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Abstract. We investigate isometric composition operators on the weighted Dirichlet space
Dα with standard weights (1−|z|2)α, α > −1. The main technique used comes from Martín
and Vukotić who completely characterized the isometric composition operators on the clas-
sical Dirichlet space D. We solve some of these but not in general. We also investigate the
situation when Dα is equipped with another equivalent norm.
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1. Introduction

Let D be the open unit disk in the complex plane. Denote by H(D) the collection

of all holomorphic functions on D and by S(D) the collection of all analytic self-maps

of the unit disk. For ϕ ∈ S(D), the associated composition operator Cϕ is defined

by

Cϕ(f) = (f ◦ ϕ), f ∈ H(D).

The study of composition operators achieved abundant results in the last four decades

and has become a major driving force for the development of both complex analysis

and operator theory. The main goal is to relate the operator theoretical properties

of Cϕ to the function theoretical properties of its symbol ϕ. For general information

about composition operators, we refer the interested readers to two excellent books

[3] and [11].

The work was supported in part by the National Natural Science Foundation of China
(Grant Nos. 11371276; 11301373; 11401426).
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Let X and Y be two normed vector spaces. A linear operator T mapping X into

Y is called a linear isometry (or simply an isometry) if ‖Tx‖Y = ‖x‖X for every

x ∈ X . Classifying the form of isometries dates back to Banach who characterized

the isometries on certain Lp spaces and on C(X), where X is a compact metric

space, in [1]. Since then, there has been much work on characterizing isometries on

function spaces. A good reference book in this area is [4].

For characterizations of isometries among composition operators, it was first

pointed out by Ryff [9] that every isometric composition operator on the classical

Hardy space Hp is induced by an inner function vanishing at the origin. Ryff’s

result also appears in the work of Nordgren [8] and Shapiro [10]. For the weighted

Bergman space A2
α, the authors of [2] showed that only rotations can induce isomet-

ric composition operators. In [6], Martín and Vukotić extended this result to the

general Ap
α for 1 < p < ∞. They showed that their method also provides a new

proof to Ryff’s result on the Hardy space Hp. In another paper [7], Martín and

Vukotić considered this question on the classical Dirichlet space D and developed

a technique to solve this problem completely. To be specific, they showed that each

isometric composition operator on D is induced by a univalent full self-map, where,

by a full self-map, they meant an analytic self-map ϕ whose image has full measure,

i.e. Area(ϕ(D)) = Area(D).

Motivated by these results, we investigate the isometric composition operators

acting on the weighted Dirichlet space Dα with standard weights (1−|z|2)α, α > −1.

It is well known that this family of analytic function spaces includes properly all the

classical function spaces mentioned above, equipped with equivalent but not equal

norms. The main technique in this paper comes from [7]. We solved some of these

problems but not in general. We believe it is a nontrivial problem and a complete

solution will arise some experts’ interest.

2. Isometric composition operators on the weighted Dirichlet space

For α > −1, the weighted Dirichlet space Dα is defined as

Dα =

{

f ∈ H(D) ; ‖f‖2α =

∫

D

|f ′(z)|2(1− |z|2)α dA(z) < ∞

}

where dA is the Lebesgue measure normalized so that the area of the unit disk is 1.

The quantity ‖·‖α defines a complete semi-norm on Dα and a norm is often given

by ‖f‖Dα
=

√

|f(0)|2 + ‖f‖2α. The space Dα is a Hilbert space under this norm and

the inner product is obviously given by

〈f, g〉Dα
= f(0)g(0) +

∫

D

f ′(z)g′(z)(1− |z|2)α dA(z).
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Particularly, D1 and Dα with α > 1 are the classical Hardy space H2 and the

weighted Bergman space A2
α−2, respectively, both with equivalent but not equal

norms.

Supposing ϕ is an analytic self-map of the unit disk, it is easy to see by a change

of variables ([3], Theorem 2.32) that

(2.1) ‖f ◦ ϕ‖2α =

∫

D

|f ′(ϕ(z))|2|ϕ′(z)|2(1− |z|2)α dA(z)

=

∫

D

|f ′(w)|2nϕ,α(w) dA(w),

where

nϕ,α(w) =
∑

ϕ(zj)=w

(1 − |zj|
2)α

is called the generalized counting function.

Proposition 2.1. Let α > −1, let ϕ be an analytic self-map of the unit disk.

Then Cϕ defines an isometry on Dα if and only if ϕ(0) = 0 and

nϕ,α(w) = (1− |w|2)α

holds for every w ∈ D except a set of zero area measure.

P r o o f. The sufficiency is obvious by (2.1). We will only prove the necessity.

Suppose Cϕ is an isometry on Dα, then Cϕ preserves the inner product by the

polarization identity, thus for any f ∈ Dα we have

f(0) = 〈f, 1〉Dα
= 〈f ◦ ϕ, 1〉Dα

= f(ϕ(0)).

Taking f(z) = z, we get ϕ(0) = 0. Therefore we have

‖f ◦ϕ‖2α =

∫

D

|f ′(z)|2nϕ,α(z) dA(z) =

∫

D

|f ′(z)|2(1− |z|2)α dA(z) = ‖f‖2α, f ∈ Dα

where we used the formula (2.1). That is, for every function g in the weighted

Bergman space A2
α of the square integrable analytic functions in D with respect to

the measure (1− |z|2)α dA(z) we have

∫

D

|g(z)|2(1− |z|2)α dA(z) =

∫

D

|g(z)|2nϕ,α(z) dA(z).
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This means the identity map from A2
α into L

2(D, nϕ,α dA(z)) is an isometry. Then

the polarization identity yields

∫

D

f(z)g(z)(1 − |z|2)α dA(z) =

∫

D

f(z)g(z)nϕ,α(z) dA(z), f, g ∈ A2
α.

In particular, choose f(z) = zm, m > 0 and g(z) = zn, n > 0 to get

∫

D

zm z n(1− |z|2)α dA(z) =

∫

D

zm z nnϕ,α(z) dA(z).

By the linearity of integration and the Stone-Weierstrass theorem, we know

∫

D

u(z)(1− |z|2)α dA(z) =

∫

D

u(z)nϕ,α(z) dA(z)

holds for all continuous functions on the closed unit disk. Now, the Riesz rep-

resentation theorem implies that (1 − |z|2)α dA(z) = nϕ,α(z) dA(z), which means

nϕ,α(z) = (1− |z|2)α almost everywhere on D by the Lebesgue-Radon-Nikodym the-

orem. �

The next theorem, which is due to Martín and Vukotić [6], follows immediately as

a special case (α = 0) of Proposition 2.1.

Theorem 2.2 ([6], Theorem A). Let ϕ be an analytic self-map of the unit disk D.

Then Cϕ is an isometry on D if and only if ϕ(0) = 0 and ϕ is a univalent full map

of D.

Theorem 2.3. Let −1 < α < 0 or α = 1. Let ϕ be an analytic self-map of the

unit disk D. Then Cϕ is an isometry on Dα if and only if ϕ is a rotation of the unit

disk.

P r o o f. The sufficiency is obvious.

It remains to prove the necessity. We divide this into two cases:

(1) The case “−1 < α < 0”. Since ϕ fixes the origin by Proposition 2.1, Schwarz’s

lemma says |ϕ(z)| 6 |z| for all z ∈ D. From Proposition 2.1 we know that

∑

ϕ(zj)=w

(1− |zj |
2)α = (1− |w|2)α, a.e.

Since −1 < α < 0, each term on the left hand side is no less than the right hand

term, thus we have |ϕ(z)| = |z| almost everywhere in D, which implies ϕ must be

a rotation by Schwarz’s lemma.
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(2) The case “α = 1”. An easy calculation shows ‖zn‖D1
= 1 − 1/(n+ 1) for

all n > 1. By [5], Theorem 2.2, ϕ is an inner function fixing the origin. Then [3],

Lemma 3.27, says
∏

ϕ(zj)=w

|zj | = |w| holds almost everywhere in D. By Proposi-

tion 2.1, we have

(2.2)
∑

ϕ(zj)=w

(1 − |zj|
2) = 1− |w|2 = 1−

∏

ϕ(zj)=w

|zj |
2 a.e.

If there is a point w ∈ D which has only one preimage under ϕ and satisfies (2.2),

then the first equality implies ϕ is a rotation by Schwarz’s lemma. Otherwise, take

any point w satisfying (2.2). Since (1− x) + (1− y) > (1− xy) for any x, y ∈ (0, 1),

we have
∑

ϕ(zj)=w

1− |zj |
2 > 1−

∏

ϕ(zj)=w

|zj|
2,

a contradiction. �

Remark. We have mentioned that D1 coincides with the classic Hardy space H
2

with equivalent but different norms. It was pointed out by Ryff [9] that isometric

composition operators on H2 are those induced by inner functions fixing the origin

(see also [8], [10]), which is quite different from our result.

For the general α > 0, α 6= 1, we conjecture that only rotations can induce

isometric composition operators on Dα. However, we are just able to get some

partial results.

Theorem 2.4. Let α > 0, let ϕ be an analytic self-map of the unit disk D but

not a rotation. If Cϕ is an isometry on Dα, then

(1) the area of the set {w : nϕ(w),0 = 1} is 0;

(2) 0 is the unique zero of ϕ and is of multiplicity 1;

(3) nϕ,α(w) 6 (1− |w|2)α holds for all z ∈ D.

P r o o f. (1) is obvious by Schwarz’s lemma.

For (2), suppose a ∈ D, a 6= 0 is another zero of ϕ; we pick a small neighborhood

W ⊆ ϕ(D) of the origin, then the preimage ofW must contain two neighborhoods of

a and 0, denoted by U and V , respectively. Choose W small enough such that there

are no other zeros in U and V . By the open mapping theorem for analytic functions,

the intersection of images of U and V under ϕ will be a neighborhood of the origin,

denoted still by W . Since the set of all points satisfying (2.2) is dense in D, there

exists a sequence {wn} inW satisfying (2.2) and wn → 0. By the continuity of ϕ and

our assumptions on U and V , we can find two sequences {un} ⊆ U and {vn} ⊆ V
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such that ϕ(un) = ϕ(vn) = wn and un → a, vn → 0. Now taking limits on both sides

of the inequality (1 − |un|
2)α + (1 − |vn|

2)α 6 (1 − |wn|
2)α, we get (1 − |a|2)α 6 0

which is a contradiction. It is easy to check that the above argument remains valid

if a = 0, which means 0 is a zero of multiplicity at least two. Thus, (2) is proved.

The proof of (3) is similar. Suppose (3) fails at a point w ∈ D, i.e. nϕ,α(w) >

(1 − |w|2)α. By Schwarz’s lemma, w has at least two preimages. Now choose an

integer N such that

(2.3)
N
∑

j=1

(1 − |zj|
2)α > (1− |w|2)α.

An argument similar to the proof of (2) shows that there exists N + 1 open sets

U1, U2, . . . , UN ,W such that zj ∈ Uj for j = 1, 2, . . . , N and w ∈ W =
N
⋂

j=1

ϕ(Uj).

Adjusting these open sets to be sufficiently small if necessary, we can tell (2.3) holds

for all points in W , which leads to a contradiction according to Proposition 2.1. �

Corollary 2.5. Let α > 0, α 6= 1, let ϕ be an analytic self-map of the unit disk D.

Then Cϕ is a surjective isometry on Dα if and only if ϕ is a rotation of the unit disk.

P r o o f. We prove this by showing ϕ is a univalent self-map, then the result

follows due to (1) in the above theorem. Suppose ϕ(a) = ϕ(b) for some a, b ∈ D,

then f(ϕ(a)) = f(ϕ(b)) for all f ∈ Dα. Since Cϕ is a surjective isometry, there exists

a function g in Dα such that z = g ◦ ϕ. Hence a = g(ϕ(a)) = g(ϕ(b)) = b, so ϕ is

univalent. �

3. Isometric composition operators on the weighted Dirichlet space

with an alternative norm

When dealing with the weighted Dirichlet space Dα, some experts often use the

weight function logα(1/|z|2) instead of (1− |z|2)α, although they both define equiv-

alent norms. In this section, we investigate isometric composition operators on the

weighted Dirichlet space under this norm, denoted still by ‖·‖Dα
. Similarly to Propo-

sition 2.1, we have

Proposition 3.1. Let α > −1 and let ϕ be an analytic self-map of the unit disk.

Then Cϕ is an isometry on Dα if and only if ϕ(0) = 0 and

∑

ϕ(zj)=w

(

log
1

|zj|2

)α

=

(

log
1

|w|2

)α

a.e.
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For α = 0, this yields the statement of Theorem 2.2.

For 0 < α < 1, it is not clear to us whether there exists any nontrivial composition

operator defining an isometry on Dα, which, we believe, is still an open question.

For α = 1, by the famous Littlewood-Paley identity, D1 coincides with H
2 with the

same norm. We have noticed in the remark following Theorem 2.3 that the isometric

composition operators are those induced by inner functions vanishing at the origin.

In fact, this is an immediate consequence of Proposition 3.1 and [3], Lemma 3.27.

For −1 < α < 0 or α > 1, we have found that no nontrivial isometric composition

operator exists on Dα. To prove this, we need the following observation.

Lemma 3.2. Let α > 1 and let {an}
∞
n=1 a sequence of nonnegative numbers such

that
∞
∑

n=1
an < ∞. Then

∞
∑

n=1
aαn 6

( ∞
∑

n=1
an

)α

, where the equality holds if and only if

there is at most one nonzero element in {an}
∞

n=1.

P r o o f. If there is at most one nonzero element in {an}
∞

n=1, the result is obvious.

Otherwise, note that 0 6 an \
∞
∑

n=1
an < 1, so we have

(

an \
∞
∑

n=1
an

)α

< an \
∞
∑

n=1
an

since α > 1. Summing both sides with respect to n, the result follows. �

Theorem 3.3. Let −1 < α < 0 or α > 1, let ϕ be an analytic self-map of D.

Then Cϕ defines an isometry on Dα if and only if ϕ is a rotation of D.

P r o o f. Sufficiency is obvious.

Now we prove the necessity. Supposing Cϕ defines an isometry on Dα, we know

from Proposition 3.1 that ϕ(0) = 0 and

(3.1)
∑

ϕ(zj)=w

(

log
1

|zj|2

)α

=

(

log
1

|w|2

)α

a.e.

If −1 < α < 0, since ϕ(0) = 0, we have |zj| > |w| for each j by Schwarz’s lemma.

Hence (3.1) implies ϕ is a rotation.

If α > 1, from Lemma 3.2 we get

(

log
1

|w|2

)α

=
∑

ϕ(zj)=w

(

log
1

|zj |2

)α

6

(

∑

ϕ(zj)=w

log
1

|zj |2

)α

a.e.

The Littlewood inequality ([3], Theorem 2.29) reads

∑

ϕ(zj)=w

log
1

|zj|2
6 log

1

|w|2
.
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Therefore, we have

(3.2)

(

log
1

|w|2

)α

=
∑

ϕ(zj)=w

(

log
1

|zj|2

)α

=

(

∑

ϕ(zj)=w

log
1

|zj |2

)α

, a.e.

The latter equality in (3.2) implies ϕ must be univalent in D by Lemma 3.2; then the

former equality in (3.2) and the fact ϕ(0) = 0 imply that ϕ must be a rotation. �

Remark. For α > 1, Dα is the weighted Bergman space A
2
α−2 with equivalent

norms. Our result coincides with the one provided by Carswell and Hammond [2],

even under different norms.
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