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Abstract. In this paper we deal with the problem of asymptotic integration
of nonlinear differential equations with p−Laplacian, where 1 < p < 2. We
prove sufficient conditions under which all solutions of an equation from this
class are converging to a linear function as t→∞.

1. Introduction

In the asymptotic theory of n-th order nonlinear ordinary differential equations

(1) y(n) = f(t, y, y′, . . . , y(n−1))

the classical problem is to establish conditions for the existence of a solution which
asymptotically behaves as a polynomial of degree 1 ≤ m ≤ n− 1 as t→∞. The
first paper concerning this problem was published by D. Caligo [5] in 1941 (see also
[1]). He proved a result for that type of a linear second order differential equation.
Since then many results concerning this problem for nonlinear differential equations
have been proved, e.g. in the papers by D.S. Cohen [6], A. Constantin [7], [9]
and [8], F.M. Dannan [10], T. Kusano and W.F. Trench [11] and [12], O. Lipovan
[13], O.G. Mustafa, Y.V. Rogovchenko [17], Ch.G. Philos, I.K. Purnaras and
P.Ch. Tsamatos [20], Y.V. Rogovchenko [22], S.P. Rogovchenko [21], J. Tong
[23], F. Trench [24]. The paper by R.P. Agarwal, S.D. Djebali, T. Moussaoui
and O.G. Mustafa [1] surveys the literature concerning the topic in asymptotic
integration theory of ordinary differential equations. Several conditions under which
all solutions of the one dimensional p-Laplacian equation

(2) (|y′|p−1y′)′ = f(t, y, y′) , p > 1

behave asymptotically as a+ bt as t→∞ for some real numbers a, b are proved
in [16] and some sufficient conditions for the existence of such solutions of the
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equation

(3)
(
Φ(y(n))

)′ = f(t, y) , n ≥ 1 ,

where Φ: R→ R is an increasing homeomorphism with a locally Lipschitz inverse
satisfying Φ(0) = 0 are given in the paper [14]. We remark that in the papers [2], [3],
[15] and [19] problems of the global existence, extendability and non-extendability
of solutions of systems of equations with p-Laplacian are studied.

In this paper we prove sufficient conditions under which all solutions of a p-Laplace
equation behave asymptotically as a linear function for t → ∞. In its proof we
apply the Bihari inequality. This technique was applied also in the paper [16]
concerning a p-Laplace equation. In some of the above mentioned papers, also in
the paper [14] concerning a p-Laplace equation, some results on the existence of
solutions behaving like linear functions near the infinity are proved by using the
Schauder fixed point theorem.

2. Asymptotic properties of one-dimensional singular
p-Laplace equations

Consider the initial problem

(4) (Q(t)Φp(u′))
′ + f(t, u, u′) = 0 ,

(5) u(t0) = u0, u
′(t0) = u1 , t0 ≥ 1 ,

where Φp(v) = |v|p−2v, Q(t) is a continuous positive function. If p > 1 and q > 1
are such that 1

p + 1
q = 1, then Φq(v) = Φ−1

p (v). We need to assume q > 2. However
in this case 1 < p < 2 and this means that the p-Laplacian Φp(v) is singular.

Theorem 1. Let the following conditions be satisfied:
(C1) 1 < p < 2;
(C2) There exists a continuous nonnegative function h : R+ = [0,∞) → R,

continuous positive nondecreasing functions gi : R+ → R, i = 1, 2 and a positive
number k such that

|f(t, u, v)| ≤ H(t)
[
g1

([ |u|
t

]k)
+ g2(|v|k)

]
for all (t, u, v) ∈ (0,∞)× R× R;

(C3) ∫ ∞
0

H(s)
1
p−1 ds <∞ ;

(C4)∫ ∞
v0

dσ

g1(σk)
1
p−1 + g2(σk)

1
p−1

= 1
k

∫ ∞
vk0

τ
1
k−1dτ

g1(τ)
1
p−1 + g2(τ)

1
p−1

=∞ , v0 ≥ 0 ;

(C5) There exists a constant K > 0 such that

Q(t) ≥ Kt , t ≥ t0 ≥ 1 .
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Then for any solution u(t) of the initial value problem (4), (5) there exist a, b ∈ R
such that

lim
t→∞

|u(t)− (a+ bt)| = 0 .

Proof. First let us write the equation (4) in the form

(6)
(
Φp(h(t)u′)

)′ + f(t, u, u′) = 0 ,

where h(t) = Q(t)r = Q(t)q−1 = Q(t)
1
p−1 (r = q − 1 = 1

p−1 ). From condition (C5)
it follows that

(7) h(t) ≥ Krtr , t ≥ t0 ≥ 1 .

If u(t) is a solution of equation (4) satisfying the initial value condition (5), then

u′(t) = 1
h(t)

{
Φq
(

Φp(h(t0)u1)−
∫ t

t0

f(s, u(s), u′(s))ds
)}

,(8)

u(t) = u0 +
∫ t

t0

1
h(τ)

{
Φq
(

Φp(h(t0)u1)−
∫ τ

t0

f(s, u(s), u′(s))ds
)}
dτ .(9)

Using condition (C5) we obtain
1
h(t) = 1

Q(t)r ≤ L
1
tr
, L = 1

Kr

and

|u(t)| ≤ |u0|t+ L

∫ t

t0

1
τ r

(
|Φp(h(t0)u1)|+

∫ τ

t0

|f(s, u(s), u′(s))| ds
)r
dτ .

Using the Hölder inequality (with r and r
r−1 ) and the inequality (a1 + a2 + · · ·+

am)n ≤ mn−1(an1 + an2 + · · ·+ anm), a1, a2, . . . , am ≥ 0, n ∈ N, and condition (C2)
we obtain for t ≥ t0 ≥ 1:

|u(t)| ≤ |u0|t+L
∫ t

t0

1
τ r

(
2r−1|Φp(h(t0)u1)|r+2r−1τ r−1

∫ τ

0
|f(s, u(s), u′(s))|r ds

)
dτ

≤ |u(t0)|t+ Lt2r−1|Φp(h(t0)u1)|r + L2r−1
∫ t

0

∫ s

t0

|f(τ, u(τ), u′(τ))|rdτ ds

≤ |u(t0)|t+ Lt2r−1|Φp(h(t0)u1)|r

+ L2r−1t

∫ t

t0

H(s)r
(
g1

([ |u(s)|
s

]k)
+ g2(|u′(s)|k)

)r
ds

≤ |u(t0)|t+ Lt2r−1|Φp(h(t0)u1)|r

+ L4r−1t

∫ t

t0

H(s)r
(
g1

([ |u(s)|
s

]k)r
+ g2(|u′(s)|k)r

)
ds .

This yields
|u(t)|
t
≤ A1 +B

∫ t

t0

H(s)r
(
g1

([ |u(s)|
s

]k)r
+ g2(|u′(s)|k)r

)
ds ,
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where A1 = |u(t0)|+ L2r−1|Φp(h(t0)u1)|r, B = 4r−1L. One can show that

(10) |u(t)|
t
≤ z(t) , |u′(t)| ≤ z(t) ,

where
z(t) = A+B

∫ t

t0

H(s)r
(
g1

([ |u(s)|
s

]k)r
+ g2(|u′(s)|k)r

)
ds ,

A = A1 + |u1|. Since the functions g1, g2 are nondecreasing, the inequalities (10)
yield

z(t) ≤ A+B

∫ t

t0

H(s)r
(
g1(z(s)k)r + g2(z(s)k)r

)
ds

and from the Bihari inequality it follows

Ω(z(t)) ≤ K1 := Ω(A) +B

∫ ∞
t0

H(s)r ds <∞ ,

where
Ω(v) =

∫ v

v0

dσ

g1(σk)r + g2(σk)r , r = q − 1 .

From inequalities (10) we have

(11) |u(t)|
t
≤ K := Ω−1(K1) <∞ , |u′(t)| ≤ K, t ≥ t0 .

Since∫ t

t0

|f(s, u(s), u′(s))| ds ≤
∫ t

t0

H(s)
(
g1

([ |u(s)|
s

]k)
+ g2(|u′(s)|k)

)
ds

≤ z(t) ≤ K , t ≥ t0 ,

the integral
∫∞
t0
|f(s, u(s), u′(s))| ds exists.

From (11) it follows that there exists a ∈ R such that
lim
t→∞

u′(t) = a

and by using the L’Hospital rule we obtain

lim
t→∞

|u(t)|
t

= lim
t→∞

u′(t) = a .

Therefore there exist a, b ∈ R such that u(t) = at+ b+ o(t) as t→∞. �

Example. Let t0 = 1, 1 < p < 2, 0 < k ≤ 1, H(t) be a nonnegative, continuous
function on [0,∞) with

∫∞
1 H(s)

1
p−1 ds <∞ and

f(t, u, v) = H(t)
(
u

(p−1)(1−k)
k lnp−1 u+ v

(p−1)(1−k)
k

)
, u, v > 0, t ∈ [0,∞) .

If g1(u) := u
(p−1)(1−k)

k lnp−1 u, g2(v) := v
(p−1)(1−k)

k , Q(t) := t, t ≥ 1, then∫ ∞
vk0

τ
1
k−1dτ

g1(τ)p−1 + g2(τ)p−1 =
∫ ∞
vk0

dτ

ln τ + τ
=∞

(see [7]) and thus all conditions of Theorem 1 are satisfied.
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Remark 1. Let us define the following classes of functions defined on the region
D ⊂ (0,∞)× R× R:
Ci = {f(t, u, v) : f ∈ C(D) and satisfies the condition (Ki)} , i = 0, 1, 2 ,

where (K0) is given by the conditions (C2), (C3), (C4) from Theorem 1,

(K1)

|f(t, u, v)| ≤ h1(t)
[
g1

([ |u|
t

]k)
+ h2(t)g2(|v|k) + h3(t)

]
for all (t, u, v) ∈ (0,∞)× R× R with∫ ∞

0
hj(s)

1
p−1 ds <∞ , j = 1, 2, 3

and∫ ∞
v0

dσ

g1(σk)
1
p−1 + g2(σk)

1
p−1

= 1
k

∫ ∞
vk0

τ
1
k−1dτ

g1(τ)
1
p−1 + g2(τ)

1
p−1

=∞ , v0 ≥ 0 ;

(K2)

|f(t, u, v)| ≤ h4(t)
[
g1

([ |u|
t

]k)
g2(|v|k) + h5(t)

]
for all (t, u, v) ∈ (0,∞)× R× R with∫ ∞

0
hj(s)

1
p−1 ds <∞ , j = 4, 5

and ∫ ∞
v0

dσ

g1(σk)
1
p−1 g2(σk)

1
p−1

= 1
k

∫ ∞
vk0

τ
1
k−1dτ

g1(τ)
1
p−1 g2(τ)

1
p−1

=∞ , v0 ≥ 0 .

Proposition 2. It holds
C1 ⊂ C0 , C2 ⊂ C0 .

This proposition is a corollary of Proposition 2 from [18]. If we substitute
conditions (K1) or (K2) instead of conditions (C1), (C2), (C3) in Theorem 1 we
obtain results which are corollaries of Theorem 1. This type of results with these
classes of nonlinearities are proved in [22], [21] and also in [16], separately.

Remark 2. Since we study equation (6) with 1 < p < 2 we need condition (C5).
This condition is not necessary in the case studied in [16].

Theorem 3. Let conditions (C1)–(C5) of Theorem 1 be satisfied. Then any solution
u : [0, T )→ R with 0 < T <∞ can be extended to the right beyond T .

Proof. Let u : [0, T )→ R be a solution of equation (4) with 0 < T <∞ satisfying
the initial value condition (5), which cannot be extended to the right beyond T .
Then limt→T− |u(t)| =∞. However from inequality (10) we have
(12) |u(t)| ≤ t|z(t)| , t ≥ 1 ,
where
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(13) z(t) ≤ A+B

∫ t

t0

H(s)r
(
g1(z(s)k)r + g2(z(s)k)r

)
ds ,

and by applying the Bihari inequality we obtain that |z(t)| ≤ K for all t ∈ [1,∞),
where K > 0 is a constant. However from the inequality (12) we have |u(t)| ≤ TK
for all t ∈ [1,∞) and it is a contradiction. �

Theorem 4. Let conditions (C1)–(C4) of Theorem 1 be satisfied and suppose that
there exists a solution u : [1, T )→ R of equation (4) with 0 < T <∞ which cannot
be extended to the right of T . Then G(+∞) <∞, where

G(v) =
∫ v

v0

dσ

g1(σk)
1
p−1 + g2(σk)

1
p−1

, v ≥ v0 ≥ 0 .

This theorem can be proved by a modification of the procedure used in the proof
of Lemma 3.6 from [18].
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