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A COMPACTNESS RESULT FOR POLYHARMONIC MAPS

IN THE CRITICAL DIMENSION

Shenzhou Zheng, Beijing
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Abstract. For n = 2m > 4, let Ω ∈ R
n be a bounded smooth domain and N ⊂ R

L a com-
pact smooth Riemannian manifold without boundary. Suppose that {uk} ∈ Wm,2(Ω,N )
is a sequence of weak solutions in the critical dimension to the perturbed m-polyharmonic
maps

d

dt

∣

∣

∣

t=0
Em(Π(u+ tξ)) = 0

with Φk → 0 in (Wm,2(Ω,N ))∗ and uk ⇀ u weakly in Wm,2(Ω,N ). Then u is an m-
polyharmonic map. In particular, the space of m-polyharmonic maps is sequentially com-
pact for the weak-Wm,2 topology.

Keywords: polyharmonic map; compactness; Coulomb moving frame; Palais-Smale se-
quence; removable singularity

MSC 2010 : 35J35, 35J48, 58J05

1. Introduction

Let n > 4 and let Ω ⊂ R
n be a bounded smooth domain. Assume that N is

a smooth closed N -dimensional Riemannian manifold isometrically embedded in the

L-dimensional Euclidean space RL. Recall the Sobolev spaceW l,p(Ω,N ), 1 6 l < ∞

and 1 6 p < ∞, is defined by

W l,p(Ω,N ) = {v ∈ W l,p(Ω,RL) : v(x) ∈ N a.e. x ∈ Ω}

and equipped with the topology inherited from the topology of the linear Sobolev

space W l,p(Ω,RL).

The work was supported by the National Science Foundation of China grant 11371050.
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For m ∈ N, we consider the m-harmonic energy functional

(1.1) Em(v) :=

∫

Ω

|∇mv|2 =











1

2

∫

Ω

|∆m/2v|2 if m is even,

1

2

∫

Ω

|∇∆(m−1)/2v|2 if m is odd

for any v ∈ Wm,2(Ω,N ). In the following context, we set n = 2m and polyharmonic

map is the critical points of energy functional (1.1) with u ∈ Wm,2(Ω,N ) in the

weak form. More precisely, we have

Definition 1.1. A map u ∈ Wm,2(Ω,N ) is called weakly m-polyharmonic if u

is a critical point of the m-polyharmonic energy functional (1.1) with respect to

compactly supported variations on N . That is, if for all ξ ∈ C∞
0 (Ω,RL), we have

(1.2)
d

dt

∣

∣

∣

t=0
Em(Π(u + tξ)) = 0

where Π denotes the nearest point projection onto N .

Note that we consider the tubular neighborhood Vδ ofN in RL for δ > 0 sufficiently

small, and the smooth nearest point projection ΠN : Vδ → N . For u(x) ∈ N , let

P (u) := ∇Π(u) be the orthonormal projection onto the tangent space TuN . The

orthonormal projection onto the normal space will be denoted by P⊥. Then we

readily have ∆mu ⊥ TuN in the sense of distributions, i.e. P (u)∆mu = 0, which

shows the geometric form of the Euler-Lagrange equation for weaklym-polyharmonic

maps (cf. [1], [5]).

Generally speaking, a bubbling phenomenon, which appears in various critical

problems for nonlinear systems, especially in the investigation of harmonic, bihar-

monic and p-harmonic maps, leads to defects of the strong convergence. Typically,

some part of the energy functional is lost in the limit passage so that the sequence

does not have to converge strongly. Therefore, one is usually forced to use subtle

tools coming from Lions’ concentration compactness theory [10], [11] and harmonic

analysis as Sacks-Uhlenbeck do in their pioneering paper [14]. In addition, there

is an important idea, originally introduced by Hélein [7] for harmonic maps due to

the target manifolds N without symmetries, to use Coulomb moving frames such

that they satisfy an extra system of differential equations. Here, it is necessary to

combine the idea of Coulomb moving frames following Gastel and Scheven [4], [5]

for m-polyharmonic maps to establish our compactness result. Before stating our

main conclusion, let us recall the concept of Palais-Smale sequence of the energy

functionals Em(u) in the Sobolev space Wm,2(Ω,N ).
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Definition 1.2. A sequence of maps {uk} ⊂ Wm,2(Ω,N ) is called a Palais-

Smale sequence of the energy functionals Em(uk) on admissible sets W
m,2(Ω,N ), if

the following two conditions hold:

(a) uk ⇀ u weakly in Wm,2(Ω,N ),

(b) E′
n(uk) → 0 in (Wm,2(Ω,N ))∗,

where (Wm,2(Ω,N ))∗ is the dual of Wm,2(Ω,N ).

In this note we are devoted to the compactness of polyharmonic maps in the critical

dimension. This will be shown via a divergence structure of Euler’s equations due to

geometrical speciality and Coulomb moving frames rather than Lions’ concentration

compactness argument. In order to further analyse the behaviour of weakly conver-

gent Palais-Smale sequences for the variational functional in the critical dimension,

we suppose that uk is a Palais-Smale sequence to the perturbed polyharmonic map

functional, i.e.,

(1.3) −∆muk +Φk ⊥ Tuk
N

and

(1.4) {uk} is bounded in Wm,2(Ω,RL), Φk → 0 in (Wm,2(Ω,RL))∗.

It should be pointed out that Euler’s equation of polyharmonic maps (1.2) is

a higher order elliptic system with critical nonlinearity in the lower order deriva-

tives. Note that Em is conformally invariant and the conformal group is non-

compact, Em does not satisfy the Palais-Smale condition (cf. [2], [12]). Hence, this

is a highly nontrivial question whether any weak limit u of a Palais-Smale sequence

of m-polyharmonic maps is still an m-polyharmonic map. To proceed that way,

one must be able to analyse the limit behaviour of weakly convergent Palais-Smale

sequences for variational functionals. This is a delicate task since the equation is

highly nonlinear, and the right-hand side is not continuous with respect to weak

convergence. We are now in a position to state our main result.

Theorem 1.3. Assume that {uk} ⊂ Wm,2(Ω,N ) is a Palais-Smale sequence

of energy functionals (1.1), i.e., they satisfy the relation (1.3) with Φk → 0 in

(Wm,2(Ω,N ))∗, and uk ⇀ u weakly in Wm,2(Ω,N ). Then u ∈ Wm,2(Ω,N ) is

an m-polyharmonic map.

We would like to remark that for n = 2, Theorem 1.3 has been first proven by

Bethuel [2], later simplified via Lions’ concentration compactness method due to

Freire-Müller-Struwe [3]. Later, Strzelecki-Zatorska [16], Wang [19] and Zheng [20]

obtained various corresponding compact results for higher dimensional H-systems,
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n-harmonic maps and biharmonic maps which are based on the arguments originat-

ing from Freire, Müller, Struwe’s work [3]. Recently, Strzelecki (see Proposition 1.2

in [15]) and Goldstein-Strzelecki-Zatorska (see Theorem 1.2 in [6]) derived the com-

pactness of biharmonic maps in dimension four or polyharmonic maps in the critical

dimension into spheres via changing the biharmonic or polyharmonic map equa-

tions to the corresponding equivalent divergence forms without employing Lions’

concentration compactness approach. In particular, it is worth noting that a weak

compactness is a direct consequence of the conservation laws for harmonic and bihar-

monic maps to general manifold, and H-surface due to Rivière and his collaborator’s

work [13], [8], [9]. Inspired by Uhlenbeck-Rivière decomposition to obtain weak com-

pactness for a class of fourth order systems, we adopt some of their ideas in the

process of our main proof.

As an immediate corollary, we get a compactness conclusion for any weakly conver-

gent sequence of weak solutions of m-polyharmonic maps as follows. More precisely,

we have

Corollary 1.4. For n > 2, assume that {uk} ⊂ Wm,2(Ω,N ) is a sequence of

m-polyharmonic maps converging weakly to u in Wm,2(Ω,N ). Then u is an m-

polyharmonic map.

This note is organized as follows. In Section 2, we provide some preliminary

lemmas by recalling the Coulomb moving frames, and give Euler’s equations of the

perturbed m-polyharmonic maps. In Section 3, we prove compactness of a Palais-

Smale sequence satisfying (1.4) under the smallness condition on the basis of the

divergence structure and geometric properties of m-polyharmonic maps, and then

derive the main Theorem 1.3 via removable singularity.

2. Some analytic tools

For Ω ⊂ R
n and u ∈ Wm,2(Ω,N ), let us denote by u∗TN the pull-back bundle of

TN based on u over Ω, and let {eα}Nα=1 be a Coulomb moving frame along u
∗TN

if {eα}Nα=1 forms an orthonormal base of TuN which is a tangent space of N at the

point u(x) for a.e. x ∈ Ω. Then we have the following perturbed polyharmonic map

equation via the Coulomb moving frame.

Lemma 2.1. For n > 2, suppose that {eα}Nα=1 is a Coulomb moving frame

along u∗TN . Then u ∈ Wm,2(Ω,N ) satisfies

−∆mu+Φ ⊥ TuN a.e. in Ω,
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if and only if for 1 6 α 6 N we have

(2.1) ∆m−1div〈∇u, eα〉 = 〈Φ, eα〉+∆m−1(〈∇u,∇eα〉)

+

m−1
∑

s=1

s
∑

l=0

(−1)s−l

(

s

l

)

[

∆m−s−1divl(〈∇s+1u,∇s−l+1eα〉)

+ ∆m−s−1divl+1(〈∇su,∇s−l+1eα〉)
]

,

in the sense of distributions. Here Φ ∈ (Wm,2(Ω,RL))∗.

P r o o f. Since {eα}Nα=l is a moving frame along u
∗TN and −∆mu + Φ ⊥ TuN

a.e. in Ω, we get

(2.2) 〈−∆mu+Φ, eα〉 = 0 for 1 6 α 6 N.

A direct computation by induction shows that

(2.3) ∆m−1〈∆u, eα〉 = 〈∆mu, eα〉+
m−1
∑

s=1

[

∆m−s−1〈∇∆su,∇eα〉

+∆m−s−1div〈∆su,∇eα〉
]

,

which implies

(2.4) 〈Φ, eα〉 = 〈∆mu, eα〉 = ∆m−1div〈∇u, eα〉 −∆m−1〈∇u,∇eα〉

−
m−1
∑

s=1

[

∆m−s−1〈∇∆su,∇eα〉+∆m−s−1div〈∆su,∇eα〉
]

.

On the other hand, it follows from Leibniz’s rule that

(2.5) 〈∆su,∇eα〉 =
s

∑

l=0

(−1)s−l

(

s

l

)

divl〈∇su,∇s−leα〉.

Now we substitute (2.5) into (2.4), and obtain (2.1). �

It is well known that the Coulomb moving frame is an important ingredient for

establishing various estimates for harmonic, n-harmonic and biharmonic maps into

general target manifolds. Here, the construction of Coulomb moving frames along

Wm,2-maps under the smallness condition on Em(u) is also inspired by Uhlenbeck’s

Coulomb gauge construction for Yang-Mills fields [18] and we have to combine it with

the higher order estimates (cf. Theorem 5.1 and Lemma 5.3 in [5]). Let us recall the

definition and basic properties of Lorentz spaces.
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Definition 2.2. Let Ω ⊂ R
n be an open subset. For 1 < p < ∞ and 1 6 q 6 ∞,

the Lorentz space Lp,q(Ω) consists of all measurable functions f : Ω → R such that

‖f‖Lp,q(Ω) =







(
∫ ∞

0

(t1/pf∗(t))q
dt

t

)1/q

if 1 6 q < ∞,

‖t1/pf∗(t)‖L∞(0,∞) if q = ∞

is finite, where f∗ : [0,∞) → R denotes the nonincreasing rearrangement of |f |:

|{x ∈ Ω: |f(x)| > s}| = |{t ∈ [0, |Ω|) : f∗(t) > s}|, s > 0.

It is easy to see that for 1 < p < ∞ and 1 6 q 6 ∞, the Lorentz space Lp,q(Ω) is the

dual space of Lp/(p−1),q/(q−1)(Ω). Moreover, Lp,p(Ω) = Lp(Ω), Lp′,q′(Ω) ⊂ Lp,q(Ω)

if 1 < p 6 p′ < ∞ and 1 6 q′ 6 q 6 ∞ and |Ω| < ∞.

In our proof of the main theorem, the following multiplication rule between Lorentz

spaces will play a central role, for details see [5], [17].

Proposition 2.3. Let 1 < a, c < ∞ and 1 6 b, d 6 ∞. If f ∈ La,b(Ω),

g ∈ Lc,d(Ω), and 1/a+ 1/c = 1/r 6 1, 1/b+ 1/d > 1/s, then fg ∈ Lr,s(Ω), and

(2.6) ‖fg‖Lr,s(Ω) 6 C‖f‖La,b(Ω)‖g‖Lc,d(Ω).

In particular, in the case 1/a+ 1/c = 1, we have fg ∈ L1(Ω), and

(2.7) ‖fg‖L1(Ω) 6 C‖f‖La,b(Ω)‖g‖Lc,d(Ω),

whenever 1/b+ 1/d > 1.

Here, we simply introduce the Sobolev-Lorentz space and some related embedding

conclusions. As we know, the Sobolev embedding theorem can be generalized to the

scale of Lorentz spaces. If f ∈ W k(Rn,R) with ∇kf ∈ Lp,q(Rn) for some k ∈ N,

1 < p < n/k and 1 6 q 6 ∞, then we have f ∈ Lnp/(n−kp),q(Rn) and

‖f‖Lnp/(n−kp),q(Rn) 6 C‖∇kf‖Lp,q(Rn),

which can be found in [5], [17]. If they are defined on the ball, analogous statements

hold for a Sobolev-Lorentz’s embedding inequality and a Lorentz version of Poincaré’s

inequality as follows, respectively:

(2.8) ‖f‖Lnp/(n−kp),q(B) 6 C
k

∑

l=0

‖∇lf‖Lp,q(B),
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and

(2.9) ‖f − Pk−1(x)‖Lnp/(n−kp),∞(B) 6 C‖∇kf‖Lp,∞(B),

where Pk−1(x) denotes an appropriate (k−1)-order average of the Taylor polynomial

of f over B.

Without loss of generality it suffices to show that u is an m-polyharmonic map

only in 2B ⊂ Ω by a conformal transformation to the energy functional Em(u). In

the sequel, we denote the ball B = Br(x) ⊂ R
n, and αB = Bαr(x) for any α > 0.

In virtue of the construction of the Coulomb moving frames, the following higher

order estimates are important to attain our main aim, for details see their proof in

Section 5 from Gastel and Scheven’s paper [5].

Proposition 2.4. Let u ∈ Wm,2(2B,N ). If there exists an ε0 > 0 such that

(2.10) ‖∇u‖Wm−1,2(2B) 6 ε0,

then there exists a Coulomb moving frame {eα}Nα=1 ⊂ Wm,2(B, TN ) such that its

connection form A = (Aαβ) := (〈deα, eβ〉) satisfies

(2.11) d∗A = 0 in B;

m
∑

j=0

‖∇jA‖L2m/j+1,1(B) 6 C‖∇u‖Wm−1,2(2B),

and

(2.12)
N
∑

α=1

‖∇seα‖L2m/s,p(B) 6 C
s

∑

l=1

(

‖∇l−1A‖L2m/l,pk/l(2B)+‖∇lu‖L2m/l,pk/l(2B)

)k/l

for every 1 6 s 6 m and 1 6 p 6 ∞. Here, the constant C depends only on m

and N .

3. Proof of main result

Lemma 3.1 (ε-weak compactness). For any n > 3, let there exist an ε0 > 0 such

that if {uk} ⊂ Wm,2(2B,N ) is a Palais-Smale sequence satisfying (1.3) and (1.4)

with Ω replaced by 2B, and uk ⇀ u weakly in Wm,2(2B,N ) with the following

smallness assumption:
m
∑

l=1

‖∇luk‖L2m/l(2B) 6 ε0.

Then u ∈ Wm,2(B,N ) is a m-polyharmonic map.
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P r o o f. Let ε0 > 0 be the same constant as in Proposition 2.4. Then it follows

that for any k > 1 there is a Coulomb moving frame {ekα}
N
α=l along u

∗
kTN such that

its connection form Ak = (Ak
αβ) := (〈dekα, e

k
β〉) satisfies

(3.1) δAk = 0 in B;

m
∑

j=0

‖∇jAk‖L2m/(j+1),1(B) 6 C‖∇uk‖Wm−1,2(2B),

and

(3.2)

N
∑

α=1

‖∇sekα‖L2m/s,p(B)

6 C

s
∑

l=1

(

‖∇l−1Ak‖L2m/l,pk/l(2B) + ‖∇luk‖L2m/l,pk/l(2B)

)k/l

for every 1 6 s 6 m and 1 6 p 6 ∞.

Therefore, we may assume, after passing to a subsequence, that ekα ⇀ eα
weakly in Wm,2(B,RL) and strongly in W s(B, RL) with 0 6 s 6 m − 1, and

∇mAk ⇀ ∇mA weakly in L2m/(m+1),1(B). Moreover, {eα}Nα=1 is a Coulomb moving

frame along u∗TN due to the smoothness property of N . Furthermore, on the basis

of Proposition 2.4 we conclude that A := (〈deα, eβ〉) satisfies the estimates

(3.3) d∗A = 0 in B;

m
∑

j=0

‖∇jA‖L2m/(j+1),1(B) 6 C‖∇u‖Wm−1,2(2B) 6 Cε0,

and

N
∑

α=1

‖∇seα‖L2m/s,p(B)

6 C
s

∑

l=1

(

‖∇l−1A‖L2m/l,pk/l(2B) + ‖∇lu‖L2m/l,pk/l(2B)

)k/l
6 Cε

k/l
0

with every 1 6 s 6 m and 1 6 p 6 ∞; for details see Lemma 5.1 in [5].

Euler’s equations of the critical points ofm-harmonic energy functional (1.1), yield

that the Palais-Smale sequences {uk} of m-polyharmonic maps have the form

(3.4) ∆m−1div〈∇uk, e
k
α〉 = 〈Φ, ekα〉+∆m−1(〈∇uk,∇ekα〉) +

m−1
∑

s=1

s
∑

l=0

(−1)s−l

(

s

l

)

×
[

∆m−s−1divl(〈∇s+1uk,∇
s−l+1ekα〉) + ∆m−s−1divl+1(〈∇suk,∇

s−l+1ekα〉)
]

,
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where uk and Φk are suitable for the convergence assumptions

(3.5) uk ⇀ u in Wm,2(2B,RL), Φk → 0 in (Wm,2(2B,RL))∗.

Observe ∇sekα → ∇seα strongly in L2(B) and ∇suk → ∇su strongly in L2(B,RL)

for s = 0, 1, . . . ,m − 1 due to Proposition 2.4 and Rellich’s compactness theorem.

Then it is obvious that

∆m−1div〈∇uk, e
k
α〉 → ∆m−1div〈∇u, eα〉 in D′(B),(3.6)

∆m−1(〈∇uk,∇ekα〉) → ∆m−1(〈∇u,∇eα〉) in D′(B).(3.7)

Notice that

|〈Φk, e
k
α〉{(Wm,2)∗,Wm,2}| 6 ‖Φk‖(Wm,2(B))∗‖e

k
α‖Wm,2(B) → 0,(3.8)

(3.9) ∆m−s−1divl(〈∇s+1uk,∇
s−l+1ekα〉)

→ ∆m−s−1divl(〈∇s+1u,∇s−l+1eα〉) in D′(B),

and

(3.10) ∆m−s−1divl+1(〈∇suk,∇
s−l+1ekα〉)

→ ∆m−s−1divl+1(〈∇su,∇s−l+1eα〉) in D′(B)

for 0 6 s− l 6 m− 1 and 1 6 α 6 N , as k → ∞. Therefore, in order to ensure that

the limit map u is an m-polyharmonic map in the sense of distributions due to the

above various convergence results, it is a key step to prove that for any 1 6 α 6 N

we have

(3.11) 〈∇muk,∇
mekα〉 → 〈∇mu,∇meα〉 in D′(B).

To deal with the convergence (3.11) in the sense of distributions, let us introduce the

orthogonal projections P (y) : R
L → TyN and P⊥(y) := Id− P (y) : R

L → (TyN )⊥,

for which we can refer to [5], [9]. For simplicity, we write P and P⊥ instead of P (y)

and P⊥(y), respectively, then it follows that

(3.12) 〈∇muk,∇
mekα〉 = 〈(P ◦ uk)∇

muk,∇
m−1((P⊥ ◦ uk)∇ekα)〉

+ 〈(P ◦ uk)∇
muk,∇

m−1((P ◦ uk)∇ekα)〉

+ 〈(P⊥ ◦ uk)∇
muk,∇

mekα〉

:= I + II + III.
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For the estimate of the first term I, by a direct calculation one shows that

I =

m−1
∑

l=0

(

m− 1

l

)

〈(P ◦ uk)∇
muk,∇

l(P⊥ ◦ uk)∇
m−lekα〉

=
m−1
∑

l=1

(

m− 1

l

)

〈(P ◦ uk)∇
muk,∇

l(P⊥ ◦ uk)∇
m−lekα〉,

where we employed 〈(P ◦uk)∇muk, (P
⊥◦uk)∇mekα〉 = 0 in the second equality above.

Note that, for each l = 1, . . . ,m− 1, we have

∇l(P⊥ ◦ uk) =

l
∑

s=1

(

l

s

)

∇l−sP⊥∇suk →
l

∑

s=1

(

l

s

)

∇l−sP⊥∇su = ∇l(P⊥ ◦ u)

strongly in L2m/l,2(B), where we used ‖P⊥‖Cm−1 6 C and

∇m−lekα → ∇m−lekα strongly in L2m/(m−l),2(B).

Therefore, it follows by the duality property of Lorentz spaces that

I =

m−1
∑

l=1

(

m− 1

l

)

〈(P ◦ uk)∇
muk,∇

l(P⊥ ◦ u)∇m−leα〉

+

m−1
∑

l=1

(

m− 1

l

)

〈(P ◦ uk)∇
muk, (∇

l(P⊥ ◦ uk)∇
m−lekα −∇l(P⊥ ◦ u)∇m−leα)〉

→
m−1
∑

l=1

(

m− 1

l

)

〈(P ◦ u)∇mu,∇l(P⊥ ◦ u)∇m−leα〉 in D′.

To estimate the second term II, we use the identity (P ◦uk)∇ekα =
N
∑

β=1

Ak
αβe

k
β , which

implies

II =

N
∑

β=1

m−1
∑

l=0

(

m− 1

l

)

〈(P ◦ uk)∇
muk,∇

l(Ak
αβ)∇

m−lekβ〉

=
N
∑

β=1

m−1
∑

l=1

(

m− 1

l

)

〈(P ◦ uk)∇
muk,∇

l(Ak
αβ)∇

m−lekβ〉,

where the second equality is due to δAk
αβ = 0. Noting that ∇l(Ak

αβ) → ∇l(Aαβ)

strongly in L2m/l,2(B) and ∇m−lekβ → ∇m−leβ strongly in L2m/(m−l),2(B) for
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1 6 l 6 m− 1, similarly to the case I we deduce

II =
N
∑

β=1

m−1
∑

l=1

(

m− 1

l

)

〈(P ◦ uk)∇
muk,∇

l(Ak
αβ)∇

m−lekβ〉

→
N
∑

β=1

m−1
∑

l=1

(

m− 1

l

)

〈(P ◦ u)∇mu,∇l(Aαβ)∇
m−leβ〉 in D′.

Finally, to estimate the third term, in virtue of (P⊥ ◦ uk)∇uk = 0 we obtain

0 = ∇m−1((P⊥ ◦ uk)∇uk) =

m−1
∑

l=1

(

m− 1

l

)

∇l(P⊥ ◦ uk)∇
m−luk + (P⊥ ◦ uk)∇

muk,

or

III = −
m−1
∑

l=1

(

m− 1

l

)

〈∇l(P⊥ ◦ uk)∇
m−luk,∇

mekα〉.

Note that for 1 6 l 6 m− 1 we have

∇mekα ⇀ ∇meα weakly in L2(B),

∇m−luk → ∇m−luk strongly in L2m/m−l,2(B)

and

‖∇l(P⊥ ◦uk)−∇l(P⊥ ◦u)‖L2m/l,2 6 C

l
∑

j=0

‖∇luk −∇lu‖L2m/l,2 → 0 strongly in B,

which is due to ‖P⊥‖Cm−1 6 C. Therefore,

III = −
m−1
∑

l=1

(

m− 1

l

)

〈∇l(P⊥ ◦ uk)∇
m−luk,∇

mekα〉

→ −
m−1
∑

l=1

(

m− 1

l

)

〈∇l(P⊥ ◦ u)∇m−lu,∇meα〉 in D′.

Now, by substituting the convergence of I, II, and III into (3.12), we obtain (3.11).

Putting the above convergence of (3.6), (3.7), (3.8), (3.9), (3.10), and (3.11) to-

gether, by (3.4) we have

(3.13) ∆m−1div〈∇u, eα〉 = ∆m−1(〈∇u,∇eα〉) +
m−1
∑

s=1

s
∑

l=0

(−1)s−l

(

s

l

)

×
[

∆m−s−1divl(〈∇s+1u,∇s−l+1eα〉)

+ ∆m−s−1divl+1(〈∇su,∇s−l+1eα〉)
]

,

which implies that u is an m-polyharmonic map. �
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On the basis of Lemma 3.1, the energy of all uk can concentrate only on a fi-

nite “bad set” Σ = Ω \ G, while the “good set” G consists of those x0 for which

lim inf
k→∞

∫

Br(x0)

m
∑

l=1

|∇luk|2m/l 6 ε20 for the given sufficiently small ε0 and some r > 0.

Therefore, we derive that the “bad set” Σ is finite due to the boundedness of the total

energy. One may have good uniform regularity estimates on G allowing one to pass

to the limit on G and leave finitely many singularities in Σ. As a direct consequence

of the standard removable singularity argument, we obtain that the weak limit of

a sequence of polyharmonic maps is a polyharmonic map. Now, we give the proof of

main theorem.

P r o o f of Theorem 1.3. Assume that {uk}∞k=1 ∈ Wm,2(Ω,N ) is a sequence of

extrinsic m-polyharmonic maps and uk ⇀ u weakly in Wm,2(Ω,N ). Since uk is

a bounded sequence in Wm,2(Ω,N ), we have that µk :=
∫

Ω

m
∑

l=1

|∇luk|
2m/l dx is a

family of nonnegative Radon measures with M = sup
k

µk(Ω) < ∞. Therefore, after

passing to a subsequence, we may suppose that there is a nonnegative Radon measure

µ on Ω such that

µk :=

∫

Ω

m
∑

l=1

|∇luk|
2m/l dx → µ,

as the convergence of Radon measures. Let ε0 > 0 be the same constant as in

Lemma 3.1 and define Σ by

(3.14) Σ := {x ∈ Ω: µ({x}) > ε20}.

Then by a simple covering argument we have that Σ is a finite set. In fact

H0(Σ) 6
M

ε20
, M = sup

k

∫

Ω

m
∑

l=1

|∇luk|
2m/l dx < ∞,

where H0 is a 0-dimensional Hausdorff measure. In fact, let Σ′ = {x1, . . . , xm} ⊂ Σ

be any finite subset of Σ, then there is a small δ0 > 0 such that {Bδ0(xi)}si=1 are

mutually disjoint balls and

lim inf
k→∞

∫

Bδ0
(xi)

m
∑

l=1

|∇luk|
2m/l dx > ε20, i = 1, 2, . . . , s,

which implies that there is a natural number Ks ∈ N such that for any k > Ks we

have
∫

Bδ0
(xi)

m
∑

l=1

|∇luk|
2m/l dx > ε20, i = 1, 2, . . . , s.

148



Therefore, for any k > Ks we have

sε20 6

s
∑

i=1

∫

Bδ0
(xi)

m
∑

l=1

|∇luk|
2m/l dx =

∫

s⋃

i=1
Bδ0

(xi)

m
∑

l=1

|∇luk|
2m/l dx

6

∫

Ω

m
∑

l=1

|∇luk|
2m/l dx 6 M < ∞.

This implies s 6 Mε−2
0 .

Therefore, for any x0 ∈ Ω \ Σ there exists an r0 > 0 such that µ(B2r0(x0)) < ε20.

On account of

lim sup
k→∞

∫

Br0 (x0)

m
∑

l=1

|∇luk|
2m/l dx 6 µ(B2r0(x0)),

we may assume that there exists K0 > 1 such that

(3.15)

∫

Br0 (x0)

m
∑

l=1

|∇luk|
2m/l dx 6 ε20.

Therefore, such a property leads to non-compactness of polyharmonic maps in di-

mension n = 2m only at a finite number of points in Ω. Lemma 3.1 implies that u

is an m-polyharmonic map in Br0(x0). Since the point x0 ∈ Ω \ Σ is arbitrary, we

conclude that u is an m-polyharmonic map in Ω \ Σ. It is a standard argument to

show that u is an m-polyharmonic map in Ω (see [2], [3] or [1], [5], [16]). The proof

of Theorem 1.3 is complete. �

Remark 3.2. We claim that everyWm,2-weak limit of a sequence of polyharmonic

maps uk into a compact Riemannian manifold N is again a polyharmonic map. Here

we follow a scheme using the method of Coulomb moving frames and removability of

isolated singularities. In fact, a polyharmonic map is a higher order elliptic system

with critical nonlinearity. Note that Em is conformal invariant and the conformal

group is non-compact, Em does not satisfy the Palais-Smale condition. Hence, this

is a highly nontrivial result in the setting of the general Riemannian manifold N

because there are unbounded functions in Wm,2(Rn,N ), n = 2m. In particular, for

the special case N = S
k−1 this is indeed trivial since it follows from the fact that

the polyharmonic map equations can be rewritten in the divergence form.
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