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Abstract. Recently there has been an increasing interest in studying p(t)-Laplacian equa-
tions, an example of which is given in the following form

(|u′(t)|p(t)−2u′(t))′ + c(t)|u(t)|q(t)−2u(t) = 0, t > 0.

In particular, the first study of sufficient conditions for oscillatory solution of p(t)-Laplacian
equations was made by Zhang (2007), but to our knowledge, there has not been a paper
which gives the oscillatory conditions by utilizing Riccati inequality. Therefore, we establish
sufficient conditions for oscillatory solution of nonlinear differential equations with p(t)-
Laplacian via Riccati method. The results obtained are new and rare, except for a work of
Zhang (2007). We present more detailed results than Zhang (2007).
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1. Introduction

The purpose of this paper is to generalize p-Laplacian equations to the case of

p(t)-Laplacian equations of the form

(E) (|u′(t)|p(t)−2u′(t))′ + c(t)|u(t)|q(t)−2u(t) = 0, t > 0,

where c(t) ∈ C((0,∞); (0,∞)).

We assume throughout this paper that: p(t), q(t) ∈ C1(R; (1,∞)) and satisfy

1 < inf
t∈R

p(t), sup
t∈R

p(t) < ∞, 1 < inf
t∈R

q(t), sup
t∈R

q(t) < ∞.
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Definition 1.1. A function u ∈ C1(0,∞) with the property that |u′|p(t)−2u′ ∈

C1(0,∞) is said to be a solution of (E) if u satisfies (E) at every point in (0,∞).

Definition 1.2. A nontrivial solution of (E) is said to be oscillatory if it has

arbitrarily large zeros ((E) is an oscillatory equation if its solution is oscillatory),

otherwise it is nonoscillatory.

The first interest in p(·)-type Laplacian was in function spaces called variable

exponent spaces. Variable exponent space, which appeared in W.Orlicz’s article of

1931, was studied afterwards by many authors (see, e.g., [1]).

In 1999, Růžička studied equations with non-standard p(x)-growth in the modeling

of the so-called electrorheological fluids (see [2]). After this article, the importance

of p(·)-type Laplacian was recognized [3].

In recent years, Zhang in [9] investigated the oscillation problem for the p(t)-

Laplacian equation, and obtained the following:

Theorem A (Zhang [9]). Assume that c(t) = t−θ(t) and

(A1) lim
t→∞

f(t) = f∞, t
|f(t)−f∞| < M (f(t) satifies the log-Hölder decay condition);

(A2) g(t, ·) ∈ C((0,∞)×R) is increasing for any fixed t > 0 and 0 < lim inf
t→∞

g(t, u)u 6

lim sup
t→∞

g(t, u)u < ∞, u ∈ R \ {0}.

If p(t) possesses (A1) and lim sup
t→∞

θ(t) < lim inf
t→∞

q(t), where

1 < lim sup
t→∞

q(t) < lim inf
t→∞

p(t)

or

lim
t→∞

q(t) = lim
t→∞

p(t), q(t) is possesses (A1),

then every solution of (E) is oscillatory.

Motivated by this article [9], Yoshida established oscillation theorems, Picone

identities and Sturmian comparison theorems for half-linear elliptic inequalities with

p(x)-Laplacians (see, for example, [7] and [8]). Recently, Şahiner and Zafer [4], [5]

also studied forced oscillation of half-linear elliptic inequlities with p(x)-Laplacians

under the condition q(t) > p(t) > 1. However, there is a few part having to study

the results of Zhang [9] in detail. Therefore, we provide new oscillation criteria for

the solution of (E).

2. Main results

In order to discuss our main results, we need the following lemma, which is due

to Usami [6].
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Lemma 2.1. If there exists a function ϕ(t) ∈ C1([T0,∞); (0,∞)) such that

(2.1)

∫ ∞

T1

( p̄(t)|ϕ′(t)|β

ϕ(t)

)1/(β−1)

dt < ∞,

∫ ∞

T1

ϕ(t)q̄(t) dt = ∞,

and
∫ ∞

T1

1

p̄(t)(ϕ(t))β−1
dt = ∞

for some T1 > T0 > 0, then the Riccati inequality

(2.2) x′(t) +
1

β

1

p̄(t)
|x(t)|β 6 −q̄(t),

where β > 1, p̄(t) ∈ C([T0,∞); (0,∞)) and q̄(t) ∈ C([T0,∞);R), has no solution on

[T,∞) for all large T .

Theorem 2.1. Let

p− ≡ inf
t>T

p(t), p+ ≡ sup
t>T

p(t), q− ≡ inf
t>T

q(t), q+ ≡ sup
t>T

q(t)

for some T > 0. If one of the following cases holds:

(i) p(t) is increasing, 1 < p(t) = q(t) or 1 < p(t) < q(t), there exists ϕ(t) ∈

C1((0,∞); (0,∞)) such that

∫ ∞ {

|ϕ′(t)|p
+/(p+−1)

(p(t)− 1 + p′(t)t)ϕ(t)

}p+−1

dt < ∞,(2.3)

∫ ∞ {

|ϕ′(t)|p
−/(p−−1)

(p(t)− 1 + p′(t)t)ϕ(t)

}p−−1

dt < ∞,(2.4)

∫ ∞ p(t)− 1 + p′(t)t

ϕ(t)1/(p+−1)
dt = ∞,

∫ ∞ p(t)− 1 + p′(t)t

ϕ(t)1/(p−−1)
dt = ∞,

∫ ∞

ϕ(t)c(t) dt = ∞;(2.5)

(ii) q(t) is increasing, 1 < q(t) < p(t), there exists ϕ(t) ∈ C1((0,∞); (0,∞)) such

that

∫ ∞ {

|ϕ′(t)|q
+/(q+−1)

(q(t)− 1 + q′(t)t)ϕ(t)

}q+−1

dt < ∞,(2.6)

73



∫ ∞ {

|ϕ′(t)|q
−/(q−−1)

(q(t)− 1 + q′(t)t)ϕ(t)

}q−−1

dt < ∞,(2.7)

∫ ∞ q(t)− 1 + q′(t)t

ϕ(t)1/(q+−1)
dt = ∞,

∫ ∞ q(t)− 1 + q′(t)t

ϕ(t)1/(q−−1)
dt = ∞,

∫ ∞

ϕ(t)c(t) dt = ∞,(2.8)

then every solution u(t) of (E) is oscillatory.

P r o o f. Suppose that u is a nonoscillatory solution. We prove only the case

u > 0, t > t0 for some t0 > 0, as the proof of the case u < 0 is similar. It follows

that

(2.9) (|u′|p(t)−2u′)′ = −c(t)|u|q(t)−2u < 0, t > t0.

Now we claim that u′(t) > 0, t > t1 for some t1 > t0. In fact, if u
′(t) > 0 does not

hold, then u′(t) 6 0, t > t1. Hence we show that

|u′(t)|p(t)−2u′(t) < |u′(t1)|
p(t1)−2u′(t1) 6 0.

Thus we can find a t2 > t1 such that u
′(t2) < 0. Integrating (2.9) over [t2, t] yields

|u′(t)|p(t)−2u′(t) 6 |u′(t2)|
p(t2)−2u′(t2) < 0

for t > t2, and therefore,

−(−u′(t))p(t)−1 6 −|u′(t2)|
p(t2)−1, t > t2.

This shows that

u′(t) 6 −|u′(t2)|
(p(t2)−1)/(p(t)−1)

6 −min
t>t2

|u′(t2)|
(p(t2)−1)/(p(t)−1) := −a < 0.

Integrate the above inequality to obtain

u(t) 6 −a(t− t2) + u(t2) → −∞

as t → ∞. This contradicts the assumption. Hence, we have u′(t) > 0, t > t3 for

some t3 > t0.
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(i) If p(t) = q(t) or 1 < p(t) < q(t), then we define the function w1(t) such that

(2.10) w1(t) =
(u′(t)

u(t)

)p(t)−1

> 0,

which is led by

(2.11) u(t) = exp

(
∫ t

0

w
1/(p(s)−1)
1 (s) ds

)

.

This means that u(t) > 0, t > 0. Making use of the above argument we easily see

that u′(t) > 0. Differentiating both sides of (2.10), we see that

w′
1(t) = −c(t)u(t)q(t)−p(t)(2.12)

−w1(t)
{

(p(t)− 1)w
1/(p(t)−1)
1 (t) + p′(t) log u(t)

}

for t > t3. In view of (2.10) and (2.11), we have log u > 0. Accordingly, we see that

u(t) > 1 and

w′
1(t) 6 0, t > t4

for some t4 > t3. Therefore, we see that lim
t→∞

w1(t) := w1(∞) exists, and we can

separate the two case of 0 < w1(∞) < 1 and 1 6 w1(∞) < ∞. First, we take the

case when 0 < w1(∞) < 1. Then it follows from (2.11) that

log u(t) =

∫ t

0

w
1/(p(s)−1)
1 (s) ds,

and consequently

(2.13) log u(t) > tw
1/(p−−1)
1 (t), t > t5

for t5 > t4. Combining (2.12) with (2.13), we have

w′
1(t) 6 −c(t)− ((p(t)− 1) + p′(t)t)w

p−/(p−−1)
1 (t), t > t5.

Next, for the case when 1 6 w1(∞) < ∞, it can be shown by using a similar method

that

w′
1(t) 6 −c(t)− (p(t)− 1 + p′(t)t)w

p+/(p+−1)
1 (t), t > t5.

By applying Lemma 2.1, we see that (2.3)–(2.5) imply that the above Riccati in-

equalities cannot have a solution. This is a contradiction.
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(ii) If 1 < q(t) < p(t), then we define the function w2(t) such that

(2.14) w2(t) =
u′(t)p(t)−1

u(t)q(t)−1
=

(u′(t)

u(t)

)q(t)−1

u′(t)p(t)−q(t) > 0,

which is led by

(2.15) u(t) = exp

(
∫ t

0

( w2(s)

u′(t)p(s)−q(s)

)1/(q(s)−1)

ds

)

.

Differentiating both sides of (2.14), we see that

(2.16) w′
2(t) =

(|u′(t)|p(t)−2u′(t))′

u(t)q(t)−1
− w2(t)

(u(t)q(t)−1)′

u(t)q(t)−1
.

This implies that

(2.17) w′
2(t) = −c(t)− w2(t)

{

(q(t)− 1)
u′(t)

u(t)
+ q′(t) log u(t)

}

, t > t3,

which together with (2.14) and (2.15) ensures that log u > 0 and

w′
2(t) 6 0, t > t6

for some t6 > t3. At this point, it is clear that lim
t→∞

w2(t) := w2(∞) exists, and we

can separate the two cases of 0 < w2(∞) < 1 and 1 6 w2(∞) < ∞. First, we take

the case when 0 < w2(∞) < 1. From (2.9) it follows that

u′(t)p(t)−1 6 u′(t2)
p(t2)−1 ≡ k0

for some constant k0 > 0. From (2.14) we see that

w2(t) 6
(u′(t)

u(t)

)q(t)−1

k0
(p(t)−q(t))/(p(t)−1)

6

(u′(t)

u(t)

)q(t)−1

k1,

and so

(2.18)
u′(t)

u(t)
>

(w2(t)

k1

)1/(q(t)−1)

> k2w
1/(q−−1)
2 (t), t > t7

for some t7 > t6. On the other hand, by (2.15), we also obtain

log u(t) >

∫ t

0

( w2(s)

k0
(p(s)−q(s))/(p(s)−1)

)1/(q(s)−1)

ds(2.19)

> k3tw
1/(q−−1)
2 (t), t > t8
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for some constant ki > 0, i = 1, 2, 3, and some t8 > t7. Combining (2.17), (2.18)

with (2.19), we have

w′
2(t) 6 −c(t)−K(q(t)− 1 + q′(t)t)w

q−/(q−−1)
2 (t), t > t8.

Finally, for the case when 1 6 w2(∞) < ∞, it is easy to verify that

w′
2(t) 6 −c(t)−K(q(t)− 1 + q′(t)t)w

q+/(q+−1)
2 (t), t > t8

for some constantK > 0. By applying Lemma 2.1, we see that (2.6)–(2.8) imply that

the above Riccati inequalities cannot have a solution. This contradiction completes

the proof of the theorem. �

Corollary 2.1. Assume that c(t) = t−θ(t), where θ(t) ∈ C((0,∞);R), and that

1 + lim sup
t→∞

θ(t) < lim inf
t→∞

q(t).

If one of the following cases holds:

(i) p(t) is increasing, 1 < p(t) < q(t) or lim
t→∞

p(t) = lim
t→∞

q(t);

(ii) q(t) is increasing, 1 < q(t) < p(t),

then every solution u(t) of (E) is oscillatory.

P r o o f. If 1 < p(t) < q(t) or lim
t→∞

p(t) = lim
t→∞

q(t), then we can derive by applying

Theorem 2.1 with ϕ(t) = tq
−−k for some 1 + q− − p+ < k < q− − θ+ that

∫ ∞{ ((q− − k)tq
−−k−1)p

+/(p+−1)

(p(t)− 1 + p′(t)t)tq−−k

}p+−1

dt < c0

∫ ∞

t−p++(q−−p+−k+1) dt < ∞,

∫ ∞ {

((q− − k)tq
−−k−1)p

−/(p−−1)

(p(t)− 1 + p′(t)t)tq−−k

}p−−1

dt < ∞,

∫ ∞ p(t)− 1 + p′(t)t

(tp−−k)1/(p+−1)
dt > c1

∫ ∞

t1−(q−−k)/(p+−1) dt = ∞,

∫ ∞ p(t)− 1 + p′(t)t

(tp−−k)1/(p−−1)
dt > ∞,

∫ ∞

t−θ(t)+q−−k dt >

∫ ∞

tq
−−θ+−k dt.(2.20)
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On the other hand, if 1 < q(t) < p(t), then we choose 1 + q− − q+ < k < q− − θ+

such that

∫ ∞{ ((q− − k)tq
−−k−1)q

+/(q+−1)

(q(t)− 1 + q′(t)t)tq−−k

}q+−1

dt < c2

∫ ∞

t−q++(q−−q+−k+1) dt < ∞,

∫ ∞ {

((q− − k)tq
−−k−1)q

−/(q−−1)

(q(t)− 1 + q′(t)t)tq−−k

}q−−1

dt < ∞,

∫ ∞ q(t)− 1 + q′(t)t

(tq−−k)1/(q+−1)
dt > c3

∫ ∞

t1−(q−−k)/(q+−1) dt = ∞,

∫ ∞ q(t)− 1 + p′(t)t

(tq−−k)1/(q−−1)
dt > ∞,

∫ ∞

t−θ(t)+q−−k dt >

∫ ∞

tq
−−θ+−k dt(2.21)

for some positive constants ci, i = 0, 1, 2, 3. Now we assume that 1 + θ+ < q−

holds, then integral calculus conditions (2.20) and (2.21) become infinite. Clearly,

we see that the conditions of Theorem 2.1 hold. Therefore the conclusion follows

from Theorem 2.1. �

Evidently, Theorem 2.1 does not apply to Theorem A. Hence we will improve the

Lemma 2.1 as follows.

Lemma 2.2. If there exists a function ϕ(t) ∈ C1([T0,∞); (0,∞)) such that (2.1)

holds for some T1 > T0 > 0, then the Riccati inequality (2.2) has no positive solution

on [T,∞) for all large T .

P r o o f. Let x(t) be a positive solution of (2.2). We assume that ϕ(t) is defined

for t > T0. Multiplying (2.2) by ϕ(t) and integrating over [T0, t], we obtain

(2.22) x(T0)ϕ(T0) > −

∫ t

T0

x(s)ϕ′(s) ds+

∫ t

T0

ϕ(s)x(s)β

p̄(s)
ds+

∫ t

T0

ϕ(s)q̄(s) ds.

By using Young’s inequality we have

x(s)|ϕ′(s)| = x(s)
(ϕ(s)

p̄(s)

)1/β( p̄(s)

ϕ(s)

)1/β

|ϕ′(s)|(2.23)

6
1

β

ϕ(s)

p̄(s)
x(s)β +

β − 1

β

(( p̄(s)

ϕ(s)

)1/β

|ϕ′(s)|
)β/(β−1)

.
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Combining (2.22) with (2.23) yields

x(T0)ϕ(T0) >
(

1−
1

β

)

∫ t

T0

ϕ(s)

p̄(s)
x(s)β ds

−
β − 1

β

∫ t

T0

( p̄(s)

ϕ(s)
|ϕ′(s)|β

)1/(β−1)

ds+

∫ t

T0

ϕ(s)q̄(s) ds,

which contradicts the condition (2.1). The proof is complete. �

Theorem 2.2. If one of the following cases holds:

(i) p(t) is increasing, 1 < p(t) = q(t) or 1 < p(t) < q(t), there exists ϕ(t) ∈

C1((0,∞); (0,∞)) satisfying (2.3)–(2.5);

(ii) q(t) is increasing, 1 < q(t) < p(t), there exists ϕ(t) ∈ C1((0,∞); (0,∞)) satis-

fying (2.6)–(2.8),

then every solution u(t) of (E) is oscillatory.

E x am p l e 2.1. We consider the equation

(2.24) (|u′(t)|2−4/(3t)u′(t))′ + t−1/3+1/t|u(t)|1−1/tu(t) = 0, t > 1,

where

p(t) = 4−
4

3t
, q(t) = 3−

1

t
, c(t) = t−1/3+1/t.

Letting ϕ(t) = t2/3, we see that

∫ ∞ {

(23 t
−1/3)3/2

(1− 1/t+ 1/t)t2/3

}2

dt =

∫ ∞ (2

3

)3

t−7/3 dt < ∞,

∫ ∞ (23 t
−1/3)2

(1− 1/t+ 1/t)t2/3
dt =

∫ ∞ 2

3
t−4/3 dt < ∞,

∫ ∞

t2/3t−1/3+1/t dt = ∞.

Hence, it follows from (2.3)–(2.5) that all conditions of Theorem 2.2 (ii) are satisfied.

However, Theorem 2.1 (ii) is not applicable, since

∫ ∞ 1− 1/t+ 1/t

(t2/3)3/2
dt =

∫ ∞

t−1 dt = ∞,

∫ ∞ 1− 1/t+ 1/t

(t2/3)2
dt =

∫ ∞

t−4/3 dt < ∞.

Therefore, from Theorem 2.2 (ii), every solution of (2.24) oscillates.
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Corollary 2.2. Assume that c(t) = t−θ(t), where θ(t) ∈ C((0,∞);R), and that

lim sup
t→∞

θ(t) < lim inf
t→∞

q(t).

If one of the following cases holds:

(i) p(t) is increasing, 1 < p(t) < q(t) or lim
t→∞

p(t) = lim
t→∞

q(t);

(ii) q(t) is increasing, 1 < q(t) < p(t),

then every solution u(t) of (E) is oscillatory.

E x am p l e 2.2. Consider the equation

(2.25) (|u′(t)|1−2− log t

u′(t))′ + t−1/2+sin t|u(t)|3+sin tu(t) = 0, t > 1,

where

p(t) = 3− 2− log t, q(t) = 5 + sin t, c(t) = t−1/2+sin t.

We choose ϕ(t) = t1/2 to find that

∫ ∞ {

(12 t
−1/2)3/2

(2− 2− log t + 2− log t)t1/2

}2

dt =

∫ ∞ (1

2

)5

t−5/2 dt < ∞,

∫ ∞ (12 t
−1/2)2

(2− 2− log t + 2− log t)t1/2
dt =

∫ ∞ (1

2

)3

t−3/2 dt < ∞,

∫ ∞

t1/2t−1/2+sin t dt =

∫ ∞

tsin t dt = ∞.

Furthermore, it is easy to check that

lim sup
t→∞

θ(t) =
3

2
< 4 = lim inf

t→∞
q(t).

Since all conditions of Theorem 2.2 (i) and Corollary 2.2 (i) are satisfied, every

solution of (2.25) oscillates.
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