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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 1 , P AGES 5 2 – 6 5

STRONG CONVERGENCE FOR WEIGHED SUMS
OF NEGATIVELY SUPERADDITIVE DEPENDENT
RANDOM VARIABLES

Zhiyong Chen, Haibin Wang, Xuejun Wang and Shuhe Hu

In this paper, the strong law of large numbers for weighted sums of negatively superadditive
dependent (NSD, in short) random variables is obtained, which generalizes and improves the
corresponding one of Bai and Cheng ([2]) for independent and identically distributed random
variables to the case of NSD random variables.
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1. INTRODUCTION

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space
(Ω,F , P ). We say that the sequence {Xn, n ≥ 1} satisfies the strong law of large numbers
if there exist some increasing sequence {an, n ≥ 1} and some sequence {cn, n ≥ 1} such
that

1
an

n∑
i=1

(Xi − ci)→ 0 a.s. as n→∞.

Many authors have studied the strong law of large numbers for sequences of indepen-
dent and identically distributed random variables. The following Theorems A is due to
Bai and Cheng ([2]).

Theorem A. Suppose that 1 < α, β < ∞, 1 ≤ p < 2, and 1/p = 1
α + 1

β . Let
{Xn, n ≥ 1} be a sequence of independent and identically distributed random variables
satisfying EX1 = 0, and let {ank, 1 ≤ k ≤ n, n ≥ 1} be an array of real numbers
satisfying

lim sup
n→∞

(
1
n

n∑
k=1

|ank|α
)1/α

<∞.
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If E|X1|β <∞, then

n−1/p
n∑
k=1

ankXk → 0 a.s. as n→∞.

The result of Theorem A for independent and identically distributed random variables
has been extended to the case of dependent random variables. See for example, Jing
and Liang ([12]) established Marcinkiewicz–Zygmund strong law of large numbers for
weighted sums of negatively associated random variables. Meng and Lin ([14]) obtained
the Marcinkiewicz–Zygmund strong law of large numbers for ρ̃-mixing random variables.
Moveover, Shen ([17]) discussed the strong limit theorem for weighted sums of sequences
of negatively dependent random variables. Sung ([22]) gave some sufficient conditions to
prove the strong law of large numbers for weighted sums of random variables. Recently,
Hu et al. ([9]) established the strong law of large numbers of partial sums for pairwise
of negatively quadrant dependent sequences. Shen and Wu ([16]) investigated strong
and weak convergence for asymptotically almost negatively associated random variables.
Shen ([18]) established a general result on strong convergence for weighted sums of a class
of random variables. Inspired by the literatures above, we will extend and improve the
result of Theorem A to the case of weighted sums of negatively superadditive dependent
random variables.

The definitions of negatively associated random variables and negatively superaddi-
tive dependent random variables are as follows.

Definition 1.1. A finite collection of random variables X1, X2, . . . , Xn is said to be
negatively associated (NA) if for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n},

Cov{f(Xi : i ∈ A1), g(Xj : j ∈ A2)} ≤ 0, (1.1)

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An
infinite sequence {Xn, n ≥ 1} is NA if every finite subcollection is NA.

The notion of NA was first introduced by Alam and Lai Saxena ([1]) and carefully
studied by Joag-Dev and Proschan ([11]). Joag-Dev and Proschan ([11]) showed that
many well known multivariate distributions possess the NA property. For more details
about NA random variables, one can refer to Block et al. ([3]), Matuala ([13]), Budsaba
et al. ([4]), Wu and Jiang ([28, 29]), Wang et al. ([23]), Yang et al. ([30]), Gerasimov
et al. ([8]), and so on.

Definition 1.2. A function φ : Rn → R is called superadditive if φ(x∨y) +φ(x∧y) ≥
φ(x) + φ(y) for all x,y ∈ Rn, where ∨ is for componentwise maximum and ∧ is for
componentwise minimum.

Next, we provide the concept of negatively superadditive dependent random variables
as follows.

Definition 1.3. A random vector X = (X1, X2, . . . , Xn) is said to be negatively super-
additive dependent (NSD) if

Eφ(X1, X2, . . . , Xn) ≤ Eφ(X∗1 , X
∗
2 , . . . , X

∗
n), (1.2)
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where X∗1 , X
∗
2 , . . . , X

∗
n are independent such that X∗i and Xi have the same distribution

for each i, and φ is a superadditive function such that the expectations in (1.2) exist.
A sequence {Xn, n ≥ 1} of random variables is said to be NSD if for all n ≥ 1,

(X1, X2, . . . , Xn) is NSD.

The concept of NSD random variables was introduced by Hu ([10]). An example of
an NSD sequence which is not NA was constructed by Hu ([10]), and illustrated that
NSD implies NOD (negatively orthant dependent). Christofides and Vaggelatou ([5])
indicated that the family of NSD sequence contains NA. So we can see that NSD is weaker
than NA. Negatively superadditive dependent structure is an extension of negatively
associated structure and sometimes more useful than it and can be used to get many
important probability inequalities. A number of limit theorems and applications for NSD
random variables have been found by many authors. See for example, Eghbal et al. ([6])
derived two maximal inequalities and strong law of large numbers of quadratic forms of
NSD random variables, and Eghbal et al. ([7]) provided some Kolmogorov inequality for
quadratic forms of nonnegative NSD uniformly bounded random variables, Shen et al.
([20]) obtained Kolmogorov-type inequality and the almost sure convergence for NSD
sequences, Shen et al. ([21]) established some inequalities for NSD random variables,
Shen et al. ([19]) gave some applications of the Rosenthal-type inequality for NSD
random variables, Wang et al. ([26]) presented some results on complete convergence
for weighted sums of NSD random variables and gave its application in the EV regression
model, and so forth.

Finally, we will present the concept of stochastic domination, which will be used
frequently in this paper.

Definition 1.4. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C, such that

P (|Xn| > x) ≤ CP (|X| > x) (1.3)

for all x ≥ 0 and n ≥ 1.

The main purpose of the paper is to study the strong law of large numbers for weighted
sums of NSD random variables, which generalizes the corresponding one of Theorem A
for independent and identically distributed random variables. The techniques used in the
paper are the truncation method and the moment inequality for NSD random variables.

Throughout this paper, let a ∧ b = min(a, b), a ∨ b = max(a, b) and C denotes a
positive constant which may be different in various places. Let I(A) be the indicator
function of the set A and an = O(bn) stands for an ≤ Cbn.

2. PRELIMINARY LEMMAS

The main results of this paper are dependent on the following lemmas.

Lemma 2.1. (cf. Hu, [10]) Let {Xn, n ≥ 1} be a sequence of NSD random variables,
and let {fn, n ≥ 1} be a sequence of nondecreasing functions, then {fn(Xn), n ≥ 1} is
still a sequence of NSD random variables.
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Lemma 2.2. (cf. Hu, [10]) Let X = (X1, X2, . . . , Xn) be an NSD random vector, and
let X∗ = (X∗1 , X

∗
2 , . . . , X

∗
n) be independent vector such that X∗i and Xi have the same

distribution for each i. Then for any nondecreasing convex function f ,

Ef

(
max

1≤k≤n

k∑
i=1

Xi

)
≤ Ef

(
max

1≤k≤n

k∑
i=1

X∗i

)
. (2.1)

Lemma 2.2 is the so called comparison theorem on moments between the NSD and
independent random variables. Similarly to the proof of Theorem 2 of Shao ([15]) and by
using Lemma 2.2, Wang et al. ([25]) got the following Rosenthal-type maximal inequality
for NSD random variables.

Lemma 2.3. (Rosenthal-type maximal inequality) Let {Xn, n ≥ 1} be a sequence of
NSD random variables with EXn = 0 and E|Xn|p < ∞ for some p > 2. Then there
exists a positive constant Cp depending only on p such that

E

(
max

1≤i≤n

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p)
≤ Cp


n∑
i=1

E|Xi|p +

(
n∑
i=1

EXi
2

)p/2 , n ≥ 1. (2.2)

Lemma 2.4. (cf. Shen et al., [20]) Let {Xn, n ≥ 1} be a sequence of NSD random
variables. If

∞∑
n=1

Var(Xn) <∞, (2.3)

then
∞∑
n=1

(Xn − EXn) converges almost surely.

Lemma 2.5. (cf. Wu, [27]) Let {Xn, n ≥ 1} be a sequence of random variables which
is stochastically dominated by a random variable X. For any α > 0 and b > 0, the
following two statements hold:

E|Xn|αI(|Xn| ≤ b) ≤ C1[E|X|αI(|X| ≤ b) + bαP (|X| > b)], (2.4)
E|Xn|αI(|Xn| > b) ≤ C2E|X|αI(|X| > b),

where C1 and C2 are positive constants.

3. MAIN RESULTS AND THEIR PROOFS

In this section, we will provide some results on strong convergence for weighted sums of
NSD random variables.

Theorem 3.1. Let 0 < p < 2, 0 < α, β < ∞, and 1/p = 1
α + 1

β . Assume that
{Xn, n ≥ 1} is a sequence of NSD random variables stochastically dominated by a
random variable X such that E|X|β < ∞. Let EXn = 0, n ≥ 1, if β > 1 and
{ani, i ≥ 1, n ≥ 1} be an array of real numbers satisfying

n∑
i=1

|ani|α = O(n). (3.1)
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Then

n−1/p max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXi

∣∣∣∣∣→ 0 a.s. as n→∞. (3.2)

P r o o f . For fixed n ≥ 1 and 1 ≤ i ≤ n, denote

Yi = XiI(|Xi| ≤ n1/β) + n1/βI(Xi > n1/β)− n1/βI(Xi < −n1/β),

Zi = (Xi + n1/β)I(Xi < −n1/β) + (Xi − n1/β)I(Xi > n1/β).

Meanwhile, one can see that ani = a+
n − a−ni. Without loss of generality, we can assume

that ani > 0. Hence, Xi = Yi + Zi, which implies that

n−1/p max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXi

∣∣∣∣∣ ≤ n−1/p max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniYi

∣∣∣∣∣+ n−1/p max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniZi

∣∣∣∣∣
≤ n−1/p max

1≤j≤n

∣∣∣∣∣
j∑
i=1

ani(Yi − EYi)

∣∣∣∣∣+ n−1/p max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniEYi

∣∣∣∣∣
+n−1/p max

1≤j≤n

∣∣∣∣∣
j∑
i=1

aniZi

∣∣∣∣∣
.= H + I + J. (3.3)

To prove (3.2) we need to prove H → 0 a.s., I → 0 and J → 0 a.s. as n→∞.
Firstly, we will show that H → 0 a.s.

Combining (3.1) with Hölder’s inequality, we have for 1 ≤ γ < α that

n∑
i=1

|ani|γ ≤

(
n∑
i=1

|ani|α
)γ/α( n∑

i=1

1

)1−γ/α

≤ Cn. (3.4)

Jensen’s inequality implies that for any 0 < α ≤ γ,

n∑
i=1

|ani|γ ≤

(
n∑
i=1

|ani|α
)γ/α

≤ Cnγ/α. (3.5)

It follows from (3.4) and (3.5) that

n∑
i=1

|ani|γ ≤ Cn(1∨γ/α). (3.6)

By Borel–Cantelli lemma, we only need to show that for any ε > 0,

∞∑
n=1

P

(
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

ani(Yi − EYi)

∣∣∣∣∣ > εn1/p

)
<∞. (3.7)
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For fixed n ≥ 1, it easily seen that {ani(Yi − EYi), 1 ≤ i ≤ n} are still NSD random
variables by Lemma 2.1. Taking r > 1/min{1/α, 1/β, 1/2, 1/p − 1/2}, which implies
that r > α, r > β and r > 2. It follows from Markov’s inequality and Lemma 2.3 that

∞∑
n=1

P

(
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

ani(Yi − EYi)

∣∣∣∣∣ > εn1/p

)

≤ C

∞∑
n=1

n−r/pE

(
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

ani(Yi − EYi)

∣∣∣∣∣
r)

≤ C

∞∑
n=1

n−r/p
n∑
i=1

E|ani(Yi − EYi)|r + C

∞∑
i=1

n−r/p

(
n∑
i=1

E|ani(Yi − EYi)|2
)r/2

.= H1 +H2.

For H1, we have by Cr inequality, Jensen’s inequality, (3.5) and Lemma 2.5 that

H1 ≤ C

∞∑
n=1

n−r/p
n∑
i=1

|ani|rE|Yi|r

≤ C

∞∑
n=1

n−r/p
n∑
i=1

|ani|r[E|Xi|rI(|Xi| ≤ n1/β) + nr/βP (|Xi| > n1/β)]

≤ C

∞∑
n=1

n−r/p
n∑
i=1

|ani|r[E|X|rI(|X| ≤ n1/β) + nr/βP (|X| > n1/β)]

≤ C

∞∑
n=1

n−r/βE|X|rI(|X| ≤ n1/β) + C

∞∑
n=1

P (|X| > n1/β)

≤ C

∞∑
n=1

n−r/β
n∑
i=1

E|X|rI((i− 1)1/β < |X| ≤ i1/β)

+C
∞∑
n=1

∞∑
i=n

P (i1/β < |X| ≤ (i+ 1)1/β)

≤ C

∞∑
i=1

E|X|rI((i− 1)1/β < |X| ≤ i1/β)
∞∑
n=i

n−r/β

+C
∞∑
i=1

EI(i1/β < |X| ≤ (i+ 1)1/β)i

≤ C

∞∑
i=1

i(r−β)/βE|X|βI((i− 1)1/β < |X| ≤ i1/β)i−r/β+1

+CE|X|β
∞∑
i=1

I(i1/β < |X| ≤ (i+ 1)1/β)

≤ CE|X|β <∞. (3.8)
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Next, we prove that H2 <∞. By Cr inequality, Jensen’s inequality, (3.6) and Lemma 2.5
again, we can get that

n∑
i=1

E|ani(Yi − EYi)|2 ≤
n∑
i=1

a2
niEY

2
i

≤ C

n∑
i=1

a2
ni[EX

2
i I(|Xi| ≤ n1/β) + n2/βP (|Xi| > n1/β)]

≤ C

n∑
i=1

a2
ni[EX

2I(|X| ≤ n1/β) + n2/βP (|X| > n1/β)]

≤ Cn(1∨2/α)[EX2I(|X| ≤ n1/β) + n2/βP (|X| > n1/β)]. (3.9)

It follows by Markov’s inequality and the fact E|X|β <∞ that

EX2I(|X| ≤ n1/β) + n2/βP (|X| > n1/β)

≤

{
CEX2I(|X| ≤ n1/β) + EX2I(|X| > n1/β), for β ≥ 2,

Cn(2−β)/βE|X|βI(|X| ≤ n1/β) + n−1+2/βE|X|βI(|X| > n1/β), for β < 2,

≤

{
CEX2, for β ≥ 2,

Cn−1+2/βEXβ , for β < 2.

(3.10)

If we denote δ = max{(−1 + 2/p), 2/α, 2/β, 1}, then we can get by (3.9) and (3.10) that

n∑
i=1

E|ani(Yi − EYi)|2 ≤ Cnδ. (3.11)

It is easily seen that(
− 1
p

+
δ

2

)
r = max

{
−1

2
,− 1

β
,− 1

α
,−1

p
+

1
2

}
r

= −min
{

1
2
,

1
β
,

1
α
,

1
p
− 1

2

}
r < −1. (3.12)

Therefore, we have by (3.11) and (3.12) that

H2 ≤ C

∞∑
i=1

n(−1/p+δ/2)r <∞, (3.13)

which together with H1 <∞ yields (3.7).
On the other hand, we will prove that

I
.= n−1/p max

1≤j≤n

∣∣∣∣∣
j∑
i=1

aniEYi

∣∣∣∣∣→ 0, as n→∞. (3.14)
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If 0 < β ≤ 1, then we have by Lemma 2.5 and (3.6) that

I ≤ n−1/p
n∑
i=1

|aniEYi|

≤ n−1/p
n∑
i=1

|ani|[E|Xi|I(|Xi| ≤ n1/β) + n1/βP (|Xi| > n1/β)]

≤ Cn−1/p
n∑
i=1

|ani|[E|X|I(|X| ≤ n1/β) + n1/βP (|X| > n1/β)]

≤ Cn−1/p
n∑
i=1

|ani|[n(1−β)/βE|X|βI(|X| ≤ n1/β) + n1/β−1E|X|βI(|X| > n1/β)]

= Cn−1/α−1E|X|β
n∑
i=1

|ani|

≤ Cn−1/α−1+(1∨1/α) → 0, as n→∞. (3.15)

If β > 1, then we have by EXn = 0, Lemma 2.5 and (3.6) that

I ≤ n−1/p
n∑
i=1

|aniEYi|

≤ n−1/p
n∑
i=1

|ani|[E|Xi|I(|Xi| > n1/β) + n1/βP (|Xi| > n1/β)]

≤ Cn−1/p
n∑
i=1

|ani|E|X|I(|X| > n1/β)

≤ Cn−1/p
n∑
i=1

|ani|n1/β−1E|X|βI(|X| > n1/β)

≤ Cn−1/α−1E|X|β
n∑
i=1

|ani|

≤ Cn−1/α−1+(1∨1/α) → 0, as n→∞. (3.16)

Hence, (3.14) follows from (3.15) and (3.16) immediately.
Finally, we prove J → 0 a.s. as n→∞.

The condition E|X|β <∞ yields that

∞∑
n=1

P (Zn 6= 0) =
∞∑
n=1

P (|Xn| > n1/β) ≤ C
∞∑
n=1

P (|X| > n1/β) ≤ CE|X|β <∞, (3.17)

which implies that P (Zn 6= 0, i.o.) = 0 by Borel–Cantelli lemma. Hence, we have by
(3.1) that
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J
.= n−1/p max

1≤j≤n

∣∣∣∣∣
j∑
i=1

aniZi

∣∣∣∣∣ ≤ n−1/p
n∑
i=1

|aniZi|

≤ n−1/p
(

max
1≤i≤n

|ani|α
)1/α n∑

i=1

|Zi| ≤ n−1/p(
n∑
i=1

|ani|α)1/α
n∑
i=1

|Zi|

≤ Cn−1/β
n∑
i=1

|Zi| → 0, a.s., as n→∞. (3.18)

Therefore, the desired result (3.2) follows from (3.7), (3.14) and (3.18) immediately.
This completes the proof of the Theorem. �

Taking ani ≡ 1 in Theorem 3.1, then (3.1) is always valid for any α > 0. Hence, for
any 0 < p < min(β, 2), letting α = pβ/(β−p) > 0, we can obtain the following corollary.

Corollary 3.2. Let {Xn, n ≥ 1} be a sequence of NSD identically distributed random
variables with E|X1|β < ∞. If β > 1, further assume that EX1 = 0, then for any
0 < p < min(β, 2),

n−1/p max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXi

∣∣∣∣∣→ 0 a.s. as n→∞. (3.19)

Remark 3.3. Theorem 3.1 generalizes and improves Theorem A of Bai and Cheng ([2])
for independent and identically distributed random variables to the case of NSD random
variables, since Theorem 3.1 removes the identically distributed condition and expands
the ranges of α, β, and p, respectively.

Remark 3.4. Comparing Theorem 3.1 with Theorem 2.1 of Wang et al. ([24]), we have
the following improvements:

(i) the moment condition E|X|β < ∞ in Theorem 3.1 is weaker than (2.1) in Wang
et al ([24]);

(ii) the condition (3.1) in Theorem 3.1 is weaker than
∑n
i=1 |ani|α = O(nδ) for some

0 < α < 2 and 0 < δ < 1 in Wang et al ([24]).

Theorem 3.5. Let 1 < r < 2 and {Xn, n ≥ 1} be a sequence of mean zero NSD random
variables, which is stochastically dominated by a random variable X. Let {an, n ≥ 1}
be a sequence of positive constants satisfying An

.=
∑n
k=1 ak ↑ ∞. Denote cn = An/an

for each n ≥ 1. Assume that

E|X|r <∞, (3.20)

N(n) .= Card{i : ci ≤ n} = O(nr), n ≥ 1, (3.21)

then

A−1
n

n∑
k=1

akXk → 0 a.s., as n→∞. (3.22)
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P r o o f . Let N(0) = 0 and denote

X(cn)
n = −cnI(Xn < −cn) +XnI(|Xn| ≤ cn) + cnI(Xn > cn), n ≥ 1.

It follows from (3.20) and (3.21) that

∞∑
i=1

P
(
Xi 6= X

(ci)
i

)
=
∞∑
i=1

P (|Xi| > ci) =
∞∑
j=1

∑
ci≤j<ci+1

P (|Xi| > ci)

≤ C
∞∑
j=1

∑
j−1<ci≤j

P (|X| > j − 1)

= C

∞∑
j=1

(N(j)−N(j − 1))P (|X| > j − 1)

= C

∞∑
j=1

(N(j)−N(j − 1))
∞∑
n=j

P (n− 1 < |X| ≤ n)

= C

∞∑
n=1

n∑
j=1

(N(j)−N(j − 1))P (n− 1 < |X| ≤ n)

≤ C
∞∑
n=1

nrP (n− 1 < |X| ≤ n) ≤ CE|X|r <∞.

By the inequality above and Borel–Cantelli lemma, we can get P (Xi 6= X
(ci)
i , i.o.) = 0.

Therefore, in order to prove (3.22), we only need to prove

A−1
n

n∑
i=1

aiX
(ci)
i → 0 a.s., n→∞. (3.23)

By Cr inequality, Lemma 2.5, (3.20) and (3.21) again,

∞∑
k=1

Var

(
akX

(ck)
k

Ak

)
≤
∞∑
k=1

ck
−2E(X(ck)

k )2

≤ 3
∞∑
k=1

ck
−2E

[
ck

2I(|Xk| > ck) +X2
kI(|Xk| ≤ ck)

]
≤ C

∞∑
k=1

P (|X| > ck) + C

∞∑
k=1

ck
−2EX2I(|X| ≤ ck)

≤ C + C

∞∑
j=1

∑
j−1<ck≤j

ck
−2EX2I(|X| ≤ ck)

≤ C + C

∞∑
j=1

∑
j−1<ck≤j

ck
−2EX2I(|X| ≤ j)
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≤ C + C

∞∑
j=2

(N(j)−N(j − 1))(j − 1)−2

j∑
k=1

EX2I(k − 1 < |X| ≤ k)

≤ C + C

∞∑
k=2

∞∑
j=k

(N(j)−N(j − 1))(j − 1)−2EX2I(k − 1 < |X| ≤ k)

≤ C + C

∞∑
k=2

∞∑
j=k

N(j)((j − 1)−2 − j−2)EX2I(k − 1 < |X| ≤ k)

≤ C + C

∞∑
k=2

∞∑
j=k

jr−3EX2I(k − 1 < |X| ≤ k)

≤ C + C

∞∑
k=2

kr−2E|X|rk2−rI(k − 1 < |X| ≤ k)

= C + C

∞∑
k=2

E|X|rI(k − 1 < |X| ≤ k)

≤ C + CE|X|r <∞.

Hence, by the inequality above, Lemma 2.4 and Kronecker’s lemma, we have

A−1
n

n∑
i=1

ai

(
X

(ci)
i − EX(ci)

i

)
→ 0 a.s., n→∞. (3.24)

In order to prove (3.22), it suffices to prove that

A−1
n

n∑
i=1

aiEX
(ci)
i → 0, n→∞. (3.25)

By (3.21), it easily seen that cn →∞ as n→∞. Notice that EXn = 0 for each n ≥ 1,
we have

|EXnI(|Xn| ≤ cn)| = |EXnI(|Xn| > cn)|.

It follows by Lemma 2.5, (3.20) and (3.21) that,

∞∑
k=1

∣∣∣∣∣akEX(ck)
k

Ak

∣∣∣∣∣ ≤
∞∑
k=1

[P (|Xk| > ck) + ck
−1|EXkI(|Xk| ≤ ck)|]

=
∞∑
k=1

[P (|Xk| > ck) + ck
−1|EXkI(|Xk| > ck)|]

≤
∞∑
k=1

P (|Xk| > ck) +
∞∑
k=1

ck
−1E|Xk|I(|Xk| > ck)

≤ C
∞∑
k=1

P (|X| > ck) + C

∞∑
k=1

ck
−1E|X|I(|X| > ck)
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≤ C + C

∞∑
k=1

∑
ck≤j<ck+1

ck
−1E|X|I(|X| > ck)

≤ C + C

∞∑
k=1

∑
j−1<ck≤j

ck
−1E|X|I(|X| > j − 1)

≤ C + C

∞∑
j=2

(N(j)−N(j − 1))(j − 1)−1
∞∑

k=j−1

EXI(k < |X| ≤ k + 1)

≤ C + C

∞∑
k=1

k+1∑
j=2

N(j)((j − 1)−1 − j−1)EXI(k < |X| ≤ k + 1)

≤ C + C

∞∑
k=1

k+1∑
j=2

jr−2EXI(k < |X| ≤ k + 1)

≤ C + C

∞∑
k=1

kr−1E|X|I(k < |X| ≤ k + 1)

≤ C + C

∞∑
k=1

E|X|rI(k < |X| ≤ k + 1) ≤ C + CE|X|r <∞.

By Kronecker’s lemma, we can get(3.24) immediately. The proof is complete. �
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