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Abstract. In this paper we consider a nonlinear Love equation associated with Dirichlet
conditions. First, under suitable conditions, the existence of a unique local weak solution is
proved. Next, a blow up result for solutions with negative initial energy is also established.
Finally, a sufficient condition guaranteeing the global existence and exponential decay of
weak solutions is given. The proofs are based on the linearization method, the Galerkin
method associated with a priori estimates, weak convergence, compactness techniques and
the construction of a suitable Lyapunov functional. To our knowledge, there has been no
decay or blow up result for equations of Love waves or Love type waves before.
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1. Introduction

In this paper, we consider the following nonlinear Love equation with initial con-

ditions and homogeneous Dirichlet boundary conditions

utt − uxx − uxxtt − λ1uxxt + λut = F (x, t, u, ux, ut, uxt)(1.1)

− ∂

∂x
[G(x, t, u, ux, ut, uxt)] + f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,(1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),(1.3)

The research has been supported by Vietnam’s National Foundation for Science and
Technology Development (NAFOSTED) under Project 101.02-2015.06.
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where λ > 0, λ1 > 0 are constants and ũ0, ũ1 ∈ H1
0 ∩H2; f, F, G are given functions

satisfying conditions specified below.

When f = F = G = 0, λ = λ1 = 0, Ω = (0, L), equation (1.1) is related to the

Love equation

(1.4) utt −
E

̺
uxx − 2µ2ω2uxxtt = 0,

presented by Radochová in 1978 (see [18]). This equation, which describes the ver-

tical oscillations of a rod, was established from Euler’s variational equation of an

energy functional

(1.5)

∫ T

0

dt

∫ L

0

[1
2
F̺(u2t + µ2ω2u2tx)−

1

2
F (Eu2x + ̺µ2ω2uxuxtt)

]
dx.

The parameters in (1.5) have the following meaning: u is the displacement, L is the

length of the rod, F is the area of cross-section, ω is the cross-section radius, E is

the Young modulus of the material and ̺ is the mass density. By using the Fourier

method, Radochová [18] obtained a classical solution of problem (1.4) associated

with initial condition (1.3) and boundary conditions

(1.6a) u(0, t) = u(L, t) = 0,

or

(1.6b)

{
u(0, t) = 0,

εuxtt(L, t) + c2ux(L, t) = 0,

where c2 = E/̺, ε = 2µ2ω2. On the other hand, the asymptotic behaviour of the

solution of problem (1.3), (1.4), (1.6a) or (1.6b) as ε → 0+ was also established by

the method of small parameter.

Equations of Love waves or Love type waves have been studied by many authors,

we refer to [4], [6], [12], [13], [14], [17] and references therein.

In [12], by combining the linearization method for the nonlinear term, the Faedo-

Galerkin method and the weak compactness method, the existence of a unique weak

solution of a Dirichlet problem for the nonlinear Love equation utt − uxx − uxxtt =

f(x, t, u, ux, ut, uxt) is proved.

In [19], a symmetric version of the regularized long wave equation (SRLWE)

(1.7)

{
uxxt − ut = ̺x + uux,

̺t + ux = 0,
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was proposed as a model for propagation of weakly nonlinear ion acoustic and space-

charge waves. Obviously, eliminating ̺ from (1.7), we get

(1.8) utt − uxx − uxxtt = −uuxt − uxut.

The SRLWE (1.8) is explicitly symmetric in the x and t derivatives and is very

similar to the regularized long wave equation which describes shallow water waves

and plasma drift waves [1], [2]. The SRLWE also arises in many other areas of

mathematical physics [5], [9], [16]. We remark that equations (1.1) and (1.8) are

special forms of the equation discussed in [12].

The purpose of this paper is establishing the existence, blow up and exponential

decay of weak solutions for problem (1.1)–(1.3). To our knowledge, there is no decay

or blow up result for equations of Love waves or Love type waves. However, the

existence and exponential decay of solutions or blow up results for wave equations,

with different boundary conditions, have been extensively studied by many authors,

for example, we refer to [3], [10], [11], [15] and references therein. In [3], the following

problem was considered:

(1.9)





utt −∆u+ g(ut) + f(u) = 0, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), x ∈ Ω,

where f(u) = −b|u|p−2u, g(ut) = a(1 + |ut|m−2)ut, a, b > 0, m, p > 2, and Ω

is a bounded domain of RN with a smooth boundary ∂Ω. Benaissa and Messaoudi

showed that for suitably chosen initial data, (1.10) possesses a global weak solution,

which decays exponentially even ifm > 2. Nakao and Ono [11] extended the previous

results to the Cauchy problem

(1.10)

{
utt −∆u+ λ2(x)u + g(ut) + f(u) = 0, x ∈ R

N , t > 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), x ∈ R
N ,

where g(ut) behaves like |ut|m−2ut, f(u) behaves like −|u|p−2u, and the initial data

(ũ0, ũ1) is small enough in H
1(Ω) × L2(Ω). In [15], the existence and exponential

decay for the nonlinear wave equation

(1.11) utt − uxx +Ku+ λut = a|u|p−2u+ f(x, t), 0 < x < 1, t > 0,

with a nonlocal boundary condition, in cases a = 1, a = −1, were also established.

In [10], Messaoudi established a blow up result for solutions with negative initial en-

ergy and a global existence result for arbitrary initial data of a nonlinear viscoelastic
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wave equation

(1.12) utt −∆u+

∫ t

0

g(t− τ)∆u(τ) dτ + a|ut|m−2ut = b|u|p−2u, x ∈ Ω, t > 0,

where a, b > 0, p > 2, m > 1, and Ω is a bounded domain of RN with a smooth

boundary ∂Ω, associated with initial and Dirichlet boundary conditions. In [8], [20],

the existence, regularity, blow-up and exponential decay estimates of solutions for

nonlinear wave equations associated with two-point boundary conditions were es-

tablished. The proofs are based on the Galerkin method associated with a priori

estimates, weak convergence, compactness techniques and the construction of a suit-

able Lyapunov functional. The authors in [20] proved that any weak solution with

negative initial energy will blow up in finite time.

The above mentioned works lead to the study of the existence, blow-up and ex-

ponential decay estimates for a nonlinear Love equation associated with initial and

Dirichlet boundary conditions (1.1)–(1.3). Our paper is organized as follows.

Section 2 is devoted to the presentation of preliminaries and an existence result

via the Faedo-Galerkin method. Problem (1.1)–(1.3) here is dealt with the general

case F,G ∈ C1([0, 1]× [0, T ]× R
4).

In Sections 3, 4, 5, problem (1.1)–(1.3) is considered with F = F (u) = a|u|p−2u,

G = G(ux) = b|ux|p−2ux, a, b ∈ R, p > 2. In the case of a > 0, b > 0; f(x, t) ≡ 0,

with negative initial energy, we prove that the solution of (1.1)–(1.3) blows up in

finite time. In the case of a > 0, b < 0, it is proved that if ‖ũ0x‖2 − a‖ũ0‖pLp > 0

and f ∈ L2((0, 1) × R+), ‖f(t)‖ 6 Ce−γ0t, γ0 > 0, then the energy of the solution

decays exponentially as t→ ∞. Finally, in the case of a < 0, b < 0 and ‖f(t)‖ small
enough as above, we remark that problem (1.1)–(1.3) has a unique global solution

with energy decaying exponentially as t → ∞, without the initial data (ũ0, ũ1) being

small enough.

2. Existence of a weak solution

First, we put Ω = (0, 1); QT = Ω × (0, T ), T > 0 and denote the usual function

spaces used in this paper by Cm(Ω), Wm,p = Wm,p(Ω), Lp = W 0,p(Ω), Hm =

Wm,2(Ω), 1 6 p 6 ∞, m = 0, 1, . . . Let 〈·, ·〉 be either the scalar product in L2

or the dual pairing of a continuous linear functional and an element of a function

space. The notation ‖·‖ stands for the norm in L2 and we denote by ‖·‖X the norm
in the Banach space X. We call X ′ the dual space of X. We denote by Lp(0, T ;X),

1 6 p 6 ∞, the Banach space of the real functions u : (0, T ) → X measurable such
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that

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖pX dt

)1/p

<∞ for 1 6 p <∞,

and

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u(t)‖X for p = ∞.

Let u(t), u′(t) = ut(t), u
′′(t) = utt(t), ux(t), uxx(t) denote u(x, t), ∂u/∂t(x, t),

∂2u/∂t2(x, t), ∂u/∂x(x, t), ∂2u/∂x2(x, t), respectively.

On H1, we shall use the norm

‖v‖H1 = (‖v‖2 + ‖vx‖2)1/2.

Then the following lemma is known.

Lemma 2.1. The imbedding H1 →֒ C0(Ω) is compact and

(2.1) ‖v‖C0(Ω) 6
√
2‖v‖H1 ∀ v ∈ H1.

R em a r k 2.1. On H1
0 , v 7→ ‖v‖H1 and v 7→ ‖vx‖ are equivalent norms. Further-

more,

(2.2) ‖v‖C0(Ω) 6 ‖vx‖ for all v ∈ H1
0 .

With F ∈ C1([0, 1] × R+ × R
4), F = F (x, t, y1, . . . , y4), we put D1F = ∂F/∂x,

D2F = ∂F/∂t, Di+2F = ∂F/∂yi, i = 1, . . . , 4.

Next, we establish the local existence theorem. We need the following assumptions:

(H1) f ∈ H1(QT ), QT = (0, 1)× (0, T );

(H2) F ∈ C1([0, 1]× [0, T ]×R
4), such that F (0, t, 0, y2, 0, y4) = F (1, t, 0, y2, 0, y4) = 0

for all t ∈ [0, T ], for all y2, y4 ∈ R;

(H3) G ∈ C1([0, 1]× [0, T ]× R
4).

Theorem 2.2. Suppose that (H1)–(H3) hold. Then problem (1.1)–(1.3) has

a unique local solution

(2.3) u ∈ L∞(0, T∗;H
1
0 ∩H2), ut ∈ L∞(0, T∗;H

1
0 ∩H2), utt ∈ L∞(0, T∗;H

1
0 ∩H2),

for T∗ > 0 small enough.

R em a r k 2.2. The regularity obtained by (2.3) shows that problem (1.1)–(1.3)

has a unique strong solution

(2.4) u ∈ C1([0, T∗];H
1
0 ∩H2), utt ∈ L∞(0, T∗;H

1
0 ∩H2).
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P r o o f of Theorem 2.2. The proof is a combination of the linearization method

for a nonlinear term, the Faedo-Galerkin method and the weak compactness method,

and consits of two steps.

Step 1. Establish a linear recurrence sequence {um} by the linearization method.
Consider T > 0 fixed, let M > 0, and put

(2.5) KM (f) = ‖f‖H1(QT ) =
(
‖f‖2L2(QT ) +

∥∥∥
∂f

∂x

∥∥∥
2

L2(QT )
+
∥∥∥
∂f

∂t

∥∥∥
2

L2(QT )

)1/2
,

‖F‖C0(AM) = sup
(x,t,y1,...,y4)∈AM

|F (x, t, y1, . . . , y4)|,

AM = [0, 1]× [0, T ]× [−M,M ]4,

FM = ‖F‖C1(AM ) = ‖F‖C0(AM ) +

6∑

i=1

‖DiF‖C0(AM ),

GM = ‖G‖C1(AM) = ‖G‖C0(AM) +

6∑

i=1

‖DiG‖C0(AM).

For each T∗ ∈ (0, T ] and M > 0, we put

(2.6)





W (M,T∗) = {v ∈ L∞(0, T∗;H
1
0 ∩H2) : vt ∈ L∞(0, T∗;H

1
0 ∩H2),

vtt ∈ L∞(0, T∗;H
1
0 ),

with ‖v‖L∞(0,T∗;H1

0
∩H2), ‖vt‖L∞(0,T∗;H1

0
∩H2), ‖vtt‖L∞(0,T∗;H1

0
) 6M},

W1(M,T∗) = {v ∈ W (M,T∗) : vtt ∈ L∞(0, T∗;H
1
0 ∩H2)},

where QT∗
= Ω× (0, T∗).

We establish the linear recurrence sequence {um} as follows.
We choose the first term u0 ≡ 0, suppose that

(2.7) um−1 ∈ W1(M,T∗),

and associate with problem (1.1)–(1.3) the following problem:

Find um ∈W1(M,T∗) (m > 1) which satisfies the linear variational problem

(2.8)






〈u′′m(t), w〉 + 〈u′′mx(t) + λ1u
′

mx(t) + umx(t), wx〉+ λ〈u′m(t), w〉
= 〈f(t), w〉 + 〈Fm(t), w〉 + 〈Gm(t), wx〉 ∀w ∈ H1

0 ,

um(0) = ũ0, u
′

m(0) = ũ1,

where

(2.9) Fm(x, t) = F (x, t, um−1(x, t),∇um−1(x, t), u
′

m−1(x, t),∇u′m−1(x, t))

≡ F [um−1](x, t),

Gm(x, t) = G(x, t, um−1(x, t),∇um−1(x, t), u
′

m−1(x, t),∇u′m−1(x, t))

≡ G[um−1](x, t).
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Then we have the following lemma.

Lemma 2.3. Let (H1)–(H3) hold. Then there exist positive constantsM, T∗ > 0

such that, for u0 ≡ 0, there exists a recurrence sequence {um} ⊂W1(M,T∗) defined

by (2.7)–(2.9).

P r o o f of Lemma 2.3. The proof consists of several steps.

(i) The Faedo-Galerkin approximation (introduced by Lions [7]). Consider a spe-

cial orthonormal basis {wj} on H1
0 : wj(x) =

√
2 sin(jπx), j ∈ N, formed by the

eigenfunctions of the Laplacian −∆ = −∂2/∂x2. Put

(2.10) u(k)m (t) =

k∑

j=1

c
(k)
mj(t)wj ,

where the coefficients c
(k)
mj satisfy the system of linear differential equations

(2.11)






〈ü(k)m (t), wj〉+ 〈ü(k)mx(t) + λ1u̇
(k)
mx(t) + u

(k)
mx(t), wjx〉+ λ〈u̇(k)m (t), wj〉

= 〈Fm(t), wj〉+ 〈Gm(t), wjx〉+ 〈f(t), wj〉, 1 6 j 6 k,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k,

in which

(2.12)






ũ0k =

k∑

j=1

α
(k)
j wj → ũ0 strongly in H

1
0 ∩H2,

ũ1k =

k∑

j=1

β
(k)
j wj → ũ1 strongly in H

1
0 ∩H2.

System (2.11) can be rewritten in the form

(2.13)






c̈
(k)
mj(t) +

λ1λj + λ

1 + λj
ċ
(k)
mj(t) +

λj

1 + λj
c
(k)
mj(t) = fmj(t),

c
(k)
m (0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j , 1 6 j 6 k,

where

(2.14)





fmj(t) =

1

1 + λj
[〈Fm(t), wj〉+ 〈Gm(t), wjx〉+ 〈f(t), wj〉],

λj = (jπ)2, 1 6 j 6 k.

Note that by (2.7), it is not difficult to prove that system (2.13) has a unique

solution on the interval [0, T ].
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(ii) A priori estimates. Put

(2.15) S(k)
m (t) = p(k)m (t) + q(k)m (t) + r(k)m (t),

where

(2.16)






p(k)m (t) = ‖u̇(k)m (t)‖2 + ‖u̇(k)mx(t)‖2 + ‖u(k)mx(t)‖2

+ 2λ1

∫ t

0

‖u̇(k)mx(s)‖2 ds+ 2λ

∫ t

0

‖u̇(k)m (s)‖2 ds,

q(k)m (t) = ‖u̇(k)mx(t)‖2 + ‖∆u̇(k)m (t)‖2 + ‖∆u(k)m (t)‖2

+ 2λ1

∫ t

0

‖∆u̇(k)m (s)‖2 ds+ 2λ

∫ t

0

‖u̇(k)mx(s)‖2 ds,

r(k)m (t) = ‖ü(k)m (t)‖2 + ‖ü(k)mx(t)‖2 + ‖u̇(k)mx(t)‖2 + 2λ1

∫ t

0

‖ü(k)mx(s)‖2 ds

+ 2λ

∫ t

0

‖ü(k)m (s)‖2 ds.

Then it follows from (2.11), (2.15), and (2.16) that

(2.17) S(k)
m (t) = S(k)

m (0) + 2

∫ t

0

〈f(s), u̇(k)m (s)〉ds

+ 2

∫ t

0

〈∇f(s), u̇(k)mx(s)〉ds+ 2

∫ t

0

〈f ′(s), ü(k)m (s)〉ds

+ 2

∫ t

0

〈Fm(s), u̇(k)m (s)〉ds+ 2

∫ t

0

〈Gm(s), u̇(k)mx(s)〉ds

+ 2

∫ t

0

〈Fmx(s), u̇
(k)
mx(s)〉ds+ 2

∫ t

0

〈Gmx(s),△u̇(k)m (s)〉ds

+ 2

∫ t

0

〈Ḟm(s), ü(k)m (s)〉ds+ 2

∫ t

0

〈Ġm(s), ü(k)mx(s)〉ds

= S(k)
m (0) +

9∑

j=1

Ij .

First, we are going to estimate ξ
(k)
m = ‖ü(k)m (0)‖2 + ‖ü(k)mx(0)‖2.

Letting t→ 0+ in equation (2.11)1 and multiplying the result by c̈
(k)
mj(0), we get

(2.18) ‖ü(k)m (0)‖2 + ‖ü(k)mx(0)‖2 + 〈λ1ũ1kx + ũ0kx, ü
(k)
mx(0)〉+ λ〈ũ1k, ü(k)m (0)〉

= 〈Fm(0), ü(k)m (0)〉+ 〈Gm(0), ü(k)mx(0)〉+ 〈f(0), ü(k)m (0)〉.
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This implies that

(2.19) ξ(k)m = ‖ü(k)m (0)‖2 + ‖ü(k)mx(0)‖2

6 (λ1‖ũ1kx‖+ ‖ũ0kx‖+ ‖Gm(0)‖)‖ü(k)mx(0)‖
+ (λ‖ũ1k‖+ ‖Fm(0)‖+ ‖f(0)‖)‖ü(k)m (0)‖

6 [λ1‖ũ1kx‖+ ‖ũ0kx‖+ ‖Gm(0)‖+ λ‖ũ1k‖+ ‖Fm(0)‖+ ‖f(0)‖]
√
ξ
(k)
m

6 [λ1‖ũ1kx‖+ ‖ũ0kx‖+ ‖Gm(0)‖+ λ‖ũ1k‖+ ‖Fm(0)‖+ ‖f(0)‖]2.

Moreover,

(2.20) ‖Fm(0)‖+ ‖Gm(0)‖ = ‖F (·, 0, ũ0, ũ0x, ũ1, ũ1x)‖
+ ‖G(·, 0, ũ0, ũ0x, ũ1, ũ1x)‖ = a constant independent of m.

Thus,

(2.21) ξ(k)m 6 X0 ∀m,

where X0 is a constant depending only on f, ũ0, ũ1, F, G, λ, and λ1.

By (2.12), (2.15), (2.16), and (2.21), we get

(2.22) S(k)
m (0) = ‖ũ1k‖2 + ‖ũ1kx‖2 + ‖ũ0k‖2

+ ‖ũ1kx‖2 + ‖∆ũ1k‖2 + ‖∆ũ0k‖2 + ‖ũ1kx‖2

+ ξ(k)m 6 S0 ∀m, k ∈ N,

where S0 is a constant depending only on f, ũ0, ũ1, F, G, λ, and λ1.

We shall estimate the terms Ij on the right hand side of (2.17) as follows.

First term I1. By the Cauchy-Schwartz inequality, we have

(2.23) I1 = 2

∫ t

0

〈f(s), u̇(k)m (s)〉ds 6 ‖f‖2L2(QT ) +

∫ t

0

‖u̇(k)m (s)‖2 ds.

Similarly, for the terms I2, I3, we obtain

(2.24) I2 = 2

∫ t

0

〈∇f(s), u̇(k)mx(s)〉ds 6 ‖∇f‖2L2(QT ) +

∫ t

0

‖u̇(k)mx(s)‖2 ds,

I3 = 2

∫ t

0

〈f ′(s), ü(k)m (s)〉ds 6 ‖f ′‖2L2(QT ) +

∫ t

0

‖ü(k)m (s)‖2 ds.

Hence,

(2.25) I1 + I2 + I3 6 ‖f‖2H1(QT ) +

∫ t

0

S(k)
m (s) ds.
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Fourth term I4 = 2
∫ t

0 〈Fm(s), u̇
(k)
m (s)〉ds. It is known that

(2.26) |Fm(x, t)| 6 FM .

Consequently,

(2.27) I4 = 2

∫ t

0

〈Fm(s), u̇(k)m (s)〉ds 6 2FM

∫ t

0

‖u̇(k)m (s)‖ ds

6 T∗F
2

M +

∫ t

0

‖u̇(k)m (s)‖2 ds.

Similarly, for the term I5, we obtain

(2.28) I5 = 2

∫ t

0

〈Gm(s), u̇(k)mx(s)〉ds 6 T∗G
2

M +

∫ t

0

‖u̇(k)mx(s)‖2 ds.

Hence,

(2.29) I4 + I5 6 T∗(F
2

M +G
2

M ) +

∫ t

0

p(k)m (s) ds.

Sixth term I6 = 2
∫ t

0
〈Fmx(s), u̇

(k)
mx(s)〉ds.

It is known that

Fmx(t) = D1F [um−1] +D3F [um−1]∇um−1 +D4F [um−1]∆um−1

+D5F [um−1]∇u′m−1 +D6F [um−1]∆u
′

m−1,

so

(2.30) ‖Fmx(t)‖ 6 (1 + 4M)FM ≡ F̃M .

Hence,

(2.31) I6 = 2

∫ t

0

〈Fmx(s), u̇
(k)
mx(s)〉ds 6 2

∫ t

0

‖Fmx(s)‖‖u̇(k)mx(s)‖ ds

6 2F̃M

∫ t

0

‖u̇(k)mx(s)‖ ds 6 T∗F̃
2
M +

∫ t

0

‖u̇(k)mx(s)‖2 ds.

Similarly, for the term I7, we find that

(2.32) I7 = 2

∫ t

0

〈Gmx(s),△u̇(k)m (s)〉ds 6 T∗G̃
2
M +

∫ t

0

‖△u̇(k)m (s)‖2 ds,
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with G̃M = (1 + 4M)GM . Thus

(2.33) I6 + I7 6 T∗(F̃
2
M + G̃2

M ) +

∫ t

0

q(k)m (s) ds.

Similarly, for the terms I8, I9, we obtain

(2.34) I8 + I9 = 2

∫ t

0

〈Ḟm(s), ü(k)m (s)〉ds+ 2

∫ t

0

〈Ġm(s), ü(k)mx(s)〉ds

6 T∗(F̃
2
M + G̃2

M ) +

∫ t

0

r(k)m (s) ds.

Finally, (2.17), (2.22), (2.25), (2.29), (2.33), and (2.34) lead to

(2.35) S(k)
m (t) 6 S0 + ‖f‖2H1(QT ) + T∗D1(M) + 2

∫ t

0

S(k)
m (s) ds,

where

(2.36) D1(M) = [1 + 2(1 + 4M)2](F
2

M +G
2

M ).

We can choose M > 0 sufficiently large so that

(2.37) S0 + ‖f‖2H1(QT ) 6
1

2
M2,

next choose T∗ ∈ (0, T ] small enough so that

(2.38)
(1
2
M2 + T∗D1(M)

)
e2T∗ 6M2,

and

(2.39) kT∗
= 2

√
(F

2

M +G
2

M )T∗eT∗ < 1.

It follows from (2.35), (2.37), and (2.38) that

(2.40) S(k)
m (t) 6 e−2T∗M2 + 2

∫ t

0

S(k)
m (s) ds.

By virtue of Gronwall’s Lemma, (2.40) yields

(2.41) S(k)
m (t) 6 e−2T∗M2e2t 6M2
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for all t ∈ [0, T∗], for all m and k. Therefore,

(2.42) u(k)m ∈W (M,T∗) ∀m and k.

(iii) Limiting process. From (2.41) we deduce the existence of a subsequence of

{u(k)m } still so denoted, such that

(2.43)






u
(k)
m → um in L∞(0, T∗;H

1
0 ∩H2) weakly*,

u̇
(k)
m → u′m in L∞(0, T∗;H

1
0 ∩H2) weakly*,

ü
(k)
m → u′′m in L∞(0, T∗;H

1
0 ) weakly*,

um ∈ W (M,T∗).

Passing to limit in (2.11), (2.12), we have um satisfying (2.8), (2.9) in L
2(0, T∗).

On the other hand, we have from (2.8)1, (2.43)4 that

(2.44)
∂2

∂x2
(u′′m + λ1u

′

m + um) = u′′m + λu′m − Fm +Gmx − f ∈ L∞(0, T∗;L
2).

Therefore,

(2.45) u′′m + λ1u
′

m + um = Ψm ∈ L∞(0, T∗;H
1
0 ∩H2).

In order to continue the proof, now we deduce from (2.45) that, if

(2.46) um ∈ L∞(0, T∗;H
1
0 ∩H2),

then

(2.47) u′m, u
′′

m ∈ L∞(0, T∗;H
1
0 ∩H2).

Indeed, let (2.45), (2.46) hold. Then we have

(2.48) u′′m + λ1u
′

m = Ψm − um ≡ Ψm ∈ L∞(0, T∗;H
1
0 ∩H2).

Integrating (2.48) gives

(2.49) u′m + λ1um = ũ1 + λ1ũ0 +

∫ t

0

Ψm(s) ds ≡ Ψ̃m ∈ L∞(0, T∗;H
1
0 ∩H2).

Hence,

(2.50) u′m = Ψ̃m − λ1um ∈ L∞(0, T∗;H
1
0 ∩H2).
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It follows from (2.45) that

(2.51) u′′m = −λ1u′m − um +Ψm ∈ L∞(0, T∗;H
1
0 ∩H2).

We will prove that (2.46) holds. We consider three cases for λ1.

Case 1 : λ1 = 2. By (2.45), we have

(2.52) um(t) = ũ0e
−t+(ũ0+ũ1)te

−t+

∫ t

0

(t−s)es−tΨm(s) ds ∈ L∞(0, T∗;H
1
0 ∩H2).

Case 2 : λ1 > 2. Put k1 = 1
2 (−λ1 +

√
λ21 − 4), k2 = 1

2 (−λ1 −
√
λ21 − 4). Then

(2.45) gives

(2.53) um(t) =
1√
λ21 − 4

[(ũ1 − k2ũ0)e
k1t − (ũ1 − k1ũ0)e

k2t]

+
1√
λ21 − 4

∫ t

0

(ek1(t−s) − ek2(t−s))Ψm(s) ds ∈ L∞(0, T∗;H
1
0 ∩H2).

Case 3 : 0 < λ1 < 2. Putting α = − 1
2λ1, β = 1

2

√
4− λ21, (2.45) implies

(2.54) um(t) = ũ0e
αt cosβt+

1

β
(ũ1 − αũ0)e

αt sinβt

+
1

β

∫ t

0

eα(t−s) sin(βt(t− s))Ψm(s) ds ∈ L∞(0, T∗;H
1
0 ∩H2).

Thus um, u
′

m, u
′′

m ∈ L∞(0, T∗;H
1
0 ∩ H2), hence um ∈ W1(M,T∗) and Lemma 2.3

is proved. Hence, step 1 is complete.

Step 2. The convergence to the solution u of problem (1.1)–(1.3) of the linear

recurrence sequence {um}.
We have the following lemma.

Lemma 2.4. Let (H1)–(H3) hold. Then

(i) Problem (1.1)–(1.3) has a unique weak solution u ∈ W1(M,T∗), where the

constants M > 0 and T∗ > 0 are chosen as in Lemma 2.3.

Furthermore,

(ii) The linear recurrence sequence {um} defined by (2.7)–(2.9) converges to the

solution u of problem (1.1)–(1.3) strongly in the space

W1(T∗) = {v ∈ L∞(0, T∗;H
1
0 ) : v

′ ∈ L∞(0, T∗;H
1
0 )}.
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P r o o f of Lemma 2.4. We use the result obtained in Lemma 2.3 and the compact

imbedding theorems to prove Lemma 2.4. It means that the existence and uniqueness

of a weak solution of problem (1.1)–(1.3) is proved.

(i) Existence. First, we note that W1(T∗) is a Banach space with respect to the

norm (see Lions [7])

(2.55) ‖v‖W1(T∗) = ‖v‖L∞(0,T∗;H1

0
) + ‖v′‖L∞(0,T∗;H1

0
).

We shall prove that {um} is a Cauchy sequence in W1(T∗). Let wm = um+1 −um.

Then wm satisfies the variational problem

(2.56)






〈w′′

m(t), w〉 + 〈w′′

mx(t) + λ1w
′

mx(t) + wmx(t), wx〉+ λ〈w′

m(t), w〉
= 〈Fm+1(t)− Fm(t), w〉 + 〈Gm+1(t)−Gm(t), wx〉 ∀w ∈ H1

0 ,

wm(0) = w′

m(0) = 0.

Taking w = w′

m in (2.56), after integrating in t, we get

(2.57) Zm(t) = 2

∫ t

0

〈Fm+1(s)− Fm(s), w′

m(s)〉ds

+ 2

∫ t

0

〈Gm+1(s)−Gm(s), w′

mx(s)〉ds,

where

(2.58) Zm(t) = ‖w′

m(t)‖2 + ‖w′

mx(t)‖2 + ‖wmx(t)‖2

+ 2λ1

∫ t

0

‖w′

mx(s)‖2 ds+ 2λ

∫ t

0

‖w′

m(s)‖2 ds.

On the other hand, from (H2), (H3) we obtain by (2.5), (2.7), (2.9), and (2.43)4
that

(2.59) ‖Fm+1(s)− Fm(s)‖ 6 2FM‖wm−1‖W1(T∗),

‖Gm+1(s)−Gm(s)‖ 6 2GM‖wm−1‖W1(T∗).

Combining (2.57) and (2.59), we obtain

(2.60) Zm(t) 6 (F
2

M +G
2

M )T∗‖wm−1‖2W1(T∗)
+

∫ t

0

Zm(s) ds.

Using Gronwall’s Lemma, we deduce from (2.60) that

(2.61) ‖wm‖W1(T∗) 6 kT∗
‖wm−1‖W1(T∗) ∀m ∈ N,
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where 0 < kT∗
< 1 is defined as in (2.39). This implies

(2.62) ‖um − um+p‖W1(T∗) 6 ‖u0 − u1‖W1(T∗)(1− kT∗
)−1kmT∗

6M(1− kT∗
)−1kmT∗

∀m, p ∈ N.

It follows that {um} is a Cauchy sequence in W1(T∗). Then, there exists u ∈
W1(T∗) such that

(2.63) um → u strongly in W1(T∗).

Note that um ∈ W1(M,T∗), so there exists a subsequence {umj
} of {um} such

that

(2.64)






umj
→ u in L∞(0, T∗;H

1
0 ∩H2) weakly*,

u′mj
→ u′ in L∞(0, T∗;H

1
0 ∩H2) weakly*,

u′′mj
→ u′′ in L∞(0, T∗;H

1
0 ) weakly*,

u ∈W (M,T∗).

Putting

(2.65) F [u](x, t) = F (x, t, u(x, t),∇u(x, t), u′(x, t),∇u′(x, t)),
G[u](x, t) = G(x, t, u(x, t),∇u(x, t), u′(x, t),∇u′(x, t)),

by (2.5), (2.7), (2.9) and (2.64)4, we obtain

(2.66) ‖Fm(t)− F [u](t)‖ 6 2FM‖um−1 − u‖W1(T∗),

‖Gm(t)−G[u](t)‖ 6 2FM‖um−1 − u‖W1(T∗).

Hence, (2.63) and (2.66) yield

(2.67) Fm → F [u] strongly in L∞(0, T∗;L
2),

Gm → G[u] strongly in L∞(0, T∗;L
2).

Finally, passing to limit in (2.8), (2.9) as m = mj → ∞, it follows from (2.63),

(2.64)1,3, and (2.67) that there exists u ∈ W (M,T∗) satisfying the equation

(2.68) 〈u′′(t), w〉 + 〈u′′x(t) + λ1u
′

x(t) + ux(t), wx〉+ λ〈u′(t), w〉
= 〈f(t), w〉+ 〈F [u](t), w〉 + 〈G[u](t), wx〉 ∀w ∈ H1

0

for all w ∈ H1
0 , and the initial conditions

(2.69) u(0) = ũ0, u′(0) = ũ1.

179



On the other hand, due to the assumption (H2) we obtain from (2.64) and (2.68)

that

(2.70)
∂2

∂x2
(u′′ + λ1u

′ + u) = u′′ + λu′ − F [u] +
∂

∂x
G[u]− f ∈ L∞(0, T∗;L

2).

Hence,

(2.71) u′′ + λ1u
′ + u = Ψ ∈ L∞(0, T∗;H

1
0 ∩H2).

Similarly, from (2.71) we have

(2.72) u, u′, u′′ ∈ L∞(0, T∗;H
1
0 ∩H2).

Consequently, u ∈ W1(M,T∗) and the existence follows.

(ii) Uniqueness. Let u1, u2 be two weak solutions of problem (1.1)–(1.3) such that

(2.73) ui ∈ W1(M,T∗), i = 1, 2.

Then w = u1 − u2 verifies

(2.74)





〈w′′(t), w〉 + 〈w′′

x(t) + λ1w
′

x(t) + wx(t), wx〉+ λ〈w′(t), w〉
= 〈F [u1](t)− F [u2](t), w〉 + 〈G[u1](t)−G[u2](t), wx〉 ∀w ∈ H1

0 ,

w(0) = w′(0) = 0.

Taking v = w = u1 − u2 in (2.74)1 and integrating with respect to t, we obtain

(2.75) σ(t) = 2a

∫ t

0

〈F [u1](s)− F [u2](s), w
′(s)〉ds

+ 2b

∫ t

0

〈G[u1](s)−G[u2](s), w
′

x(s)〉ds,

where

(2.76) σ(t) = ‖w′(t)‖2 + ‖w′

x(t)‖2 + ‖wx(t)‖2

+ 2λ1

∫ t

0

‖w′

x(s)‖2 ds+ 2λ

∫ t

0

‖w′(s)‖2 ds.

On the other hand, by (H2), (H3), (2.5) with M = max
i=1,2

‖ui‖L∞(0,T∗;H2∩H1

0
), we

deduce from (2.76) that

(2.77) ‖F [u1](s)− F [u2](s)‖ 6 2FM

√
σ(s),

‖G[u1](s)−G[u2](s)‖ 6 2GM

√
σ(s).
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Combining (2.75) and (2.77), leads to

(2.78) σ(t) = 2(FM +GM )

∫ t

0

σ(s) ds.

By Gronwall’s Lemma, (2.78) gives σ ≡ 0, i.e., u1 ≡ u2. Lemma 2.4 is proved

completely and Theorem 2.2 follows. �

3. Blow up

In this section, problem (1.1)–(1.3) is considered with F (x, t, u, ux, ut, uxt) =

a|u|p−2u, G(x, t, u, ux, ut, uxt) = b|ux|p−2ux, a, b ∈ R, p > 2, as follows:

(3.1)





utt − uxx − uxxtt − λ1uxxt + λut = a|u|p−2u− b ∂
∂x(|ux|p−2ux)

+f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x).

Supose that a > 0, b > 0, p > 2 and f ≡ 0. Let u(x, t) be a weak solution of (3.1)

satisfying

(3.2) u ∈ C1([0, T∗];H
2 ∩H1

0 ), utt ∈ L∞(0, T∗;H
2 ∩H1

0 ).

We will show that the solution u(x, t) of (3.1) blows up in finite time if

(3.3) −H(0) =
1

2
‖ũ1‖2 +

1

2
‖ũ1x‖2 +

1

2
‖ũ0x‖2 −

a

p
‖ũ0‖pLp −

b

p
‖ũ0x‖pLp < 0.

Theorem 3.1. Let H(0) > 0. Then the solution u of problem (3.1) blows up in

finite time.

P r o o f. We denote by E(t) the energy associated with the solution u, defined

by

(3.4) E(t) =
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 −

a

p
‖u(t)‖pLp −

b

p
‖ux(t)‖pLp ,

and we put

(3.5) H(t) = −E(t) =
a

p
‖u(t)‖pLp+

b

p
‖ux(t)‖pLp−

1

2
‖u′(t)‖2− 1

2
‖u′x(t)‖2−

1

2
‖ux(t)‖2.
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On the other hand, by multiplying (3.1)1 by u
′(x, t) and integrating over [0, 1], we

get

(3.6) H ′(t) = λ‖u′(t)‖2 + λ1‖u′x(t)‖2 > 0 ∀ t ∈ [0, T∗).

Hence, we can deduce from (3.6) and H(0) > 0 that

(3.7) 0 < H(0) 6 H(t) =
a

p
‖u(t)‖pLp +

b

p
‖ux(t)‖pLp

− 1

2
‖u′(t)‖2 − 1

2
‖u′x(t)‖2 −

1

2
‖ux(t)‖2 ∀ t ∈ [0, T∗).

Now, we define the functional

(3.8) L(t) = H1−η(t) + εψ(t),

where

(3.9) ψ(t) = 〈u(t), u′(t)〉 + 〈ux(t), u′x(t)〉+
λ

2
‖u(t)‖2 + λ1

2
‖ux(t)‖2,

for ε small enough and

(3.10) 0 < η 6
p− 2

2p
<

1

2
.

Lemma 3.2. There exists a constant d1 > 0 such that

(3.11) L′(t) > d1(H(t) + ‖u′(t)‖2 + ‖u′x(t)‖2 + ‖ux(t)‖2 + ‖u(t)‖pLp + ‖ux(t)‖pLp).

P r o o f of Lemma 3.2. By multiplying (3.1)1 by u(x, t) and integrating over

[0, 1], we get

(3.12) ψ′(t) = ‖u′(t)‖2 + ‖u′x(t)‖2 − ‖ux(t)‖2 + a‖u(t)‖pLp + b‖ux(t)‖pLp .

By taking a derivative of (3.8) and using (3.12), we obtain

(3.13) L′(t) = (1− η)H−η(t)H ′(t)

+ ε[‖u′(t)‖2 + ‖u′x(t)‖2 − ‖ux(t)‖2 + a‖u(t)‖pLp + b‖ux(t)‖pLp ].
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Since (3.7), (3.13) and due to the inequalities

(3.14)






(1 − η)H−η(t)H ′(t) > 0,

1

2
‖ux(t)‖2 <

a

p
‖u(t)‖pLp +

b

p
‖ux(t)‖pLp ,

H(t) 6
a

p
‖u(t)‖pLp +

b

p
‖ux(t)‖pLp ,

1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 <

a

p
‖u(t)‖pLp +

b

p
‖ux(t)‖pLp ,

we deduce that

(3.15) L′(t) > ε[‖u′(t)‖2 + ‖u′x(t)‖2 − ‖ux(t)‖2 + a‖u(t)‖pLp + b‖ux(t)‖pLp ]

> ε
[
‖u′(t)‖2 + ‖u′x(t)‖2 −

2

p
(a‖u(t)‖pLp + b‖ux(t)‖pLp)

+ a‖u(t)‖pLp + b‖ux(t)‖pLp

]

= ε‖u′(t)‖2 + ε‖u′x(t)‖2 + ε
(
1− 2

p

)
(a‖u(t)‖pLp + b‖ux(t)‖pLp).

On the other hand, it follows from (3.14)2,3 and the inequalities

(3.16) a‖u(t)‖pLp + b‖ux(t)‖pLp > pH(t), a‖u(t)‖pLp + b‖ux(t)‖pLp >
p

2
‖ux(t)‖2

that

(3.17) L′(t) > ε‖u′(t)‖2 + ε‖u′x(t)‖2 + ε
(
1− 2

p

)
(a‖u(t)‖pLp + b‖ux(t)‖pLp)

> ε‖u′(t)‖2 + ε‖u′x(t)‖2 +
ε

3

(
1− 2

p

)
(a‖u(t)‖pLp + b‖ux(t)‖pLp)

+
ε

3

(
1− 2

p

)
pH(t) +

ε

3

(
1− 2

p

)p
2
‖ux(t)‖2

> d1(H(t) + ‖u′(t)‖2 + ‖u′x(t)‖2 + ‖ux(t)‖2 + ‖u(t)‖pLp + ‖ux(t)‖pLp),

where d1 = min{ε, 13ε(1 − 2/p)} is a positive constant. Lemma 3.2 is proved com-
pletely. �

R em a r k 3.1. By virtue of the formula of L(t) and Lemma 3.2, we can choose ε

small enough such that

(3.18) L(t) > L(0) > 0 ∀ t ∈ [0, T∗).

Now we continue to prove Theorem 3.1.
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Using the inequality

(3.19)

( 5∑

i=1

xi

)r
6 5r−1

5∑

i=1

xri ∀ r > 1, and x1, . . . , x5 > 0,

we deduce from (3.8) and (3.9) that

(3.20) L1/(1−η)(t) 6 Const(H(t) + |〈u(t), u′(t)〉|1/(1−η) + |〈ux(t), u′x(t)〉|1/(1−η)

+ ‖u(t)‖2/(1−η) + ‖ux(t)‖2/(1−η))

6 Const
(
H(t) + ‖u(t)‖1/(1−η)‖u′(t)‖1/(1−η)

+ ‖ux(t)‖1/(1−η)‖u′x(t)‖1/(1−η)

+ ‖u(t)‖2/(1−η) + ‖ux(t)‖2/(1−η)
)
.

On the other hand, using Young’s inequality yields

(3.21) ‖u(t)‖1/(1−η)‖u′(t)‖1/(1−η) 6
1− 2η

2(1− η)
‖u(t)‖s + 1

2(1− η)
‖u′(t)‖2

6 Const(‖u(t)‖s + ‖u′(t)‖2)
6 Const(‖ux(t)‖s + ‖u′(t)‖2),

where s = 2/(1− 2η) 6 p by (3.10).

Similarly

(3.22) ‖ux(t)‖1/(1−η)‖u′x(t)‖1/(1−η) 6
1− 2η

2(1− η)
‖ux(t)‖s +

1

2(1− η)
‖u′x(t)‖2

6 Const(‖ux(t)‖s + ‖u′x(t)‖2).

It follows from (3.20)–(3.22) that

(3.23) L1/(1−η)(t) 6 Const[H(t) + ‖u′(t)‖2 + ‖u′x(t)‖2

+ ‖u(t)‖2/(1−η) + ‖ux(t)‖2/(1−η) + ‖ux(t)‖s].

Now, we need the following lemma.

Lemma 3.3. Let 2 6 r1 6 p, 2 6 r2 6 p. Then we have

(3.24) ‖v‖r1 + ‖vx‖r1 + ‖vx‖r2 6 3(‖vx‖2 + ‖v‖pLp + ‖vx‖pLp)

for any v ∈ H1
0 .

P r o o f of Lemma 3.3. (i) We consider two cases for ‖v‖:
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(i.1) Case 1 : ‖v‖ 6 1: By 2 6 r1 6 p, we get

(3.25) ‖v‖r1 6 ‖v‖2 6 ‖vx‖2 6 ‖vx‖2 + ‖v‖pLp + ‖vx‖pLp ≡ ̺[v].

(i.2) Case 2 : ‖v‖ > 1: By 2 6 r1 6 p, we find that

(3.26) ‖v‖r1 6 ‖v‖p 6 ‖v‖pLp 6 ̺[v].

Therefore,

(3.27) ‖v‖r1 6 ̺[v] for any v ∈ H1
0 .

(ii) We consider two cases for ‖vx‖:
(ii.1) Case 1 : ‖vx‖ 6 1: By 2 6 r1 6 p, we have

(3.28) ‖vx‖r1 6 ‖vx‖2 6 ̺[v].

(ii.2) Case 2 : ‖vx‖ > 1: By 2 6 r1 6 p, we have

(3.29) ‖vx‖r1 6 ‖vx‖p 6 ̺[v].

Therefore,

(3.30) ‖vx‖r1 6 ̺[v] for any v ∈ H1
0 .

(iii) Similarly

(3.31) ‖vx‖r2 6 ̺[v] for any v ∈ H1
0 .

Combining (3.27), (3.30), and (3.31), we get

(3.32) ‖v‖r1 + ‖vx‖r1 + ‖vx‖r2 6 3̺[v] 6 3(‖vx‖2 + ‖v‖pLp + ‖vx‖pLp) ∀ v ∈ H1
0 .

Lemma 3.3 is proved completely. �

By (3.23) and using Lemma 3.2 with r1 = 2/(1− η), r2 = s, we get

(3.33) L1/(1−η)(t) 6 Const(H(t) + ‖u′(t)‖2 + ‖u′x(t)‖2 + ‖ux(t)‖2

+ ‖u(t)‖pLp + ‖ux(t)‖pLp) ∀ t ∈ [0, T∗).

It follows from (3.11) and (3.33) that

(3.34) L′(t) > d2L
1/(1−η)(t) ∀ t ∈ [0, T∗),
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where d2 is a positive constant. By integrating (3.34) over (0, t), we deduce that

(3.35) Lη/(1−η)(t) >
1

L−η/(1−η)(0)− d2ηt/(1− η)
, 0 6 t <

1− η

d2η
L−η/(1−η)(0).

Therefore, (3.35) shows that L(t) blows up in a finite time given by

(3.36) T∗ =
1− η

d2η
L−η/(1−η)(0).

Theorem 3.1 is proved completely. �

4. Exponential decay

Consider problem (3.1) corresponding to a > 0 and b = −b1 < 0.

We prove that if ‖ũ0x‖2−a‖ũ0‖pLp > 0 and if the initial energy and the function f

are small enough, then the energy of the solution decays exponentially as t → ∞.
For this purpose, we make the following assumption:

(H̃1) f ∈ L2((0, 1)× R+), ‖f(t)‖ 6 Ce−γ0t, γ0 > 0.

First, we construct the Lyapunov functional

(4.1) L(t) = E1(t) + δψ(t),

where δ > 0 will be chosen later and

ψ(t) = 〈u(t), u′(t)〉+ 〈ux(t), u′x(t)〉+
λ

2
‖u(t)‖2 + λ1

2
‖ux(t)‖2,(4.2)

E1(t) =
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 +

b1
p
‖ux(t)‖pLp −

a

p
‖u(t)‖pLp(4.3)

=
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 + J(t),

J(t) =
1

2
‖ux(t)‖2 +

b1
p
‖ux(t)‖pLp −

a

p
‖u(t)‖pLp(4.4)

=
(1
2
− 1

p

)
‖ux(t)‖2 +

b1
p
‖ux(t)‖pLp +

1

p
I(t),

I(t) = I(u(t)) = ‖ux(t)‖2 − a‖u(t)‖pLp .(4.5)

Then we have the following theorem.
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Theorem 4.1. Assume that (H̃1) holds. Let I(0) > 0 and let the initial energy

E1(0) satisfy

(4.6) η∗ = a

[
2p

p− 2

(
E1(0) +

1

2λ

∫
∞

0

‖f(s)‖2 ds
)](p−2)/2

< 1.

Then there exist positive constants C, γ such that,

(4.7) E1(t) 6 C exp(−γt) ∀ t > 0,

where

(4.8) E1(t) = ‖u′(t)‖2 + ‖u′x(t)‖2 + ‖ux(t)‖2 + ‖ux(t)‖pLp + I(t).

P r o o f. First, we need the following lemmas.

Lemma 4.2. The energy functional E1(t) satisfies

(4.9) E′

1(t) 6 −λ
2
‖u′(t)‖2 − λ1‖u′x(t)‖2 +

1

2λ
‖f(t)‖2.

P r o o f of Lemma 4.2. Multiplying (3.1)1 by u
′(x, t) and integrating over [0, 1],

we get

(4.10) E′

1(t) = −λ‖u′(t)‖2 − λ1‖u′x(t)‖2 + 〈f(t), u′(t)〉.

On the other hand,

(4.11) 〈f(t), u′(t)〉 6 λ

2
‖u′(t)‖2 + 1

2λ
‖f(t)‖2.

Combining (4.10) and (4.11), it is easy to see (4.9) holds.

Lemma 4.2 is proved completely. �
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Lemma 4.3. Suppose that (H̃1) hold. If I(0) > 0 and

(4.12) η∗ = a

[
2p

p− 2

(
E1(0) +

1

2λ

∫
∞

0

‖f(s)‖2 ds
)](p−2)/2

< 1,

then I(t) > 0 for all t > 0.

P r o o f of Lemma 4.3. By the continuity of I(t) and I(0) > 0, there exists T1 > 0

such that

(4.13) I(u(t)) > 0 ∀ t ∈ [0, T1],

which implies

(4.14) E1(t) =
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 + J(t) > J(t) =

(1
2
− 1

p

)
‖ux(t)‖2

+
b1
p
‖ux(t)‖pLp +

1

p
I(t) >

(1
2
− 1

p

)
‖ux(t)‖2.

It follows from (4.14) that

(4.15) ‖ux(t)‖2 6
2p

p− 2
J(t) 6

2p

p− 2
E1(t)

6
2p

p− 2

(
E1(0) +

1

2λ

∫
∞

0

‖f(s)‖2 ds
)

∀ t ∈ [0, T1].

Hence, (4.12) and (4.15) lead to

(4.16) a‖u(t)‖pLp 6 a‖ux(t)‖p = a‖ux(t)‖p−2‖ux(t)‖2

6 a

[
2p

p− 2

(
E1(0) +

1

2λ

∫
∞

0

‖f(s)‖2 ds
)](p−2)/2

‖ux(t)‖2

≡ η∗‖ux(t)‖2 ∀ t ∈ [0, T1].

Therefore, I(t) > (1− η∗)‖ux(t)‖2 > 0 for all t ∈ [0, T1].

Now, we put T∞ = sup{T > 0: I(u(t)) > 0 for all t ∈ [0, T )}. If T∞ <∞ then, by
the continuity of I(t), we have I(T∞) > 0. By the same arguments as in the above

part, we can deduce that there exists T ′

∞
> T∞ such that I(t) > 0, for all t ∈ [0, T ′

∞
].

Hence, we conclude that I(t) > 0 for all t > 0.

Lemma 4.3 is proved completely. �
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Lemma 4.4. Let I(0) > 0 and (4.12) hold. Put

(4.17) E1(t) = ‖u′(t)‖2 + ‖u′x(t)‖2 + ‖ux(t)‖2 + ‖ux(t)‖pLp + I(t).

Then there exist positive constants β1, β2 such that

(4.18) β1E1(t) 6 L(t) 6 β2E1(t) ∀ t > 0,

for δ is small enough.

P r o o f of Lemma 4.4. It is easy to see that

(4.19)

L(t) 6
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

(1
2
− 1

p

)
‖ux(t)‖2 +

b1
p
‖ux(t)‖pLp +

1

p
I(t)

+
δ

2
‖u(t)‖2 + δ

2
‖u′(t)‖2 + δ

2
‖ux(t)‖2 +

δ

2
‖u′x(t)‖2 +

λ

2
‖u(t)‖2 + λ1

2
‖ux(t)‖2

6
1 + δ

2
‖u′(t)‖2 + 1 + δ

2
‖u′x(t)‖2 +

(1
2
− 1

p
+ δ +

λ+ λ1
2

)
‖ux(t)‖2

+
b1
p
‖ux(t)‖pLp +

1

p
I(t) 6 β2E1(t),

where β2 = max{(1 + δ)/2, 1/2− 1/p+ δ + (λ+ λ1)/2, b1/p, 1/p}.
Similarly, we can prove that

(4.20) L(t) >
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

(1
2
− 1

p

)
‖ux(t)‖2 +

b1
p
‖ux(t)‖pLp +

1

p
I(t)

− δ

2
‖u(t)‖2 − δ

2
‖u′(t)‖2 − δ

2
‖ux(t)‖2 −

δ

2
‖u′x(t)‖2

>
1− δ

2
‖u′(t)‖2 + 1− δ

2
‖u′x(t)‖2 +

(1
2
− 1

p
− δ

)
‖ux(t)‖2

+
b1
p
‖ux(t)‖pLp +

1

p
I(t) > β1E1(t),

where β1 = min{(1− δ)/2; 1/2− 1/p− δ; b1/p; 1/p} > 0, with 0 < δ < 1/2− 1/p.

Lemma 4.4 is proved completely. �

Lemma 4.5. Let I(0) > 0 and (4.12) hold. The functional ψ(t) defined by (4.2)

satisfies

(4.21) ψ′(t) 6 ‖u′(t)‖2 + ‖u′x(t)‖2 −
[1− η∗

2
+ b1 −

ε1
2

]
‖ux(t)‖2

− b1‖ux(t)‖pLp −
1

2
I(t) +

1

2ε1
‖f(t)‖2

for all ε1 > 0.
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P r o o f of Lemma 4.5. By multiplying (3.1)1 by u(x, t) and integrating over

[0, 1], we obtain

(4.22) ψ′(t) = ‖u′(t)‖2 + ‖u′x(t)‖2 − ‖ux(t)‖2 + a‖u(t)‖pLp

− b1‖ux(t)‖pLp + 〈f(t), u(t)〉
= ‖u′(t)‖2 + ‖u′x(t)‖2 − I(t)− b1‖ux(t)‖pLp + 〈f(t), u(t)〉.

On the other hand,

(4.23) 〈f(t), u(t)〉 6 ε1
2
‖ux(t)‖2 +

1

2ε1
‖f(t)‖2, I(t) > (1 − η∗)‖ux(t)‖2.

Hence, Lemma 4.5 is proved by using some simple estimates. �

Now we continue to prove Theorem 4.1.

It follows from (4.1), (4.2), (4.9), and (4.21) that

(4.24) L′(t) 6 − λ

2
‖u′(t)‖2 − λ1‖u′x(t)‖2 +

1

2λ
‖f(t)‖2

+ δ‖u′(t)‖2 + δ‖u′x(t)‖2 − δ
[1− η∗

2
+ b1 −

ε1
2

]
‖ux(t)‖2

− δb1‖ux(t)‖pLp −
δ

2
I(t) +

δ

2ε1
‖f(t)‖2

= −
(λ
2
− δ

)
‖u′(t)‖2 − (λ1 − δ)‖u′x(t)‖2

− δ
[1− η∗

2
+ b1 −

ε1
2

]
‖ux(t)‖2

− δb1‖ux(t)‖pLp −
δ

2
I(t) +

1

2

( 1

λ
+

δ

ε1

)
‖f(t)‖2

for all δ, ε1 > 0, with 0 < δ < 1/2− 1/p.

Let

(4.25) 0 < ε1 < 1− η∗ + 2b1.

Then for δ small enough, with 0 < δ < min{λ/2, λ1, 1/2− 1/p}, we deduce from
(4.18) and (4.24) that there exists a constant γ > 0 such that

(4.26) L′(t) 6 −γ(t) + Ce−2γ0t ∀ t > 0.

Combining (4.18) and (4.26), we get (4.7). Theorem 4.1 is proved completely. �
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5. A remark

Consider problem (3.1) corresponding to a = −a1 < 0 and b = −b1 < 0:

(5.1)





utt − uxx − uxxtt − λ1uxxt + λut + a1|u|p−2u− b1
∂

∂x
(|ux|p−2ux)

= f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x).

With suitable conditions on f, we remark that problem (5.1) has a unique global

solution u(t) with energy decaying exponentially as t→ ∞, without the initial data

(ũ0, ũ1) being small enough.

Theorem 5.1. Suppose that f ∈ H1(QT ). Then problem (5.1) has a unique

solution

(5.2) u ∈ C1([0, T∗];H
1
0 ∩H2), utt ∈ L∞(0, T∗;H

1
0 ∩H2),

for T∗ > 0 small enough.

This is a special case of Theorem 2.2.

Theorem 5.2. Assume that (H̃1) holds. Then there exist positive constants C,

γ such that

(5.3) ‖u′(t)‖2+ ‖u′x(t)‖2+ ‖ux(t)‖2+ ‖u(t)‖pLp + ‖ux(t)‖pLp 6 C exp(−γt) ∀ t > 0.

P r o o f. First, we construct the Lyapunov functional

(5.4) L1(t) = Ẽ1(t) + δψ(t),

where δ > 0 will be chosen later and

Ẽ1(t) =
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 +

a1
p
‖u(t)‖pLp +

b1
p
‖ux(t)‖pLp ,(5.5)

ψ(t) = 〈u′(t), u(t)〉+ 〈u′x(t), ux(t)〉+
λ

2
‖u(t)‖2 + λ1

2
‖ux(t)‖2.(5.6)

Next, we need the following lemmas.
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Lemma 5.3. The energy functional Ẽ1(t) satisfies

(5.7) Ẽ′

1(t) 6 −λ
2
‖u′(t)‖2 − λ1‖u′x(t)‖2 +

1

2λ
‖f(t)‖2.

P r o o f of Lemma 5.3. Multiplying (5.1)1 by u
′(x, t) and integrating over [0, 1],

we get

(5.8) Ẽ′

1(t) = −λ‖u′(t)‖2 − λ1‖u′x(t)‖2 + 〈f(t), u′(t)〉.

We have

(5.9) 〈f(t), u′(t)〉 6 λ

2
‖u′(t)‖2 + 1

2λ
‖f(t)‖2.

Combining (5.8) and (5.9) gives (5.7). Lemma 5.3 is proved completely. �

By (5.7), we obtain

(5.10) Ẽ′

1(t) 6 −λ
2
‖u′(t)‖2 − λ1‖u′x(t)‖2 +

1

2λ
‖f(t)‖2 6

1

2λ
‖f(t)‖2.

Integrating with respect to t, we get

(5.11) Ẽ1(t) 6 Ẽ1(0) +
1

2λ

∫
∞

0

‖f(t)‖2 dt = E∗ ∀ t > 0.

Putting

(5.12) Ẽ∗(t) = ‖u′(t)‖2 + ‖u′x(t)‖2 + ‖ux(t)‖2 + ‖u(t)‖pLp + ‖ux(t)‖pLp ,

we have the following lemma.

Lemma 5.4. There exist positive constants β1 and β2 such that

(5.13) β1Ẽ∗(t) 6 L1(t) 6 β2Ẽ∗(t) ∀ t > 0,

for δ small enough.

P r o o f of Lemma 5.4. It is clear that

(5.14) L1(t) =
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 +

a1
p
‖u(t)‖pLp +

b1
p
‖ux(t)‖pLp

+ δ〈u′(t), u(t)〉+ δ〈u′x(t), ux(t)〉 +
δλ

2
‖u(t)‖2 + δλ1

2
‖ux(t)‖2.
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From the inequalities

(5.15)





δ〈u′(t), u(t)〉 6 δ‖u′(t)‖‖ux(t)‖ 6
1

2
δ‖u′(t)‖2 + 1

2
δ‖ux(t)‖2,

δ〈u′x(t), ux(t)〉 6 δ‖u′x(t)‖‖ux(t)‖ 6
1

2
δ‖u′x(t)‖2 +

1

2
δ‖ux(t)‖2,

δλ

2
‖u(t)‖2 6

δλ

2
‖ux(t)‖2,

we deduce that

(5.16) L1(t) >
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 +

a1
p
‖u(t)‖pLp +

b1
p
‖ux(t)‖pLp

+ δ〈u′(t), u(t)〉+ δ〈u′x(t), ux(t)〉

>
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 +

a1
p
‖u(t)‖pLp +

b1
p
‖ux(t)‖pLp

− 1

2
δ‖u′(t)‖2 − 1

2
δ‖ux(t)‖2 −

1

2
δ‖u′x(t)‖2 −

1

2
δ‖ux(t)‖2

=
1− δ

2
‖u′(t)‖2 + 1− δ

2
‖u′x(t)‖2 +

a1
p
‖u(t)‖pLp

+
(1− 2δ

2
+
b1
p

)
‖ux(t)‖pLp

> β1Ẽ∗(t),

where we choose β1 = min{(1− 2δ)/2, a1/p}, δ small enough, 0 < δ < 1
2 .

Similarly, we can prove that

(5.17) L1(t) 6
1

2
‖u′(t)‖2 + 1

2
‖u′x(t)‖2 +

1

2
‖ux(t)‖2 +

a1
p
‖u(t)‖pLp +

b1
p
‖ux(t)‖pLp

+
1

2
δ‖u′(t)‖2 + 1

2
δ‖ux(t)‖2 +

1

2
δ‖u′x(t)‖2 +

1

2
δ‖ux(t)‖2

+
δλ

2
‖ux(t)‖2 +

δλ1
2

‖ux(t)‖2

=
1 + δ

2
‖u′(t)‖2 + 1 + δ

2
‖u′x(t)‖2 +

1

2
[1 + δ(2 + λ+ λ1)]‖ux(t)‖2

+
a1
p
‖u(t)‖pLp +

b1
p
‖ux(t)‖pLp

6
1 + δ(2 + λ+ λ1)

2
Ẽ∗(t) = β2Ẽ∗(t),

where β2 = max{(1 + δ(2 + λ+ λ1))/2, a1/p, b1/p}.
Lemma 5.4 is proved completely. �
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Lemma 5.5. The functional ψ(t) defined by (5.6) satisfies

(5.18) ψ′(t) 6 ‖u′(t)‖2+‖u′x(t)‖2−
1

2
‖ux(t)‖2−a1‖u(t)‖pLp−b1‖ux(t)‖pLp+

1

2
‖f(t)‖2.

P r o o f of Lemma 5.5. Multiplying (5.1)1 by u(x, t) and integrating over [0, 1],

we obtain

(5.19) ψ′(t) = ‖u′(t)‖2+‖u′x(t)‖2−‖ux(t)‖2−a1‖u(t)‖pLp−b1‖ux(t)‖pLp+〈f(t), u(t)〉.

Note that

(5.20) 〈f(t), u(t)〉 6 ‖f(t)‖‖ux(t)‖ 6
1

2
‖ux(t)‖2 +

1

2
‖f(t)‖2.

Combining (5.19) and (5.20) leads to (5.18). Lemma 5.5 is proved completely. �

Now we continue to prove Theorem 5.2.

It follows from (5.4), (5.7), and (5.18) that

(5.21) L′

1(t) 6 − λ

2
‖u′(t)‖2 − λ1‖u′x(t)‖2 +

1

2λ
‖f(t)‖2

+ δ‖u′(t)‖2 + δ‖u′x(t)‖2 −
δ

2
‖ux(t)‖2

− δa1‖u(t)‖pLp − δb1‖ux(t)‖pLp +
δ

2
‖f(t)‖2

= −
(λ
2
− δ

)
‖u′(t)‖2 − (λ1 − δ)‖u′x(t)‖2

− δ

2
‖ux(t)‖2 − δa1‖u(t)‖pLp − δb1‖ux(t)‖pLp +

1

2

( 1

λ
+ δ

)
‖f(t)‖2

6 −
(λ
2
− δ

)
‖u′(t)‖2 − (λ1 − δ)‖u′x(t)‖2

− δ

2
‖ux(t)‖2 − δa1‖u(t)‖pLp − δb1‖ux(t)‖pLp + C1e

−2γ0t.

Choosing 0 < δ < min{1/2, λ/2, λ1}, we deduce from (5.21) that

(5.22) L′

1(t) 6 − β∗[‖u′(t)‖2 + ‖u′x(t)‖2 + ‖ux(t)‖2 + ‖u(t)‖pLp + ‖ux(t)‖pLp ]

+ C1e
−2γ0t

= − β∗Ẽ∗(t) + C1e
−2γ0t

6 − β∗

β2

L1(t) + C1e
−2γ0t 6 −γL1(t) + C1e

−2γ0t,

where β∗ = min{λ/2− δ, λ1 − δ, δ/2, δa1, δb1}, 0 < γ < min{β∗/β2, 2γ0}.
Combining (5.12), (5.13), and (5.22), we get (5.3). Theorem 5.2 is proved com-

pletely. �
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