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Abstract. In this paper we establish Kannan-type cyclic contraction results in proba-
bilistic 2-metric spaces. We use two different types of t-norm in our theorems. In our first
theorem we use a Hadzic-type t-norm. We use the minimum t-norm in our second theorem.
We prove our second theorem by different arguments than the first theorem. A control
function is used in our second theorem. These results generalize some existing results in
probabilistic 2-metric spaces. Our results are illustrated with an example.
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1. Introduction

Banach [1] proved the well-known Banach contraction mapping principle in metric

spaces in 1922. This contraction mapping principle is one of the pivotal results of

mathematical analysis. Its importance lies in its vast applications in a number of

branches of modern mathematics.

The concept of metric space has been extended in various ways. One such exten-

sion has been made by Gähler [14], in which a positive real number is assigned to

every three elements of the space. Several results of metric fixed point theory have

been extended to these spaces. Some of the fixed point results in 2-metric spaces are

[23], [28], [30].

In 1972, Sehgal and Bharucha-Reid [35] generalized the Banach contraction map-

ping principle to probabilistic metric spaces. Probabilistic metric spaces are proba-

bilistic generalization of metric spaces. In these spaces, instead of a non-negative real
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number, every pair of elements is assigned to a distribution function. The inherent

flexibility of these spaces allows us to extend the contraction mapping principle in

several inequivalent ways. Menger space is a particular type of probabilistic metric

space in which the triangular inequality is postulated with the help of a t-norm. The

theory of Menger spaces is an important part of stochastic analysis. Schweizer and

Sklar have given a comprehensive account of several aspects of such spaces in [34].

Probabilistic 2-metric space is the probabilistic generalization of 2-metric space.

Zeng [41] first introduced the concept of probabilistic 2-metric space. References [8],

[15], [16] present some fixed point results in probabilistic 2-metric spaces.

In 1984, Khan, Swaleh and Sessa [24] introduced the concept of “altering distance

function”, which is a control function that alters the distance between two points in

a metric space. This concept was further generalized in a number of works. There

are several works in metric fixed point theory involving altering distance function,

some of these are noted in [32], [33].

Recently, Choudhury and Das have extended the concept of altering distance func-

tion to the context of Menger spaces in [5]. They have introduced the Φ-function.

With the help of Φ-function Choudhury and Das [5] introduced a new type of con-

traction mapping in Menger spaces which is known as ϕ-contraction. The idea of

this control function has opened new possibilities of proving more fixed point results

in Menger spaces. This concept also applies to coincidence point problems. Some

recent results using Φ-function are noted in [3], [9], [10], [12] and [29].

Recently, cyclic contraction and cyclic contractive-type mappings appeared in lit-

erature. Kirk, Srinivasan and Veeramani [27] initiated this line of research in metric

spaces. Choudhury, Das and Bhandari introduced the concept of cyclic contrac-

tion and cyclic contractive-type mappings in both probabilistic metric spaces and

probabilistic 2-metric spaces in [7], [9] and [10].

The problems of cyclic contractions are strongly associated with proximity point

problems. Some other results dealing with cyclic contractions and proximity point

problems may be found in [22], [39] and [40].

In this paper we define another contraction, namely, a Kannan-type cyclic con-

traction in 2-Menger spaces, and show that in a 2-Menger space with Hadzic-type

t-norm, minimum t-norm, this contraction has a unique fixed point.

Kannan-type mappings are a class of contractive mappings which are different from

the Banach contraction. A difference between Banach contraction mappings and

Kannan-type mappings is that Banach contraction mappings are always continuous

but Kannan-type mappings are not necessarily continuous. After the appearance of

Kannan’s papers [20], [21], many authors created contractive conditions not requiring

the continuity of the mappings and established fixed point results of such mappings.

Now this line of research has a vast literature. Another reason for the importance
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of Kannan-type mappings is that it characterizes metric completeness, which the

Banach contraction does not. It has been shown in [37], [38] that the necessary

existence of fixed points for Kannan-type mappings implies that the corresponding

metric space is complete. The same is not true for Banach contractions. There is

an example in [11] of an incomplete metric space where every contraction has a fixed

point. Kannan-type mappings, their generalizations and extensions in various spaces

have been considered in a large number of works, some of which can be found in [4],

[18], [19], [25], [26], [31] and [37]. There are also similarities between Banach and

Kannan-type contractions. One is referred to [25] and [26] for similarity between

contractions and Kannan-type mappings.

2. Definitions and mathematical preliminaries

In this section we discuss some important definitions and mathematical prelimi-

naries which we use in our main results.

Definition 2.1 (Kannan-type mapping [20], [21]). Let (X, d) be a metric space

and f be a self-mapping on X . The mapping f is called a Kannan-type mapping if

there exists 0 6 α < 1/2 such that

(2.1) d(fx, fy) 6 α[d(x, fx) + d(y, fy)] for all x, y ∈ X.

Kannan proved the following theorem in 1968.

Theorem 2.1 ([20], [21]). Let f be a mapping satisfying (2.1). Then f has

a unique fixed point in X .

Definition 2.2 (2-metric space [13], [14]). Let X be a nonempty set. A real-

valued function d on X ×X ×X is said to be a 2-metric on X if

(i) given distinct elements x, y ∈ X , there exists an element z ∈ X such that

d(x, y, z) 6= 0,

(ii) d(x, y, z) = 0 when at least two of x, y, z are equal,

(iii) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X and

(iv) d(x, y, z) 6 d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z, w ∈ X .

When d is a 2-metric on X , the ordered pair (X, d) is called a 2-metric space.

Definition 2.3 (Probabilistic metric space [17], [34]). A probabilistic metric

space (PM-space) is an ordered pair (X,F ), where X is a nonempty set and F is

a mapping from X ×X into the set of all distribution functions. The function Fx,y

is assumed to satisfy the following conditions for all x, y, z ∈ X ,
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(i) Fx,y(0) = 0,

(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,

(iii) Fx,y(t) = Fy,x(t) for all t > 0,

(iv) if Fx,y(t1) = 1 and Fy,z(t2) = 1 then Fx,z(t1 + t2) = 1 for all t1, t2 > 0,

where Fx,y are distribution functions, that is, each Fx,y, x, y ∈ X is non-decreasing

and left continuous with inf
t∈R

Fx,y(t) = 0 and sup
t∈R

Fx,y(t) = 1, where R is the set of

real numbers and R
+ is the set of non-negative real numbers.

Shi, Ren and Wang [36] give the following definition of n-th order t-norm.

Definition 2.4 (n-th order t-norm [36]). A mapping T :
n
∏

i=1

[0, 1] → [0, 1] is

called a n-th order t-norm if the following conditions are satisfied:

(i) T (0, 0, . . . , 0) = 0, T (a, 1, 1, . . . , 1) = a for all a ∈ [0, 1],

(ii) T (a1, a2,, a3, . . . , an) = T (a2, a1, a3, . . . , an) = T (a2, a3, a1, . . . , an)

= . . . = T (a2, a3, a4, . . . , an, a1),

(iii) ai > bi, i = 1, 2, 3, . . . , n implies T (a1, a2, a3, . . . , an) > T (b1, b2, b3, . . . , bn),

(iv) T (T (a1, a2, a3, . . . , an), b2, b3, . . . , bn) = T (a1, T (a2, a3, . . . , an, b2), b3, . . . , bn)

= T (a1, a2, T (a3, a4, . . . , an, b2, b3), b4, . . . , bn)

= . . . = T (a1, a2, . . . , an−1, T (an, b2, b3, . . . , bn)).

When n = 2, we have a binary t-norm, which is commonly known as t-norm.

Definition 2.5 (Hadzic-type t-norm [17]). A t-norm ∆ is said to be Hadzic-type

t-norm if the family {∆p}p∈N of its iterates, defined for each s ∈ (0, 1) as

∆0(s) = 1, ∆p+1(s) = ∆(∆p(s), s) for all integers p > 0,

is equi-continuous at s = 1, that is, given λ > 0 there exist η(λ) ∈ (0, 1) such that

1 > s > η(λ) ⇒ ∆p(s) > 1− λ for all integers p > 0.

Definition 2.6 (Menger space [17], [34]). A Menger space is a triplet (X,F,∆),

where X is a nonempty set, F is a function from X ×X to the set of all distribution

functions and ∆ is a second order t-norm, such that the following conditions are

satisfied:

(i) Fx,y(0) = 0 for all x, y ∈ X ,

(ii) Fx,y(s) = 1 for all s > 0 if and only if x = y,

(iii) Fx,y(s) = Fy,x(s) for all x, y ∈ X, s > 0 and

(iv) Fx,y(u + v) > ∆(Fx,z(u), Fz,y(v)) for all u, v > 0 and x, y, z ∈ X .
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Definition 2.7 (Probabilistic 2-metric space [41]). A probabilistic 2-metric

space is an ordered pair (X,F ) where X is an arbitrary set and F is a mapping

from X × X × X into the set of all distribution functions such that the following

conditions are satisfied:

(i) Fx,y,z(t) = 0 for t 6 0 and for all x, y, z ∈ X ,

(ii) Fx,y,z(t) = 1 for all t > 0 if and only if at least two of x, y, z are equal,

(iii) for distinct points x, y ∈ X there exists a point z ∈ X such that Fx,y,z(t) 6= 1

for t > 0,

(iv) Fx,y,z(t) = Fx,z,y(t) = Fz,y,x(t) for all x, y, z ∈ X and t > 0,

(v) Fx,y,w(t1) = 1, Fx,w,z(t2) = 1 and Fw,y,z(t3) = 1 then Fx,y,z(t1 + t2 + t3) = 1

for all x, y, z, w ∈ X and t1, t2, t3 > 0.

A special case of the above definition is the following.

Definition 2.8 (2-Menger space [2]). Let X be a nonempty set. A triplet

(X,F,∆) is said to be a 2-Menger space if F is a mapping from X ×X ×X into the

set of all distribution functions satisfying the following conditions:

(i) Fx,y,z(0) = 0,

(ii) Fx,y,z(t) = 1 for all t > 0 if and only if at least two of x, y, z ∈ X are equal,

(iii) for distinct points x, y ∈ X there exists a point z ∈ X such that Fx,y,z(t) 6= 1

for t > 0,

(iv) Fx,y,z(t) = Fx,z,y(t) = Fz,y,x(t) for all x, y, z ∈ X and t > 0,

(v) Fx,y,z(t) > ∆(Fx,y,w(t1), Fx,w,z(t2), Fw,y,z(t3)), where t1, t2, t3 > 0, t1+t2+t3 =

t, x, y, z, w ∈ X and ∆ is a third order t-norm.

Definition 2.9 ([16]). A sequence {xn} in a 2-Menger space (X,F,∆) is said to

be convergent to a limit x if given ε > 0, 0 < λ < 1 there exists a positive integer

Nε,λ such that

(2.2) Fxn,x,a(ε) > 1− λ

for all n > Nε,λ and for every a ∈ X.

Definition 2.10 ([16]). A sequence {xn} in a 2-Menger space (X,F,∆) is said

to be a Cauchy sequence in X if given ε > 0, 0 < λ < 1 there exists a positive integer

Nε,λ such that

(2.3) Fxn,xm,a(ε) > 1− λ

for all m,n > Nε,λ and for every a ∈ X.
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Definitions 2.9 and 2.10 can be equivalently written by replacing “>” with “>”

in (2.2) and (2.3), respectively. More often than not, they are written in that way.

We have given them in the present form for our convenience in the proofs of our

theorems.

Definition 2.11 ([16]). A 2-Menger space (X,F,∆) is said to be complete if

every Cauchy sequence is convergent in X .

Recently, Choudhury and Das introduced the following important function.

Definition 2.12 (Φ-function [5]). A function ϕ : R → R
+ is said to be a Φ-

function if it satisfies the following conditions:

(i) ϕ(t) = 0 if and only if t = 0,

(ii) ϕ(t) is strictly monotone increasing and ϕ(t) → ∞ as t→ ∞,
(iii) ϕ is left continuous in (0,∞),

(iv) ϕ is continuous at 0.

The function has been utilized in a number of papers on fixed points in probabilistic

metric spaces.

We will make use of the following function in our main theorems.

Definition 2.13. A function ψ : [0, 1]× [0, 1]→ [0, 1] is said to be a Ψ-function if

(i) ψ-is monotone increasing in each variable and continuous,

(ii) ψ(x, x) > x for all 0 < x < 1,

(iii) ψ(1, 1) = 1, ψ(0, 0) = 0.

An example of a Ψ-function is ψ(x, y) = (
√
x+

√
y)/2.

Definition 2.14 ([27]). Let A and B be two nonempty sets. A cyclic mapping

is a mapping T : A ∪B → A ∪B which satisfies: TA ⊆ B and TB ⊆ A.

Kirk, Srinivasan and Veeramani [27], amongst other results, established the fol-

lowing generalization of the contraction mapping principle.

Theorem 2.2 ([27]). Let A and B be two nonempty closed subsets of a complete

metric space X and suppose f : X → X satisfies:

(1) fA ⊆ B and fB ⊆ A,

(2) d(fx, fy) 6 kd(x, y) for all x ∈ A and y ∈ B where k ∈ (0, 1).

Then f has a unique fixed point in A ∩B.

Recently, Choudhury, Das and Bhandari introduced a ϕ-contraction in the context

of 2-Menger spaces for two mappings in [6]. The following theorem was established.
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Theorem 2.3 ([6]). Let (X,F,∆) be a complete 2-Menger space, where ∆ is the

minimum t-norm, T1, T2 are two self-maps on X such that for all x, y, a in X and

t > 0,

(2.4) FT1x,T2y,a(ϕ(t)) > Fx,y,a

(

ϕ
( t

c

))

,

where c ∈ (0, 1) and ϕ is a Φ-function. Then T1 and T2 have a unique common fixed

point in X .

3. Main results

Lemma 3.1. Let (X,F,∆) be a complete 2-Menger space with a Hadzic-type

t-norm ∆, whenever xn → x and yn → y, Fxn,yn,a(t) → Fx,y,a(t) for all a ∈ X .

Let there exist two nonempty closed subsets A and B of X and let the mapping

T : A ∪B → A ∪B be a cyclic mapping, that is,

(3.1) TA ⊆ B and TB ⊆ A

and such that

(3.2) FTx,Ty,a(t) > ψ
(

Fx,Tx,a

( t1
α

)

, Fy,Ty,a

( t2
β

))

,

whenever x ∈ A, y ∈ B for all a ∈ X , where t1, t2, t > 0 with t = t1 + t2, α, β > 0

with 0 < α+ β < 1, ψ is a Ψ-function. Then, we have lim
n→∞

Fxn+1,xn,a(t) = 1.

P r o o f. Let x0 be an arbitrary point of A. Now we construct the sequence

{xn}∞n=0 in X by xn = Txn−1 for all positive integers n > 1.

Then, by (3.1), we obtain

(3.3) x2n = Tx2n−1 ∈ A and x2n+1 = Tx2n ∈ B for all positive integers n > 1.

Now, for t, t1, t2 > 0 with t = t1 + t2 and taking n even for all a ∈ X , we have

Fxn+1,xn,a(t) = FTxn,Txn−1,a(t)(3.4)

> ψ
(

Fxn,Txn,a

( t1
α

)

, Fxn−1,Txn−1,a

( t2
β

))

(since xn ∈ A, xn−1 ∈ B)
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= ψ
(

Fxn,xn+1,a

( t1
α

)

, Fxn−1,xn,a

( t2
β

))

= ψ
(

Fxn+1,xn,a

( t1
α

)

, Fxn,xn−1,a

( t2
β

))

.

Let

(3.5) t1 =
αt

α+ β
, t2 =

βt

α+ β
and c = α+ β,

then obviously we have 0 < c < 1.

Then, we have from (3.4),

(3.6) Fxn+1,xn,a(t) > ψ
(

Fxn+1,xn,a

( t

c

)

, Fxn,xn−1,a

( t

c

))

.

Again, for t, t1, t2 > 0 with t = t1 + t2 and taking n be odd for all a ∈ X , we have

Fxn+1,xn,a(t) = FTxn,Txn−1,a(t) = FTxn−1,Txn,a(t)(3.7)

> ψ
(

Fxn−1,Txn−1,a

( t1
α

)

, Fxn,Txn,a

( t2
β

))

(since xn−1 ∈ A, xn ∈ B)

= ψ
(

Fxn−1,xn,a

( t1
α

)

, Fxn,xn+1,a

( t2
β

))

.

Taking t1, t2 and c as in (3.5), we have from (3.7),

(3.8) Fxn+1,xn,a(t) > ψ
(

Fxn,xn−1,a

( t

c

)

, Fxn+1,xn,a

( t

c

))

.

We now claim that for all t > 0 and for all a ∈ X ,

(3.9) Fxn+1,xn,a

( t

c

)

> Fxn,xn−1,a

( t

c

)

.

If possible, let for some s > 0 and some p ∈ X ,

Fxn+1,xn,p

(s

c

)

< Fxn,xn−1,p

(s

c

)

.

Then, we have from (3.6), (3.8) and by the properties of Ψ-function,

Fxn+1,xn,p(s) > ψ
(

Fxn+1,xn,p

(s

c

)

, Fxn+1,xn,p

(s

c

))

> Fxn+1,xn,p

(s

c

)

> Fxn+1,xn,p(s),

which is a contradiction, since 0 < c < 1 and F is nondecreasing. Therefore, for all

t > 0, n > 1 and for all a ∈ X , (3.9) holds.
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Now, using (3.9), we have from (3.6), (3.8) for all t > 0 and for all a ∈ X ,

Fxn+1,xn,a(t) > ψ
(

Fxn−1,xn,a

( t

c

)

, Fxn−1,xn,a

( t

c

))

(3.10)

= ψ
(

Fxn,xn−1,a

( t

c

)

, Fxn,xn−1,a

( t

c

))

> Fxn,xn−1,a

( t

c

)

.

By repeated applications of (3.10), after n steps for all t > 0, n > 1 and for all

a ∈ X , we obtain

(3.11) Fxn,xn+1,a(t) > Fx0,x1,a

( t

cn

)

.

Taking limit as n→ ∞ on both sides for all t > 0 and a ∈ X , we have

(3.12) lim
n→∞

Fxn+1,xn,a(t) = 1.

�

Theorem 3.1. Let (X,F,∆) be a complete 2-Menger space with a Hadzic-type

t-norm ∆, whenever xn → x and yn → y, Fxn,yn,a(t) → Fx,y,a(t) for all a ∈ X .

Let there exist two nonempty closed subsets A and B of X and let the mapping

T : A∪B → A∪B be a cyclic mapping that satisfies the conditions (3.1) and (3.2),
whenever x ∈ A, y ∈ B for all a ∈ X , where t1, t2, t > 0 with t = t1 + t2, α, β > 0

with 0 < α+ β < 1, ψ is a Ψ-function. Then A∩B is nonempty and T has a unique
fixed point in A ∩B.

P r o o f. By an application of Lemma 3.1 we arrive at (3.12), that is,

lim
n→∞

Fxn+1,xn,a(t) = 1.

Again, by repeated applications of (3.10), it follows that for all a ∈ X , t > 0,

n > 0 and each i > 1,

(3.13) Fxn+i,xn+i+1,a(t) > Fxn,xn+1,a

( t

ci

)

.

We next prove that {xn} is a Cauchy sequence (Definition 2.10), that is, we prove
that for arbitrary ε > 0 and 0 < λ < 1, there exists N(ε, λ) such that for all a ∈ X ,

Fxn,xm,a(ε) > 1− λ for all n,m > N(ε, λ).
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Without loss of generality we can assume that m > n.

Now,

ε = ε
1− c

1− c
> ε(1− c)(1 + c+ c2 + . . .+ cm−n−1).

Then, by the monotone increasing property of F , and for all a ∈ X , we have

Fxn,xm,a(ε) > Fxn,xm,a(ε(1− c)(1 + c+ c2 + . . .+ cm−n−1)),

that is,

Fxn,xm,a(ε) > ∆
(

Fxn,xn+1,a(ε(1− c)),∆
(

Fxn+1,xn+2,a(εc(1− c)), . . . ,(3.14)

∆(. . . ,∆(Fxm−2,xm−1,a(εc
m−n−2(1− c)),

Fxm−1,xm,a(εc
m−n−1(1 − c))) . . .)

))

.

Putting t = (1− c)εci in (3.13) for all a ∈ X , we get

Fxn+i,xn+i+1,a((1 − c)εci) > Fxn,xn+1,a((1 − c)ε).

Then, by (3.14), for all a ∈ X , we have

Fxn,xm,a(ε) > ∆(Fxn,xn+1,a(ε(1− c)),∆(Fxn,xn+1,a(ε(1 − c)),

∆(. . . ,∆(Fxn,xn+1,a(ε(1− c)), Fxn,xn+1,a(ε(1− c))) . . .))),

that is,

(3.15) Fxn,xm,a(ε) > ∆(m−n)Fxn,xn+1,a(ε(1− c)).

Since the t-norm ∆ is a Hadzic-type t-norm, the family {∆p} of its iterates is
equi-continuous at the point s = 1, that is, there exists η(λ) ∈ (0, 1) such that for

all m > n,

(3.16) ∆(m−n)(s) > 1− λ whenever η(λ) < s 6 1.

Since Fx0,x1,a(t) → 1 as t → ∞ and 0 < c < 1, there exists a positive integer

N(ε, λ) such that for all a ∈ X ,

(3.17) Fx0,x1,a

( (1− c)ε

cn

)

> η(λ) for all n > N(ε, λ).

From (3.17) and (3.13), with n = 0, i = n and t = (1− c)ε for all a ∈ X , we get

Fxn,xn+1,a(ε(1− c)) > Fx0,x1,a

( (1− c)ε

cn

)

> η(λ) for all n > N(ε, λ).
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Then, from (3.16) with s = Fxn,xn+1,a(ε(1− c)), we have

∆(m−n)(Fxn,xn+1,a(ε(1− c))) > 1− λ.

It then follows from (3.15) that for all a ∈ X ,

Fxn,xm,a(ε) > 1− λ for all m,n > N(ε, λ).

Thus {xn} is a Cauchy sequence.
Since X is complete, we have xn → z in X for n → ∞. The subsequences {x2n}

and {x2n−1} of {xn} also converge to z. Now {x2n} ⊂ A and A is closed. Therefore

z ∈ A. Similarly, {x2n−1} ⊂ B and B is closed. Therefore z ∈ B. Thus we have

z ∈ A ∩B.
Now, we prove that Tz = z.

For that we get the following two possible cases.

Case I : Let n be even. Then xn ∈ A and z ∈ A ∩B ⇒ z ∈ B.

Now, using (3.2) and (3.3), we have

FTxn,Tz,a(t) > ψ
(

Fxn,Txn,a

( t1
α

)

, Fz,Tz,a

( t2
β

))

,

that is,

Fxn+1,Tz,a(t) > ψ
(

Fxn,xn+1,a

( t1
α

)

, Fz,Tz,a

( t2
β

))

.

Taking limit as n→ ∞ on both sides, we have

Fz,Tz,a(t) > ψ
(

Fz,z,a

( t1
α

)

, Fz,Tz,a

( t2
β

))

(since by our assumption,

xn → x, yn → y implies Fxn,yn,a(t) → Fx,y,a(t))

= ψ
(

1, Fz,Tz,a

( t

c

))

(by (3.5))

> ψ
(

Fz,Tz,a

( t

c

)

, Fz,Tz,a

( t

c

))

(by the properties of ψ-function)

> Fz,Tz,a

( t

c

)

> Fz,Tz,a

( t

c2

)

.

Continuing this process n times we obtain

Fz,Tz,a(t) > Fz,Tz,a

( t

cn

)

.

Again, taking limit as n→ ∞ on both sides, we obtain

lim
n→∞

Fz,Tz,a(t) > lim
n→∞

Fz,Tz,a

( t

cn

)

= 1 for all a ∈ X.
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Case II : Let n be odd. Then xn ∈ B and z ∈ A ∩B ⇒ z ∈ A.

Now, using (3.2) and (3.3), we have

FTz,Txn,a(t) > ψ
(

Fz,Tz,a

( t1
α

)

, Fxn,Txn,a

( t2
β

))

,

that is,

FTz,xn+1,a(t) > ψ
(

Fz,Tz,a

( t1
α

)

, Fxn,xn+1,a

( t2
β

))

.

Taking limit as n→ ∞ on both sides, we have

FTz,z,a(t) > ψ
(

Fz,Tz,a

( t1
α

)

, Fz,z,a

( t2
β

))

(since by our assumption,

xn → x, yn → y implies Fxn,yn,a(t) → Fx,y,a(t))

= ψ
(

Fz,Tz,a

( t

c

)

, 1
)

(by (3.5))

> ψ
(

Fz,Tz,a

( t

c

)

, Fz,Tz,a

( t

c

))

(by the properties of Ψ-function)

> Fz,Tz,a

( t

c

)

> Fz,Tz,a

( t

c2

)

.

Continuing this process n times we obtain

Fz,Tz,a(t) > Fz,Tz,a

( t

cn

)

.

Again, taking limit as n→ ∞ on both sides, we obtain

lim
n→∞

Fz,Tz,a(t) > lim
n→∞

Fz,Tz,a

( t

cn

)

= 1 for all a ∈ X.

Combining both cases we can conclude that z = Tz.

To prove the uniqueness of the fixed point, let u be another fixed point of T , that

is, Tu = u in A ∩B. Let a ∈ X be any element different from z and u.

Then, for all t > 0,

Fz,u,a(t) = FTz,Tu,a(t)

> ψ
(

Fz,Tz,a

( t1
α

)

, Fu,Tu,a

( t2
β

))

(for t1, t2 > 0 and t1 + t2 = t)

(since we can take z ∈ A and u ∈ B)

= ψ
(

Fz,z,a

( t1
α

)

, Fu,u,a

( t2
β

))

= ψ(1, 1) = 1.

Therefore, z = u.

This completes the proof of our theorem. �
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In our next theorem we use the control function ϕ (Definition 2.12) in the inequal-

ity (3.2). Here we also use the minimum t-norm. We prove our next theorem by

different arguments than the first theorem.

First we prove the following lemma.

Lemma 3.2. Let (X,F,∆) be a complete 2-Menger space with a third-order

minimum t-norm ∆. Let there exist two nonempty closed subsets A and B of X

and let the mapping T : A ∪B → A ∪B be a cyclic mapping, that is,

(3.18) TA ⊆ B and TB ⊆ A

and such that

(3.19) FTx,Ty,a(ϕ(t)) > ψ
(

Fx,Tx,a

(

ϕ
( t1
α

))

, Fy,Ty,a

(

ϕ
( t2
β

)))

whenever x ∈ A, y ∈ B for all a ∈ X , where t1, t2, t > 0 with t = t1 + t2, α, β > 0

with 0 < α+ β < 1, ϕ is a Φ-function, ψ is a Ψ-function. Then, we have

lim
n→∞

Fxn+1,xn,a(ϕ(t)) = 1.

P r o o f. Let x0 be an arbitrary point of A. Now we construct the sequence

{xn}∞n=0 in X by xn = Txn−1 for all positive integers n > 1.

Then, by (3.18), we obtain

(3.20) x2n = Tx2n−1 ∈ A and x2n+1 = Tx2n ∈ B for all positive integers n > 1.

Now, for t, t1, t2 > 0 with t = t1 + t2 and taking n even for all a ∈ X , we have

Fxn+1,xn,a(ϕ(t)) = FTxn,Txn−1,a(ϕ(t))

> ψ
(

Fxn,Txn,a

(

ϕ
( t1
α

))

, Fxn−1,Txn−1,a

(

ϕ
( t2
β

)))

(since xn ∈ A, xn−1 ∈ B)

= ψ
(

Fxn,xn+1,a

(

ϕ
( t1
α

))

, Fxn−1,xn,a

(

ϕ
( t2
β

)))

= ψ
(

Fxn+1,xn,a

(

ϕ
( t1
α

))

, Fxn,xn−1,a

(

ϕ
( t2
β

)))

.

Let

(3.21) t1 =
αt

α+ β
, t2 =

βt

α+ β
and c = α+ β.

Then obviously we have 0 < c < 1.
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Then, we have from (3.21),

(3.22) Fxn+1,xn,a(ϕ(t)) > ψ
(

Fxn+1,xn,a

(

ϕ
( t

c

))

, Fxn,xn−1,a

(

ϕ
( t

c

)))

.

Again, for t, t1, t2 > 0 with t = t1 + t2 and taking n odd for all a ∈ X , we have

Fxn+1,xn,a(ϕ(t)) = FTxn,Txn−1,a(ϕ(t)) = FTxn−1,Txn,a(ϕ(t))(3.23)

> ψ
(

Fxn−1,Txn−1,a

(

ϕ
( t1
α

))

, Fxn,Txn,a

(

ϕ
( t2
β

)))

(since xn−1 ∈ A, xn ∈ B)

= ψ
(

Fxn−1,xn,a

(

ϕ
( t1
α

))

, Fxn,xn+1,a

(

ϕ
( t2
β

)))

.

Taking t1, t2 and c as in (3.22), we have from (3.24),

(3.24) Fxn+1,xn,a(ϕ(t)) > ψ
(

Fxn,xn−1,a

(

ϕ
( t

c

))

, Fxn+1,xn,a

(

ϕ
( t

c

)))

.

We now claim that for all t > 0 and for all a ∈ X ,

(3.25) Fxn+1,xn,a

(

ϕ
( t

c

))

> Fxn,xn−1,a

(

ϕ
( t

c

))

.

If possible, let for some s > 0 and some p ∈ X ,

Fxn+1,xn,p

(

ϕ
(s

c

))

< Fxn,xn−1,p

(

ϕ
(s

c

))

.

Then, we have from (3.23), (3.25) and by the properties of Ψ-function,

Fxn+1,xn,p(ϕ(s)) > ψ
(

Fxn+1,xn,p

(

ϕ
(s

c

))

, Fxn+1,xn,p

(

ϕ
(s

c

)))

> Fxn+1,xn,p

(

ϕ
(s

c

))

> Fxn+1,xn,p(ϕ(s)),

which is a contradiction, since 0 < c < 1 and F is nondecreasing.

Therefore, for all t > 0, n > 1 and for all a ∈ X , (3.26) holds.

Now, using (3.26), we have from (3.23), (3.25) for all t > 0 and for all a ∈ X ,

Fxn+1,xn,a(ϕ(t)) > ψ
(

Fxn−1,xn,a

(

ϕ
( t

c

))

, Fxn−1,xn,a

(

ϕ
( t

c

)))

(3.26)

= ψ
(

Fxn,xn−1,a

(

ϕ
( t

c

))

, Fxn,xn−1,a

(

ϕ
( t

c

)))

> Fxn,xn−1,a

(

ϕ
( t

c

))

.
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By repeated applications of (3.27), after n steps for all t > 0, n > 1 and for all

a ∈ X , we obtain

(3.27) Fxn,xn+1,a(ϕ(t)) > Fx0,x1,a

(

ϕ
( t

cn

))

.

Taking limit as n→ ∞ on both sides for all t > 0 and a ∈ X , we have

(3.28) lim
n→∞

Fxn+1,xn,a(ϕ(t)) = 1.

By virtue of the properties of ϕ and F we can choose s > 0 such that s > ϕ(t).

Then for all a ∈ X and t > 0 we have

(3.29) lim
n→∞

Fxn,xn+1,a(s) = 1.

�

Theorem 3.2. Let (X,F,∆) be a complete 2-Menger space with a third-order

minimum t-norm ∆. Let there exist two nonempty closed subsets A and B of X

and let the mapping T : A∪B → A∪B be a cyclic mapping, that is, the mapping T
satisfies the conditions (3.18) and (3.19), whenever x ∈ A, y ∈ B for all a ∈ X ,

where t1, t2, t > 0 with t = t1 + t2, α, β > 0 with 0 < α+ β < 1, ϕ is a Φ-function, ψ

is a Ψ-function. Then A ∩B is nonempty and T has a unique fixed point in A ∩B.

P r o o f. By an application of Lemma 3.2 we arrive at (3.30), that is,

lim
n→∞

Fxn,xn+1,a(s) = 1.

We next prove that {xn} is a Cauchy sequence. If possible, let {xn} be not
a Cauchy sequence. Then, there exist ε > 0 and 0 < λ < 1 for which we can find

subsequences {xm(k)} and {xn(k)} of {xn} with n(k) > m(k) > k such that

(3.30) Fxm(k),xn(k),a(ε) 6 1− λ.

We take n(k) corresponding to m(k) to be the smallest integer satisfying (3.31),

so that

(3.31) Fxm(k),xn(k)−1,a(ε) > 1− λ.

If ε1 < ε, then we have

Fxm(k),xn(k),a(ε1) 6 Fxm(k),xn(k),a(ε).

51



We conclude that it is possible to construct {xm(k)} and {xn(k)} with n(k) >
m(k) > k and satisfying (3.31), (3.32), whenever ε is replaced by a smaller positive

value. As ϕ is continuous at 0 and strictly monotone increasing with ϕ(0) = 0, it is

possible to obtain ε2 > 0 such that ϕ(ε2) < ε.

Then, by the above argument, it is possible to obtain an increasing sequence of

integers {m(k)} and {n(k)} with n(k) > m(k) > k such that

(3.32) Fxm(k),xn(k),a(ϕ(ε2)) 6 1− λ,

and

(3.33) Fxm(k),xn(k)−1,a(ϕ(ε2)) > 1− λ.

Now, we have the following possible cases.

Case I : The integer m(k) is odd and n(k) is even for an infinite number of values

of k. Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l) is odd and

n(l) is even for all l with n(l) > m(l) > l such that for some a ∈ X ,

(3.34) Fxm(l),xn(l),a(ϕ(ε2)) 6 1− λ

and

(3.35) Fxm(l),xn(l)−1,a(ϕ(ε2)) > 1− λ.

Now, from (3.35), for some a ∈ X and for ε2 > 0, we have

1− λ > Fxm(l),xn(l),a(ϕ(ε2)) = FTxm(l)−1,Txn(l)−1,a(ϕ(ε2))

> ψ
(

Fxm(l)−1,Txm(l)−1,a

(

ϕ
(ε′2
α

))

, Fxn(l)−1,Txn(l)−1,a

(

ϕ
(ε′′2
β

)))

(xm(l)−1 ∈ A, xn(l)−1 ∈ B where ε2 = ε′2 + ε′′2 and ε
′

2, ε
′′

2 > 0)

= ψ
(

Fxm(l)−1,xm(l),a

(

ϕ
(ε′2
α

))

, Fxn(l)−1,xn(l),a

(

ϕ
(ε′′2
β

)))

(by the properties of ψ and (3.30))

> ψ(1 − λ, 1− λ) > 1− λ,

which is a contradiction.

Case II : The integer m(k) is even and n(k) is odd for an infinite number of values

of k. Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l) is even

and n(l) is odd for all l with n(l) > m(l) > l such that for some a ∈ X , (3.35), (3.36)

hold.
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Then, we arrive at a contradiction exactly as in Case I above.

Case III : The integers m(k) and n(k) are both even for an infinite number of

values of k. Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l) and

n(l) are both even for all l with n(l) > m(l) > l such that for some a ∈ X , (3.35),

(3.36) hold.

By the properties of ϕ, we can choose η1, η2 > 0 such that ϕ(ε2) > η1 + η2.

Now, from (3.35), for some a ∈ X and for ε2 > 0, we have

1− λ > Fxm(l),xn(l),a(ϕ(ε2))(3.36)

> ∆(Fxm(l),xn(l),xm(l)+1
(η1), Fxm(l),xm(l)+1,a(η2),

Fxm(l)+1,xn(l),a(ϕ(ε2)− η1 − η2))

= ∆(Fxm(l),xn(l),xm(l)+1
(η1), Fxm(l),xm(l)+1,a(η2), Fxm(l)+1,xn(l),a(ϕ(ξ)))

(by the properties of ϕ, we can take ϕ(ξ) = ϕ(ε2)− η1 − η2 where ξ > 0).

Now, by (3.30) for sufficiently large l, we have

(3.37) Fxm(l),xn(l),xm(l)+1
(η1) > 1− λ

and

(3.38) Fxm(l),xm(l)+1,a(η2) > 1− λ.

Fxm(l)+1,xn(l),a(ϕ(ξ)) = FTxm(l),Txn(l)−1,a(ϕ(ξ))(3.39)

> ψ
(

Fxm(l),Txm(l),a

(

ϕ
(ξ1
α

))

, Fxn(l)−1,Txn(l)−1,a

(

ϕ
(ξ2
β

)))

(xm(l) ∈ A, xn(l)−1 ∈ B where ξ = ξ1 + ξ2 and ξ1, ξ2 > 0)

= ψ
(

Fxm(l),xm(l)+1,a

(

ϕ
(ξ1
α

))

, Fxn(l)−1,xn(l),a

(

ϕ
(ξ2
β

)))

> ψ(1− λ, 1 − λ) (by (3.30))

> 1− λ.

Now, using (3.38), (3.39) and (3.40) in (3.37), we have

1− λ > 1− λ,

which is a contradiction.

Case IV : The integersm(k) and n(k) are both odd for an infinite number of values

of k. Then, there exist {m(l)} ⊂ {m(k)} and {n(l)} ⊂ {n(k)} where m(l) and n(l)
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are both odd for all l with n(l) > m(l) > l such that for some a ∈ X , (3.35), (3.36)

hold.

Then, we arrive at a contradiction exactly as in Case III above.

Combining all the above four cases we can conclude that {xn} is a Cauchy se-
quence.

Since X is complete, we have

(3.40) xn → z in X for n→ ∞.

The subsequences {x2n} and {x2n−1} of {xn} also converge to z. Now {x2n} ⊂ A

and A is closed. Therefore z ∈ A. Similarly, {x2n−1} ⊂ B and B is closed. Therefore

z ∈ B. Thus we have z ∈ A ∩B.
We now show that Tz = z.

If possible, let 0 < Fz,Tz,a(ϕ(t)) < 1 for some t > 0.

By the properties of ϕ we can choose ξ1, ξ2, t1, t2 > 0 such that ϕ(t) = ξ1 + ξ2 +

ϕ(t1 + t2).

Now, we consider the sequence {xn(k)} ⊂ {xn} for which integers n(k) are even or
odd for an infinite number of values of k.

Then, we get the following two possible cases.

Case Ia: Let n(k) be even. Then xn(k) ∈ A and z ∈ A ∩B ⇒ z ∈ B.

Again, since 0 < β < 1, we can get ϕ(t2/β) > ϕ(t).

Then, we have

Fz,Tz,a(ϕ(t)) > ∆(Fz,Tz,xn(k)+1
(ξ1), Fz,xn(k)+1,a(ξ2), Fxn(k)+1,Tz,a(ϕ(t1 + t2)))(3.41)

= ∆(Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2), FTxn(k),Tz,a(ϕ(t1 + t2)))

> ∆
(

Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2),

ψ
(

Fxn(k),xn(k)+1,a

(

ϕ
( t1
α

))

, Fz,Tz,a

(

ϕ
( t2
β

))))

> ∆
(

Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2),

ψ
(

Fxn(k),xn(k)+1,a

(

ϕ
( t1
α

))

, Fz,Tz,a(ϕ(t))
))

.

By (3.29), (3.30) and (3.41), there exists a positive integer N1 such that

Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2), Fxn(k),xn(k)+1,a

(

ϕ
( t1
α

))

> Fz,Tz,a(ϕ(t))

for all n(k) > N1.
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Then, we have from (3.42),

Fz,Tz,a(ϕ(t)) > Fz,Tz,a(ϕ(t)),

which is a contradiction.

Case Ib: Let n(k) be odd. Then xn(k) ∈ B and z ∈ A ∩B ⇒ z ∈ A.

Again, since 0 < α < 1, we can get ϕ(t1/α) > ϕ(t).

Then, we have

Fz,Tz,a(ϕ(t)) > ∆(Fz,Tz,xn(k)+1
(ξ1), Fz,xn(k)+1,a(ξ2), Fxn(k)+1,Tz,a(ϕ(t1 + t2)))(3.42)

= ∆(Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2), FTz,Txn(k),a(ϕ(t1 + t2)))

> ∆
(

Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2),

ψ
(

Fz,Tz,a

(

ϕ
( t1
α

))

, Fxn(k),Txn(k),a

(

ϕ
( t2
β

))))

> ∆
(

Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2),

ψ
(

Fz,Tz,a(ϕ(t)), Fxn(k) ,xn(k)+1,a

(

ϕ
( t2
β

))))

.

By (3.29), (3.30) and (3.41), there exists a positive integer N2 such that

Fz,xn(k)+1,Tz(ξ1), Fz,xn(k)+1,a(ξ2), Fxn(k),xn(k)+1,a

(

ϕ
( t2
β

))

> Fz,Tz,a(ϕ(t))

for all n(k) > N2.

Then, we have from (3.43),

Fz,Tz,a(ϕ(t)) > Fz,Tz,a(ϕ(t)),

which is a contradiction.

Combining both cases we conclude that Fz,Tz,a(ϕ(t)) = 1 for all t > 0, which

implies that z = Tz.

To prove the uniqueness of the fixed point, let u be another fixed point of T , that

is, Tu = u in A ∩B. Let a ∈ X be any element different from z and u.

Then, for all t > 0,

Fz,u,a(ϕ(t)) = FTz,Tu,a(ϕ(t))

> ψ
(

Fz,Tz,a

(

ϕ
( t1
α

))

, Fu,Tu,a

(

ϕ
( t2
β

)))

(for t1, t2 > 0 and t1 + t2 = t)

= ψ
(

Fz,z,a

(

ϕ
( t1
α

))

, Fu,u,a

(

ϕ
( t2
β

)))

= ψ(1, 1) = 1.

Therefore, z = u. �
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E x am p l e 3.1. Let X = {x1, x2, x3, x4}, A = {x1, x2, x4}, B = {x3, x4}, the
t-norm ∆ be a third order minimum t-norm and F be defined as

Fx1,x2,x3(t) = Fx1,x2,x4(t) =











0, if t 6 0,

0.40, if 0 < t < 4,

1, if t > 4,

Fx1,x3,x4(t) = Fx2,x3,x4(t) =

{

0, if t 6 0,

1, if t > 0.

Then (X,F,∆) is a complete 2-Menger space. If we define T : X → X as

Tx1 = x4, Tx2 = x3, Tx3 = x4, Tx4 = x4, then the mapping T satisfies all the

conditions of the Theorem 3.2, where ϕ(t) = t, ψ(x, y) = (
√
x+

√
y)/2, α, β > 0

with 0 < α+ β < 1 and x4 is the unique fixed point of T in A ∩B.
Theorem 3.1 is also satisfied by this example with ∆(a, b, c) = min{a, b, c}.
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