] designed a framework for evaluating the causes, consequences, and future

implications of financial services industry consolidation, reviewed the extensive re-

search literature within the context of this framework (over 250 references), and then

suggested fruitful avenues for future research; Rime et al. [18] examined the perfor-

mance of Swiss banks from 1996 to 1999 and found evidence of large relative cost
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and profit inefficiencies in these banks. They also found evidence of economies of

scale for small and mid-size banks as well as other similar evidence for large banks

and suggested a few obvious benefits from the trend toward larger, universal banks

in Switzerland. More similar results are given, e.g., in Chong et al. [5], Fields et

al. [9], Frei et al. [10].

As stated above, the results concerning mixed operation mainly focus on the influ-

ences of mixed operation on the economic efficiency and the stability of the financial

system, or the financial regulation and qualitative risk analysis based on the mixed

operation. But there have been only few results about the quantitative risk measure-

ment under mixed operation. Therefore, we propose to measure the aggregated risk

faced by a financial body under mixed operation and aim to obtain the bounds of

the aggregated risk, i.e., the sum of dependent risks, both in theory and simulation

in this paper. As presented in the previous paragraphs, most of the research on

the sum of dependent risks is carried out by using certain copula to substitute the

joint distribution function of the basic risks and then obtaining the distribution or

VaR bounds for the sum based on this copula. Generally, they use one copula to

describe the dependency relationship of all basic risks, which may be impractical for

the following reasons. Firstly, the aggregated risk faced by a financial body under

mixed operation is constituted by a variety of basic risks, which can be divided into

several groups according to the different kinds of financial products they belong to.

Secondly, the dependency relationship between the basic risks in every group has

its own form and all of these forms are not the same. Thirdly, the subsum of ev-

ery group of basic risks can be seen as a new risk. There is also some dependency

relationship between these risks and this dependency relationship is different from

others. Consequently, we deal with the problem in this paper differently. For our

purpose, a grouped model is built for the aggregated risk as follows. First, the basic

risks are divided into several groups based on different kinds of financial products

they belong to. Then the bounds for the subsum of every group of basic risks are

calculated. Finally, the sum of all basic risks is divided into these subsums and the

bounds for it are obtained. That is to say, a copula-based grouped risk aggregation

model is specially built for the risk under mixed operation and this model is espe-

cially tailored to the mixed operation acquisition for several reasons. In the first

place, the risk faced by a financial body in the case of mixed operation is consti-

tuted by a great variety of basic risks. Both the quantity and the variety of these

basic risks are larger than those in general case. Thus, grouping these basic risks

in some way is necessary for more organized and distinct calculation. In the sec-

ond place, according to the definition of mixed operation, the basic risks come from

different kinds of financial products such as stocks and bonds. The dependency re-

lationship between the basic risks which belong to one kind of financial products is
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different from those belonging to other kinds of financial products. Consequently,

it is more reasonable to group all of the basic risks according to the type of finan-

cial products they come from and use different copulas to describe the dependency

relationships for different groups of basic risks. Then we can divide the sum of all

basic risks into several subsums and every subsum is the sum of one group of basic

risks. In the third place, there also exists some dependency relationship between dif-

ferent kinds of financial products, and this dependency relationship is different from

those mentioned above. For better presentation of this dependency relationship,

it is necessary to group the basic risks according to the kind of financial product

they belong to and use the copula-based subsum of every group of basic risks to

represent the risk variable of every kind of financial products. Based on these sub-

sums and some copula, it can be clearer and more accurate to get the final result of

the total risk we are interested in. In conclusion, either from the definition of the

mixed operation and the specific characteristic of the basic risks faced by a financial

body under mixed operation, or from the theoretical calculation, the copula-based

grouped risk aggregation model is especially tailored to the mixed operation acqui-

sition.

This paper is organized as follows. In Section 2.1, we present some necessary facts

about copula taken from McNeil et al. [17]. In Section 2.2, the grouped model as

well as its structure based on the notion of tree dependence in Arbenz et al. [2]

is given. In Section 3, we simply calculate the bound for the distribution function

of the total risk variable in different cases based on the known results about the

bounds for the distribution function of the sum of dependent variables. In Section 4,

the detailed steps of the numerical simulation algorithm inspired by the notion of

empirical copula in Algorithm 3.1 from Arbenz et al. [2] are shown. Additionally,

the convergence of this algorithm is proved in Theorem 4.3 and the analysis of the

simulation results is presented in this section.

2. Model building

2.1 Preliminaries. LetX = (X1, . . . , Xn) be a random vector, whereX1, . . . , Xn

represent n basic risks and let S = X1 + . . . + Xn be the aggregated risk. With-

out exception, VaR is used for measuring the aggregated risk in this paper and its

definition at the confidence level α is given as

(2.1) VaRα(S) = inf{s ∈ R : P (S < s) > α}.

Thus for obtaining the VaR bounds of the aggregated risk, we only need to get the

bounds for its distribution as VaR of S is the quantile of its distribution function.
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Consequently, the following definitions are given:

m+(s) = inf{P (S < s) : Xi ∼ Fi, i = 1, . . . , n, CX ∈ C},(2.2)

M+(s) = sup{P (S < s) : Xi ∼ Fi, i = 1, . . . , n, CX ∈ C},(2.3)

where CX is the copula of X = (X1, . . . , Xn) and C is the set of all possible copulas.

The valuesm+(s) andM+(s) represent the lower and upper bounds of S, respectively,

in the case when the marginal distributions of X = (X1, . . . , Xn) are known but the

dependency structure of X1, . . . , Xn is unknown. Since the techniques for handling

M+(s) are very similar to those for m+(s), we focus on m+(s) in this paper.

As copula is the main tool for dealing with the dependency relationship among

dependent random variables, we first give the definition and some of its properties,

which are quoted from McNeil et al. [17].

Definition 2.1. A distribution function C(u) = C(u1, . . . , ud) on [0, 1]d with

standard uniform marginal distributions is called a d-dimensional copula.

By the Sklar theorem, we know that if F is any joint distribution function with

margins F1, . . . , Fd, then there exists a copula C : [0, 1]d → [0, 1] satisfying

(2.4) F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

for all x1, . . . , xd in R = [−∞,∞] and the copula C is unique when the margins are

continuous. Otherwise it is uniquely determined on RanF1 ×RanF2 × . . .×RanFd,

where RanFi = Fi(R) is the range of Fi. Conversely, while C is a copula and

F1, . . . , Fd are univariate distribution functions, the function F defined by the above

formula denotes a joint distribution function with margins F1, . . . , Fd.

In addition, the Fréchet bounds of copula tell us that every copula satisfies

(2.5) max

{ d∑

i=1

ui + 1− d, 0

}
6 C(u) 6 min{u1, . . . , ud}

for every u ∈ [0, 1]d. The upper and lower bounds are denoted byM(u1, . . . , ud) and

W (u1, . . . , ud), respectively. Here we present several common copulas that will be

used in this paper.

(i) The independent copula is denoted by Π(u1, . . . , ud) =
d∏

i=1

ui. By (2.4) we

know that random variables with continuous univariate distribution functions are

mutually independent if and only if their dependency structure can be described by

this formula.
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(ii) The Fréchet upper bound copula from (2.5) is called the comonotonicity copula,

denoted by M(u1, . . . , ud) = min{u1, . . . , ud}. The dependency structure of several

random variables can be described by this copula, only if these random variables

have continuous univariate distribution functions and they are perfectly positively

dependent, i.e., Xi = Ti(X1), i = 2, . . . , d, where Ti, i = 2, . . . , d are almost surely

strictly increasing functions.

(iii) Similar to the definition of the comonotonicity copula, the Fréchet lower bound

copula from (2.5) is called the countermonotonicity copula W (u1, u2) = max{u1 +

u2 − 1, 0}. But differently from the comonotonicity copula, the countermonotonicity

copula is only defined when d = 2. If the rvs X1, X2 have continuous distribution

functions and are perfectly negatively dependent, i.e., X2 is almost surely a strictly

decreasing function of X1, then their copula is denoted by the above formula.

Next, we give some results concerning the lower bound for S = X1 + . . . + Xn,

i.e., the m+(s) defined in (2.2), which can be found in Wang et al. [21] and are used

during the process of solving the problem proposed in this paper.

Denote the sum of conditional means of {Xi, i = 1, . . . , n} by

(2.6) Φ(t) =

n∑

i=1

E(Xi : Xi > F−1
i (t)),

where t ∈ (0, 1) and F−1(t) = inf{s ∈ R : F (s) > t}. Let Φ(1) = lim
t→1−

Φ(t), Φ(0) =

lim
t→0+

Φ(t). Apparently, Φ(t) is an increasing continuous function if {Fi, i = 1, . . . , n}

are continuous. Define

(2.7) Φ−1(x) = inf{t ∈ [0, 1]: Φ(t) > x}

for x 6 Φ(1) and Φ−1(x) = 1 for x > Φ(1). Additionally, let

F̃a(x) = max{(F (x)− a)/(1− a), 0}

for x ∈ R, which denotes the conditional distribution of F on [F−1(a),∞) for a ∈

[0, 1), and F̃1(x) = lim
a→1−

F̃a(x) for a = 1. The following lemma is Theorem 2.6 in

Wang et al. [21]. Before introducing this lemma, we give the definition of jointly

mixable functions which will be used in the lemma. Suppose that F1, . . . , Fn are

univariate distribution functions. If there exist random variables X1, . . . , Xn whose

distributions are F1, . . . , Fn, respectively, such that for some constant C ∈ R,

(2.8) P (X1 + . . .+Xn = C) = 1,

then F1, . . . , Fn are jointly mixable.
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Lemma 2.1. Suppose the distribution functions F1, . . . , Fn are continuous, then

we have

(2.9) m+(s) > Φ−1(s)

for any fixed s > Φ(0) andm+(s) = Φ−1(s) if and only if the conditional distribution

functions F̃1,a, . . . , F̃n,a, where a = Φ−1(s), are jointly mixable.

2.2 The model. The problem we study in this paper is the measurement of

the risk faced by a financial body under mixed operation, i.e., the aggregated risk

under mixed operation. The mixed operation here mainly refers to the narrow sense

of it, i.e., the business connection between the banking industry and the securities

industry. In this sense, as the banking institution and securities institution can

engage in business belonging to each other’s field, the variety of financial products

operated by any of them increases and each kind of financial products contains

a great number of basic financial products. So the total risk faced by the finance

body consists of many basic risks which have intricate relationships with each other.

In order to measure this risk more accurately, we build the model as follows.

In the first place, we group the basic risks according to different kinds of financial

products they belong to. Then we sum every group of basic risks to get the subsum

of these basic risks and its bound. Finally, we obtain the bounds for the aggregated

risk, which now can be represented by the sum of several subsums. In other words,

define the aggregated risk S as

(2.10) S =

N∑

i=1

Xi =

N∑

i=1

ni∑

k=1

Xik,

where N is the number of different kinds of financial products that the financial body

owns under mixed operation, Xi =
ni∑
k=1

Xik, i = 1, . . . , N , where Xik denotes the k-th

basic risk belonging to the i-th kind of financial products. The situation we study

here is the same as the most general situation studied by the researchers introduced

in Section 1. That is to say, the distribution functions of the basic risks, which

are denoted by {Fik : i = 1, . . . , N, k = 1, . . . , ni}, are given, but the dependency

relationship between these basic risks, which is denoted by copula CS , is unknown.

However, different from the approach usually used to deal with the dependency re-

lationship between basic risks, we substitute several different lower-dimensional cop-

ulas for the high-dimensional copula to describe the dependency relationship between

all basic risks. Denote by {CX , CXi
, i = 1, . . . , N} the copulas of the N +1 risk vec-

tors (X1, . . . , XN ), (X1,1, . . . , X1,n1
), (X2,1, . . . , X2,n2

), . . . , (XN,1, . . . , XN,nN
), then
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the
( N∑
i=1

ni

)
-dimensional copula CS is substituted by the N -dimensional copula CX

and ni-dimensional copulas {CXi
, i = 1, . . . , N}. As every group of basic risks

{Xi,1, . . . , Xi,n1
}, i = 1, . . . , N , belongs to a specific kind of financial products, the

dependency relationships between different groups of basic risks, which are denoted

by copulas {CXi
, i = 1, . . . , N}, are different. The risks {X1, . . . , XN} are com-

ing from different kinds of financial products, so the dependency relationship be-

tween them is obviously different from that between the basic financial products

in one group of financial products. For intuitive understanding of the model, we

give the following example. Assume that the financial body under mixed opera-

tion owns three kinds of financial products: equities, bonds and funds, the num-

ber of which is n1, n2, and n3, respectively. That is to say, N = 3. Denote by

X11, . . . , X1n1
, X21, . . . , X2n2

, X31, . . . , X3n3
the risk variables of these financial prod-

ucts, which can be seen as their losses, and assume that all the distribution functions

of these losses are known but their dependency relationship is unknown. Then the

total risk faced by the financial body can be written as ̺(S), where S =
3∑

i=1

ni∑
k=1

Xik is

the overall loss of the financial products it holds and ̺ is a risk measure such as VaR.

According to the model we build, the losses are divided into three groups based on

different kinds of financial products they belong to and the three groups of losses are

denoted by vectors (X11, . . . , X1n1
), (X21, . . . , X2n2

), and (X31, . . . , X3n3
). Different

from the traditional approach to dealing with the aggregated risk of all losses, we first

calculate the bound for every group of losses, that is, we calculate three bounds for the

losses of all equities, all bonds and all funds, respectively. Then we obtain the bound

and risk value of the total risk. During the calculation, we use four lower-dimensional

copulas of (X1, X2, X3), (X11, . . . , X1n1
), (X21, . . . , X2n2

), and (X31, . . . , X3n3
) to

describe the dependency relationship of all losses rather than one high-dimensional

copula of (X11, . . . , X1n1
, X21, . . . , X2n2

, X31, . . . , X3n3
). Thus it can be seen that the

approach we use in this paper is based on the actual situation we study and can avoid

the complicated calculation of high-dimensional copula. In the real world, for the

financial products owned by a financial body under mixed operation, the loss distribu-

tion functions can be obtained by the methods of curve-fitting or maximum likelihood

estimation. For all unknown copulas, we can use empirical copulas to substitute the

real ones and then the result can be obtained by a similar process as the simulation

given in Section 4. For a more accurate understanding of the model, we give the

illustration picture in Figure 1. The variables X11, . . . , X1n1
, . . . , XN1, . . . , XNnN

have been explained above, F11, . . . , F1n1
, . . . , FN1, . . . , FNnN

are the corresponding

distribution functions. Xi, i = 1, . . . , N , is the sum of the variables from the i-th

group and CXi
, i = 1, . . . , N , is the copula of the variables from the i-th group, i.e.,

the copula of (Xi1, . . . , Xini
), i = 1, . . . , N . S is the sum of X1, . . . , XN , it also can

110



be seen as the sum of all basic risk variables X11, . . . , X1n1
, . . . , XN1, . . . , XNnN

and

CX is the copula of (X1, . . . , XN ).

X11(F11)

The first group
...



 X1(CX1

)

X1n1
(F1n1

)
...

...






S(CX)

XN1(FN1)

The Nth group
...



XN (CXN

)

XNnN
(FNnN

)

Figure 1. The structure of the grouped model.

3. The bounds for the aggregated risk

As mentioned above, the risk measure in this paper is VaR. Consequently, for

the calculation of aggregated risk, we only need to get the bounds of its distribution

function, i.e., the m+(s) and M+(s). Here we only give the value of m+(s).

First, assume that {Fik : i = 1, . . . , N, k = 1, . . . , ni}, which are the marginal

distribution functions of
N∑
i=1

ni basic risks, are general continuous distribution func-

tions. Second, during the calculation process we use the method from Wang et

al. [21], which is introduced in Subsection 2.1, to obtain the lower bounds for risks{
Xi =

ni∑
k=1

Xik, i = 1, . . . , N
}
and then calculate the lower bound for the aggregated

risk S, i.e., the sum of risks {Xi, i = 1, . . . , N}. The calculation of the bounds for

aggregated risk is shown for two cases: when X1, . . . , XN are mutually independent

and mutually dependent, respectively. By Lemma 2.1 we know that the distribution

function of Xi, i = 1, . . . , N , satisfies FXi
(x) = P (Xi 6 x) > Φ−1

Xi
(x), where

ΦXi
(t) =

ni∑

k=1

E[Xik : Xik > F−1
Xik

(t)], Φ−1
Xi

(x) = inf{t ∈ [0, 1] : ΦXi
(t) > x}.

Based on these facts, we calculate m+(s) for S as follows.

3.1 Calculation of m+(s) for X1, . . . , XN independent. As X1, . . . , XN are

mutually independent, for constants a1, . . . , aN such that a1, . . . , aN ∈ (0, 1) and
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N∑
i=1

ai = 1, we have

FS(s) = P (X1 +X2 + . . .+XN 6 s)

> P (X1 6 a1s,X2 6 a2s, . . . , XN 6 aNs)

= FX1
(a1s)FX2

(a2s) . . . FXN
(aNs)

> Φ−1
X1

(a1s)Φ
−1
X2

(a2s) . . .Φ
−1
XN

(aNs),

where a1, . . . , aN denote the investment proportion that the finance body invests

to different kinds of financial products or the relative risk coefficients that the fi-

nance body can afford regarding different kinds of financial products. As the above

inequality holds for any a1, . . . , aN ∈ (0, 1) satisfying
N∑
i=1

ai = 1, we get

FS(s) = P (X1 +X2 + . . .+XN 6 s)

> sup
a1,...,aN∈(0,1),

∑N
i=1

ai=1

Φ−1
X1

(a1s)Φ
−1
X2

(a2s) . . .Φ
−1
XN

(aNs).

According to the definition of m+(s), we have

m+(s) > sup
a1,...,aN∈(0,1),

∑
N
i=1

ai=1

Φ−1
X1

(a1s)Φ
−1
X2

(a2s) . . .Φ
−1
XN

(aNs).

3.2 Calculation of m+(s) for X1, . . . , XN dependent. In this case, we denote

by CS the dependency relationship of X1, . . . , XN . Then according to (2.4) and

(2.5), we have

FS(s) = P (X1 +X2 + . . .+XN 6 s)

> P (X1 6 a1s,X2 6 a2s, . . . , XN 6 aNs)

= P (FX1
(X1) 6 FX1

(a1s), FX2
(X2) 6 FX2

(a2s), . . . , FXN
(XN ) 6 FXN

(aNs))

= CS(FX1
(a1s), FX2

(a2s), . . . , FXN
(aNs)),

> sup
a1,...,aN∈(0,1),

∑N
i=1

ai=1

{ N∑

i=1

Φ−1
Xi

(ai) +N − 1

}
,

where a1, . . . , aN are defined as in Subsection 3.1. The second inequality above is

obtained by (2.5). Additionally, we can substitute the copula CS by some specific

copula to obtain the lower bound of X . Similarly, by the definition of m+(s), we

have

m+(s) > sup
a1,...,aN∈(0,1),

∑N
i=1

ai=1

{ N∑

i=1

Φ−1
Xi

(ais) + 1−N

}
.
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4. Numerical simulation and results

4.1 Numerical algorithm. In Arbenz et al. [2], a numerical approximation of

a mild tree dependence is given by Algorithm 3.1. In this algorithm they first gener-

ate independent samples for basic variables and their copulas and then they define

the empirical marginal distribution functions and copulas for these samples. Finally,

they get the approximations of the needed joint distribution functions by integrating

the empirical copula, which is difficult to complete in practice. In addition, Algo-

rithm 3.1 just gives the train of thought for the numerical approximation but not

the concrete steps of the calculating process. Inspired by this algorithm we put

forward Algorithm 4.1 in the following, which is a numerical simulation algorithm

and different from the above algorithm in several aspects. Firstly, in our algorithm

we get the samples of every variable in every group by simulating the samples from

given copulas of the variables in every group and then transform them according to

the given marginal distribution functions in step 1 and step 2. After obtaining the

sample sum of the variables in every group, we get the samples of S by reordering

the sample data of X1, . . . , XN according to their copula in step 3 to step 7, based

on the notion of empirical copula in Algorithm 3.1 in Arbenz et al. [2]. Secondly,

unlike Algorithm 3.1, we here describe every step of the simulation process in detail.

Algorithm 4.1. Fix M ∈ N.

Step 1. For any i ∈ {1, . . . , N}, generate M independent samples denoted by

{(ui1, . . . , uini
)j , j = 1, . . . ,M} from the ni-dimensional random vector

(Ui1, . . . , Uini
) which has the same copula as (Xi1, . . . , Xini

), i.e., the cop-

ula of (Ui1, . . . , Uini
) is CXi

and {Ui1, . . . , Uini
, i = 1, . . . , N} are random

variables with uniform distribution on [0, 1].

Step 2. For any i ∈ {1, . . . , N}, let (xik)j = F−1
ik [(uik)j ], k = 1, . . . , ni, j = 1, . . . ,M ,

where (uik)j is the value of Uik in the j-th sample of (Ui1, . . . , Uini
), i.e.,

the k-th component of (ui1, . . . , uini
)j . Then we get M samples denoted

by {(xi1, . . . , xini
)j , j = 1, . . . ,M} from the random vectors (Xi1, . . . , Xini

)

whose copula is CXi
.

Step 3. For any i ∈ {1, . . . , N}, let (xi)j =
ni∑
k=1

(xik)j , j = 1, . . . ,M , where (xik)j

denotes the value of Xik in the j-th sample of (Xi1, . . . , Xini
), i.e., the k-th

component of (xi1, . . . , xini
)j . Then we get M samples of Xi denoted by

{(xi)j , j = 1, . . . ,M}.

Step 4. GenerateM independent samples denoted by {(u1, . . . , uN)j , j = 1, . . . ,M}

from the N -dimensional random vector (U1, . . . , UN) with copula CS , which

is unknown but can be given according to the situation we are interested in,

and Ui ∼ U [0, 1], i = 1, . . . , N .
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Step 5. For any i ∈ {1, . . . , N}, sort {(xi)j , j = 1, . . . ,M} to obtain a new sample

sequence {(xi)
j , j = 1, . . . ,M}, where (xi)

j denotes the j-th order statistic

of {(xi)j , j = 1, . . . ,M}.

Step 6. For any i ∈ {1, . . . , N}, let (x′

i)j = (xi)
[M·(ui)j+1], where (ui)j is the

value of Ui in the j-th sample of (U1, . . . , UN ), i.e., the i-th component of

(u1, . . . , uN)j , and [x] denotes the integer part of x. Then {(x′

i)j , j =

1, . . . ,M} is a new sample sequence obtained by reordering the origi-

nal sample sequence {(xi)j , j = 1, . . . ,M}. The new sample sequences

{(x′

1)j , j = 1, . . . ,M}, . . . , {(x′

N )j , j = 1, . . . ,M}, which are mutually

dependent now, form M samples of (X1, . . . , XN ), which are denoted by

{(x′

1, . . . , x
′

N )j = ((x′

1)j , . . . , (x
′

N )j), j = 1, . . . ,M}, and the dependency

structure of these new sample sequences is the same as that of (U1, . . . , UN ).

Step 7. Let sj =
N∑
i=1

(x′

i)j , j = 1, . . . ,M , then we get M samples of random vari-

able S =
N∑
i=1

Xi, denoted by {s1, . . . , sM}. Sorting the samples {sj, j =

1, . . . ,M} can give us VaRα(S) = s([M·α+1]) based on the definition, where

s(j) denotes the j-th order statistic of {sj , j = 1, . . . ,M} and [x] represents

the integer part of x.

4.2 Convergence. In the above algorithm, as the distributions of {Xi, i =

1, . . . , N} are unknown, we substitute them by the empirical distribution functions

of {Xi, i = 1, . . . , N}. Therefore, it is necessary to prove the convergence of Algo-

rithm 4.1.

Lemma 4.1. For i = 1, . . . , n, let Yi be a random variable with continuous dis-

tribution function Fi and independently generate m random numbers y
(1)
i , . . . , y

(m)
i

from Yi. The empirical distribution function of these random numbers is denoted by

Gmi. Then as m → ∞, we have
n∑

i=1

G−1
mi(Fi(Yi)) →

n∑
i=1

Yi in probability.

P r o o f. By Mao et al. [15], we know that G−1
mi(x) → F−1

i (x) almost sure for

x ∈ [0, 1]. Then we have G−1
mi(x) → F−1

i (x) in probability, i.e., lim
m→∞

P [|G−1
mi(x) −

F−1
i (x)| > ε] = 0 for x ∈ [0, 1].

Let am(x) = P [|G−1
mi(x) − F−1

i (x)| > ε]. As |am(x)| 6 1 for x ∈ [0, 1] and

lim
m→∞

am(x) = 0, by the dominated convergence theorem, we have

lim
m→∞

∫ 1

0

am(x) dx =

∫ 1

0

lim
m→∞

am(x) dx = 0.
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That is,

lim
m→∞

P [|G−1
mi(X)− F−1

i (X)| > ε] = lim
m→∞

∫ 1

0

P [|G−1
mi(x) − F−1

i (x)| > ε] dx = 0,

where X is a uniformly random variable on [0, 1], which is independent with

(y
(1)
i , . . . , y

(m)
i ).

Then we have G−1
mi(X) → F−1

i (X) in probability as m → ∞ for standard uni-

formly distributed X . For X = Fi(Yi), it holds that G
−1
mi(Fi(Yi)) → F−1

i (Fi(Yi)) in

probability. Consequently, we have

n∑

i=1

G−1
mi(Fi(Yi)) →

n∑

i=1

Yi

in probability as m → ∞. �

Lemma 4.2. Suppose that X is a continuous random variable and {Xn} is a se-

quence of random variables. If Xn → X in probability, then VaRα(Xn) → VaRα(X).

P r o o f. Let an = VaRα(Xn) and a = VaRα(X). Argue by reduction to

absurdity. If the conclusion does not hold, we can find a subsequence ank
satisfying

ank
> a+ ε or ank

< a− ε for some ε > 0.

In the case when ank
> a+ ε, it can be obtained that

α = P (Xnk
6 ank

) > P
(
Xnk

6 a+
ε

2

)
.

Letting k tend to ∞, we have

α > P
(
X 6 a+

ε

2

)
,

In consideration of the fact that P (X 6 a+ ε/2) > α, the contradiction exists.

In the case when ank
< a− ε, we have

α 6 P
(
Xnk

6 ank
+

ε

4

)
< P

(
Xnk

6 a−
ε

2

)
.

Letting k tend to ∞ gives

α 6 P
(
X < a−

ε

2

)
,

which is contradictory with P (X 6 a− ε/2) < α. �
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Theorem 4.3. The simulated VaR for {sj, j = 1, . . . ,M} in Algorithm 4.1

converges to the VaR of S, i.e., VaRα(SM ) → VaRα(S), where SM = {sj , j =

1, . . . ,M}.

P r o o f. By Lemmas 4.1 and 4.2, we have

VaRα

( n∑

i=1

G−1
mi(Fi(Xi))

)
→ VaRα

( n∑

i=1

Xi

)
,

where Fi(Xi) is the distribution function of Xi. That is to say, VaRα(SM ) →

VaRα(S). �

4.3 Some results about the numerical simulation and suggestions. We

give the simulated results for N = n1 = n2 = 2 in this subsection. We obtain

the simulated VaRfor S in different cases of the distribution functions of X11, X12,

X21, X22 and the copulas of (X11, X12), (X21, X22), and (X1, X2). Assuming that

the basic risks are normally distributed and t-distributed, respectively, the copula

of (X11, X12), which is denoted by CX1
, is the Gauss copula CGa

̺ with parameter

̺ = 0.3 and the copula of (X21, X22), which is denoted by CX2
, is the t-copula

Ct
ν,̺ with parameters ̺ = 0.5, ν = 4. For the copula of (X1, X2), we give three

forms, namely, independent copula, countermonotonicity copula and comonotonicity

copula. The confidence level of VaR is 0.95.

Let M = 10, 000. The results of VaR for the above different cases are shown

in Table 1 and the graphs of the empirical distribution functions of the aggregated

risk S in these different cases are given in Figure 2.

cases 1 2 3 4

X11 N(2, 1) t(10) t(10) t(10)

X12 N(3, 4) t(5) t(5) t(5)

CX1
CGa

̺ CGa
̺ CGa

̺ CGa
̺

X22 t(5) N(10, 15) N(10, 15) N(10, 15)

CX2
Ct

ν,̺ Ct
ν,̺ Ct

ν,̺ Ct
ν,̺

CS Π Π W M

VaR 41.6757 30.3916 26.3456 32.6293

Table 1. The VaR in different cases of the margins and dependency structures

From the simulated results stated in Table 1, we know that the risk values are

quite different while the dependency structures are the same but the margins are

different and it also behaves differently when the random basic risk variables with
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identical margins have different dependency structures. It is obvious that the ag-

gregated risk value is determined by both the marginal distributions and the joint

distribution which is substituted by copula here. From the risk values of case 1 and

case 2, we know that for the same joint distributions of (X11, X12), (X21, X22), and

(X1, X2), different marginal distributions of basic risks result in different values of

VaR. Though we do not know the specific relationship between the marginal distri-

butions and the final risk value, it does exist and it can be seen from Table 1 that

the VaR in case 1 is much different from that in case 2. By comparing the values of

VaR in case 2, case 3, and case 4, we find that for the same marginal distributions

and joint distributions of (X11, X12) and (X21, X22), different joint distributions of

(X1, X2) lead to different results. According to the definition of X1 and X2 we know

that they represent the risk variables of the financial products from different indus-

tries, that is to say, while the marginal distributions and the dependency structure

of the variables in every group are given, different dependency structures between

the two different financial industries lead to different values of VaR. It is obvious

from Table 1 that the value of VaR is maximum while the two financial industries

are perfectly positively dependent, it is minimum while the two financial industries

are perfectly negatively dependent, and it is between these two values while the two

financial industries are independent but there is no much difference between these

values.

Comparing the results in Table 1 we can see that the marginal distributions, i.e.,

the distribution functions of the basic variables, as well as the master copula, i.e.,

the copula of different financial industries, are the reasons that cause different values

of VaR and the former has major influence on the resulting value of VaR. Though

the latter of the above reasons has less impact on the final result than the former

one, its influence cannot be ignored, especially in practice. It has been said before

that a financial body under mixed operation owns a great variety of basic financial

products which belong to different financial industries such as stocks, funds, etc.

Combining this fact with the results and analysis above, we suggest that the financial

body should effectively analyze the financial market and various financial products

before investment to achieve diversification and invest in different kinds of financial

products that are negatively dependent to the greatest extent possible.

Additionally, the curves of the empirical distribution functions of S in the cases 1,

2, 3, and 4, which are stated in Table 1, are presented in Figure 2, where we denote

the random variable S by x and the empirical distribution function of S by F (x).

Noticing the value ranges of x corresponding to the curves, we can find that the values

of the total risk variable S in these different cases are different. From Figure 2 we can

easily see that the value range of x is minimum while the two financial industries are

perfectly negatively dependent, and the value of x corresponding the left endpoint of
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the curve in this case is maximum but the value of x corresponding the right endpoint

of the curve is minimum. The value range of x is maximum in case 1 and the value of

x corresponding the left endpoint of the curve in this case is minimum but the value

of x corresponding the right endpoint of the curve is maximum. The value ranges

of x as well as the values of x corresponding the left and right endpoints of the

curves in other two cases are between the ranges and values in the above two cases.

From the shape of every curve in the figure we can see that the shapes in case 2,

case 3, and case 4 are nearly the same and obviously different from that in case 1,

which implies that the distributions of the basic risk variables have more impact

on the resulting VaR than the dependency relationship between different financial

industries. By comparing the shape of the curve in case 1 to that in case 2 and the

shape in case 2 to that in cases 3 and 4 we can conclude that both of the different

marginal distributions and the different master copulas are the reasons which lead

to the resulting VaR.
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Figure 2. The curves of the empirical CDF corresponding to different margins and depen-
dency structures.

Furthermore, for the management implications, the results and analysis above

are helpful too. From the impact of the dependency relationship between different

financial industries on the final aggregated risk faced by a financial body, it can

be seen that there is a necessity to consider the following things for making more

effective management decisions. Firstly, the manager should focus on the market

changes and re-assess the portfolio in hand to ensure that all the financial products

the body owns have proper dependency relationships, especially for different kinds

of financial products, as different dependency relationships cause different values of
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VaR. Secondly, for those different kinds of financial products which have a positive

dependency relationship to some extent, the manager should pay more attention to

any change of them, especially the bad changes, as the risks of these financial products

have contagion effect due to their positive dependence. Thirdly, the manager should

adjust the proportion of different kinds of financial products contained in the portfolio

timely according to the change of the financial market by increasing or reducing the

investment amount to some financial products. By this procedure, the investment

to the financial products which are positively dependent and to those which are

negatively dependent can maintain a good proportion, which can guarantee that the

total risk of the portfolio is always affordable.
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