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Diagonals of separately continuous functions of n

variables with values in strongly σ-metrizable spaces

Olena Karlova, Volodymyr Mykhaylyuk, Oleksandr Sobchuk

Abstract. We prove the result on Baire classification of mappings f : X ×Y → Z

which are continuous with respect to the first variable and belongs to a Baire
class with respect to the second one, where X is a PP -space, Y is a topological
space and Z is a strongly σ-metrizable space with additional properties. We show
that for any topological space X, special equiconnected space Z and a mapping
g : X → Z of the (n − 1)-th Baire class there exists a strongly separately
continuous mapping f : Xn

→ Z with the diagonal g. For wide classes of
spaces X and Z we prove that diagonals of separately continuous mappings
f : Xn

→ Z are exactly the functions of the (n − 1)-th Baire class. An example
of equiconnected space Z and a Baire-one mapping g : [0, 1] → Z, which is not
a diagonal of any separately continuous mapping f : [0, 1]2 → Z, is constructed.

Keywords: diagonal of a mapping; separately continuous mapping; Baire-one
mapping; equiconnected space; strongly σ-metrizable space

Classification: Primary 54C08, 54C05; Secondary 26B05

1. Introduction

Let f : Xn → Y be a mapping. Then the mapping g : X → Y defined by
g(x) = f(x, . . . , x) is called a diagonal of f .

Investigations of diagonals of separately continuous functions f : Xn → R were
started in classical works of R. Baire [1], H. Lebesgue [14], [15] and H. Hahn [6].
They showed that diagonals of separately continuous functions of n real variables
are exactly the functions of the (n − 1)-th Baire class. Baire classification of
separately continuous functions and their analogs is intensively studied by many
mathematicians (see [17], [21], [25], [16], [2],[3], [9]).

In [16] the problem on a construction of separately continuous functions of n
variables with a given diagonal of the (n − 1)-th Baire class was solved. It was
proved in [18] that for any topological space X and a function g : X → R of the
(n − 1)-th Baire class there exists a separately continuous function f : Xn → R

with the diagonal g. Further development of these investigations deals with the
changing of the range space R by a more general space, in particular, by a metriz-
able space. Notice that conditions on spaces similar to the arcwise connectedness
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(i.e., the equiconnectedness) serve as a convenient tool in a construction of sepa-
rately continuous mappings (see [10, 20]).

In the given paper we study mappings f : Xn → Z with values in a space Z
from a wide class of spaces which contains metrizable equiconnected spaces and
strict inductive limits of sequences of closed locally convex metrizable subspaces.
We first generalize a result from [10] concerning mappings of two variables with
values in a metrizable equiconnected space to the case of mappings of n variables
with values in spaces from wider class. Namely, we prove a theorem on the ex-
istence of a separately continuous mapping f : Xn → Z with the given diagonal
g : X → Z of the (n − 1)-th Baire class in case X is a topological space and
(Z, λ) is a strongly σ-metrizable equiconnected space with a perfect stratification
(Zk)∞k=1 assigned with a mapping λ (Theorem 6). We also obtain a result on a
Baire classification of separately continuous mappings and their analogs defined
on a product of a PP -space and a topological space and with values in a strongly
σ-metrizable space with some additional properties (Theorem 15). In order to
prove this theorem we apply the technics of σ-discrete mappings introduced in
[7] and developed in [5], [26]. For PP -spaces X using Theorem 15 we general-
ize Theorem 3.3 from [10] and get a characterization of diagonals of separately
continuous mappings f : Xn → Z (Theorem 16). Finally, we give an example of
an equiconnected space Z and a Baire-one mapping g : [0, 1] → Z which is not a
diagonal of any separately continuous mapping f : [0, 1]2 → Z (Proposition 18).

2. Preliminaries

Let X , Y be topological spaces and C(X,Y ) = B0(X,Y ) be the collection of
all continuous mappings between X and Y . For n ≥ 1 we say that a mapping
f : X → Y belongs to the n-th Baire class if f is a pointwise limit of a sequence
(fk)∞k=1 of mappings fk : X → Y from the (n − 1)-th Baire class. By Bn(X,Y )
we denote the collection of all mappings f : X → Y of the n-th Baire class.

For a mapping f : X × Y → Z and a point (x, y) ∈ X × Y we write fx(y) =
fy(x) = f(x, y). By CBn(X × Y, Z) we denote the collection of all mappings
f : X × Y → Z which are continuous with respect to the first variable and
belongs to the n-th Baire class with respect to the second one. If n = 0, then we
use the symbol CC(X×Y, Z) for the class of all separately continuous mappings.
Now let CC0(X ×Y, Z) = CC(X ×Y, Z) and for n ≥ 1 let CCn(X×Y, Z) be the
class of all mappings f : X × Y → Z which are pointwise limits of a sequence of
mappings from CCn−1(X × Y, Z).

For a metric space X with a metric | · − · |X , a set ∅ 6= A ⊆ X and a point
x0 ∈ X we write |x0 − A|X = inf{|x0 − a|X : a ∈ A}. If δ > 0, then we put
B(A, δ) = {x ∈ X : |x − A|X < δ} and B[A, δ] = {x ∈ X : |x − A|X ≤ δ}. If
A = ∅, then B(A, δ) = B[A, δ] = ∅.

Let X be a set and n ∈ N. We denote ∆n = {(x, . . . , x) ∈ Xn : x ∈ X}.
Let X be a topological space and ∆ = ∆2 = {(x, x) : x ∈ X}. A set A ⊆ X

is called equiconnected in X if there exists a continuous mapping λ : ((X ×X) ∪
∆) × [0, 1] → X such that λ(A × A × [0, 1]) ⊆ A, λ(x, y, 0) = λ(y, x, 1) = x
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for all x, y ∈ A and λ(x, x, t) = x for all x ∈ X and t ∈ [0, 1]. A space is
equiconnected if it is equiconnected in itself. Notice that any topological vector
space is equiconnected, where a mapping λ is defined by λ(x, y, t) = (1− t)x+ ty.
If (X,λ) is an equiconnected space, then we denote λ1 = λ and for every n ≥ 2
we define a continuous function λn : Xn+1 × [0, 1]n → X ,

(1) λn(x1, . . . , xn+1, t1, . . . , tn) = λ(x1, λn−1(x2, . . . , xn+1, t2, . . . , tn), t1).

A topological spaceX is called strongly σ-metrizable if there exists an increasing
sequence (Xn)∞n=1 of closed metrizable subspacesXn ofX such thatX =

⋃∞
n=1Xn

and for any convergent sequence (xn)∞n=1 in X there exists a number m ∈ N such
that {xn : n ∈ N} ⊆ Xm; the sequence (Xn)∞n=1 is called a stratification of X .

We say that a family A = (Ai : i ∈ I) of sets Ai refines a family B = (Bj : j ∈
J) of sets Bj and denote it by A ≺ B if for every i ∈ I there exists j ∈ J such
that Ai ⊆ Bj . By ∪A we denote the set

⋃

i∈I Ai.
The following notion was introduced in [23]. A space X is said to be a PP -

space if there exists a sequence ((hn,i : i ∈ In))∞
n=1 of locally finite partitions of

unity (hn,i : i ∈ In) on X and sequence (αn)∞n=1 of families αn = (xn,i : i ∈ In) of
points xn,i ∈ X such that for any x ∈ X and a neighborhood U of x there exists
n0 ∈ N such that xn,i ∈ U if n ≥ n0 and x ∈ supphn,i, where supph = {x ∈
X : h(x) 6= 0}. Notice that the notion of a PP -space is close to the notion of
a quarter-stratifiable space introduced in [2]. In particular, Hausdorff PP -spaces
are exactly metrically quarter-stratifiable spaces [19].

Let A be a family of functionally closed subsets of a topological space X .
Define classes Fα and Gα as the following: F0 = A, G0 = {X \ A : A ∈ A}
and for all 1 ≤ α < ω1 we put Fα = {

⋂∞
n=1An : An ∈

⋃

β<α Gβ , n = 1, 2, . . . },

Gα = {
⋃∞

n=1An : An ∈
⋃

β<α Fβ, n = 1, 2, . . . }. Element of families Fα and Gα

are called sets of the functionally multiplicative class α or sets of the functionally
additive class α, respectively; elements of the family Fα∩Gα are called functionally
ambiguous sets of the class α.

A family A = (Ai : i ∈ I) of subsets of a topological space X is called: strongly
functionally discrete if there exists a discrete family (Ui : i ∈ I) of functionally
open subsets of X such that Ai ⊆ Ui for every i ∈ I; σ-strongly functionally
discrete if there exists a sequence of strongly functionally discrete families An

such that A =
⋃∞

n=1 An; a base for a mapping f : X → Y if the preimage f−1(V )
of any open set V in Y is a union of sets from A. By Σf

α(X,Y ) we denote the
collection of all mappings between X and Y with σ-strongly functionally discrete
bases which consist of functionally ambiguous sets of the class α in X .

3. A construction of functions with a given diagonal

A general construction of separately continuous mapping of two variables with
a given diagonal can be found in [20]:

Theorem 1. Let X be a topological space, Z be a Hausdorff space, (Z1, λ) be

an equiconnected subspace of Z, g : X → Z, (Gn)∞n=0 and (Fn)∞n=0 be sequences
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of functionally open sets Gn and functionally closed sets Fn in X2, let (ϕn)∞n=1

be a sequence of separately continuous functions ϕn : X2 → [0, 1], (gn)∞n=1 be a

sequence of continuous mappings gn : X → Z1 satisfying the conditions

1) G0 = F0 = X2 and ∆ = {(x, x) : x ∈ X} ⊆ Gn+1 ⊆ Fn ⊆ Gn for every

n ∈ N;

2) X2 \Gn ⊆ ϕ−1
n (0) and Fn ⊆ ϕ−1

n (1) for every n ∈ N;

3) limn→∞ λ(gn(xn), gn+1(xn), tn) = g(x) for arbitrary x ∈ X , any sequence

(xn)∞n=1 of points xn ∈ X with (xn, x) ∈ Fn−1 for all n ∈ N, and any

sequence (tn)∞n=1 of points tn ∈ [0, 1].

Then the mapping f : X2 → Z,

(2) f(x, y) =

{

λ(gn(x), gn+1(x), ϕn(x, y)), (x, y) ∈ Fn−1 \ Fn

g(x), (x, y) ∈ E =
⋂∞

n=1Gn

is separately continuous.

Let X be a strongly σ-metrizable space. A stratification (Xn)∞n=1 of a space X
is said to be perfect if for every n ∈ N there exists a continuous mapping πn : X →
Xn with πn(x) = x for every x ∈ Xn. A stratification (Xn)∞n=1 of an equicon-
nected strongly σ-metrizable spaceX is assigned with λ if λ(Xn×Xn×[0, 1]) ⊆ Xn

for every n ∈ N. It follows from the Dieudonne-Schwartz Theorem (see [24, Propo-
sition II.6.5]) that a strict inductive limit of a sequence of locally convex metriz-
able spaces Xn, such that Xn is closed in Xn+1, is strongly σ-metrizable space
with the perfect stratification (Xn)∞n=1 assigned with an equiconnected function
λ(x, y, t) = (1 − t)x+ ty.

Proposition 2. Let X be a topological space, (Z, λ) be a strongly σ-metrizable

space with a perfect stratification (Zn)∞n=1 assigned with a mapping λ,m ∈ N

and f ∈ Bm(X,Z). Then there exists a sequence (fn)∞n=1 of mappings fn ∈
Bm−1(X,Zn) such that limn→∞ fn(x) = f(x) for every x ∈ X .

Proof: It is sufficient to put fn = πn ◦ gn, where (πn)∞n=1 is a sequence of
retractions πn : Z → Zn and (gn)∞n=1 is a sequence of mappings gn ∈ Bm−1(X,Z)
which is pointwise convergent to f . �

Proposition 3. Let X be a metrizable space, (Z, λ) be a strongly σ-metrizable

equiconnected space with a perfect stratification (Zn)∞n=1 assigned with a mapping

λ and g ∈ B1(X,Z). Then there exists a sequence (gn)∞n=1 of continuous mappings

gn : X → Zn and a sequence (Wn)∞n=1 of open sets Wn ⊆ X2 such that

1) ∆2 ⊆Wn for every n ∈ N;

2) limn→∞ gn(xn) = g(x) for every x ∈ X and for any sequence (xn)∞n=1 of

points xn ∈ X such that (xn, x) ∈ Wn for all n ∈ N.

Proof: Let (hn)∞n=1 be a sequence of continuous mappings hn : X → Z which
is pointwise convergent to g on X . For every n ∈ N we put fn = πn ◦ hn, where
(πn)∞n=1 is a sequence of retractions πn : Z → Zn. Clearly, fn ∈ C(X,Zn).
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Since Z is a strongly σ-metrizable space with the stratification (Zn)∞n=1, fn → g

pointwise on X .
For every n ∈ N we set

An = {x ∈ X : fk(x) ∈ Zn ∀k ∈ N}.

Since every fk is continuous and Zn is closed in Z, An is closed in X for every n.
Moreover, X =

⋃∞
n=1An, since Z is strongly σ-metrizable.

We firstly construct a sequence (gn)∞n=1 of continuous mappings gn : X → Z

and an increasing sequence (Cn)∞n=1 of closed sets Cn ⊆ An such that (gn)∞n=1

pointwise converges to g on X , X =
⋃∞

n=1 Cn and

(3) (∀n, k ∈ N)(∀x ∈ Ck)(∃U ∈ Ux)|(gn(U) ⊆ Zk),

where by Ux we denote a system of all neighborhoods of x in X .

Let n ∈ N. Define A0 = C0 = ∅, Fk,n = Ak \ B
(

Ak−1,
1
n

)

for every k ∈

{1, . . . , n} and Cn =
⋃n

k=1 Fk,n. Observe that every set Fk,n is closed, for every
n the sets F1,n, . . . , Fn,n are disjoint, every set Cn is closed, Cn ⊆ An ∩Cn+1 for
every n and

∞
⋃

n=1

Cn =

∞
⋃

k=1

∞
⋃

n=k

Fk,n =

∞
⋃

k=1

∞
⋃

n=k

Ak \B
(

Ak−1,
1

n

)

=

∞
⋃

k=1

Ak \Ak−1 = X.

For every n ∈ N we choose a family (Gk,n : 1 ≤ k ≤ n) of open sets such that

Fk,n ⊆ Gk,n and sets G1,n, . . . , Gn,n are mutually disjoint. Moreover, we take a
family (ϕk,n : 1 ≤ k ≤ n) of continuous mappings ϕk,n : X → [0, 1] such that
ϕk,n(Gk,n) ⊆ {0} and ϕk,n(Gi,n) ⊆ {1} for i 6= k. Let

gn(x) = λn−1(π1(fn(x)), . . . , πn(fn(x)), ϕ1(x), . . . , ϕn−1(x)).

Notice that every gn is continuous and gn ∈ C(X,Zn) since the stratification
(Zk)∞k=1 is assigned with λ. Moreover, gn(Gk,n) = πk(fn(Gk,n)) ⊆ Zk for all

n ∈ N and k ∈ {1, . . . , n− 1}. Since Ck =
⋃k

i=1 Fi,k ⊆
⋃k

i=1 Fi,n ⊆
⋃k

i=1Gi,n and

gn(
⋃k

i=1Gi,n) ⊆ Zk for every 1 ≤ k ≤ n, (gn)∞n=1 satisfies (3).
Now we show that gn → g pointwise on X . Let x0 ∈ X . Choose k0, n0 ∈ N

such that x0 ∈ Ak0
\ Ak0−1 and x0 6∈ B(Ak0−1,

1
n0

). For every n ≥ max{k0, n0}

we have x0 ∈ Fk0,n and gn(x0) = fn(x0). In particular, limn→∞ gn(x0) =
limn→∞ fn(x0) = g(x0).

By the Hausdorff Theorem on extension of metric [4, 4.5.20(c)] we choose a
metric | · − · |Z on Z such that the restriction of this metric on every space Zn

generates its topology. Fix n ∈ N. According to (3) for every x ∈ Ck \ Ck−1 we
find an open neighborhood Un,x of x in X such that

(a) Un,x ∩Ck−1 = ∅;
(b) gn(u) ∈ Zk for every u ∈ Un,x;
(c) |gn(u) − gn(x)|Z < 1

n
for every u ∈ Un,x.
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Set Wn =
⋃

x∈X(Un,x × Un,x). Clearly, (Wn)∞n=1 satisfies the condition 1). We
verify 2). Let x ∈ Ck \ Ck−1 and (xn)∞n=1 be a sequence of points xn ∈ X such
that (xn, x) ∈ Wn for every n ∈ N. We choose un ∈ X such that (xn, x) ∈
Un,un

× Un,un
, i.e. x, xn ∈ Un,un

for every n ∈ N. It follows from (a) that
un ∈ Ck and the condition (b) implies that gn(xn) ∈ Zk. Moreover, by (c) we
have |gn(xn)− gn(x)|Z < 2

n
. Hence, limn→∞ |gn(xn)− gn(x)|Z = 0. It remains to

observe that the restriction of |·−·|Z on Zk generates its topological structure. �

A schema of the proof of the following theorem was proposed by H. Hahn for
functions of n real variables and was applied in [16, Theorem 3.24] for mappings
f : Xn → R.

Theorem 4. Let X be a metrizable space, (Z, λ) be a strongly σ-metrizable

equiconnected space with a perfect stratification (Zk)∞k=1 assigned with λ, n ∈ N

and g ∈ Bn−1(X,Z). Then there exists a separately continuous mapping f :
Xn → Z with the diagonal g.

Proof: Let | · − · |X be a metric on X which generates its topological structure.
We will argue by the induction on n. Let n = 2. By Proposition 3 there

exists a sequence (gn)∞n=1 of continuous mappings gn : X → Z and a sequence
(Wn)∞n=1 of open sets Wn ⊆ X2 which satisfy conditions 1) and 2) of Proposition
3. Now we choose sequences (Gn)∞n=0 and (Fn)∞n=0 of functionally open sets Gn

and functionally closed sets Fn in X2, and a sequence (ϕn)∞n=1 of continuous
functions ϕn : X2 → [0, 1] which satisfy the first two conditions of Theorem 1
and Fn−1 ⊆ Wn ∩Wn+1 for every n ≥ 2. It remains to check the condition 3) of
Theorem 1.

Let x ∈ X , (xn)∞n=1 be a sequence of points xn ∈ X such that (xn, x) ∈ Fn−1

for every n ∈ N and (tn)∞n=1 be a sequence of points tn ∈ [0, 1]. Denote z0 = g(x)
and fix a neighborhood W0 of z0 in Z. Since λ is continuous and λ(z0, z0, t) = z0
for every t ∈ [0, 1], there exists a neighborhood W of z0 such that λ(z1, z2, t) ∈ W0

for any z1, z2 ∈W and t ∈ [0, 1]. By the condition 2) of Proposition 3 the equality
limn→∞ gn(xn) = limn→∞ gn+1(xn) = z0 holds. Hence, there exists n0 ∈ N such
that gn(xn), gn+1(xn) ∈W for every n ≥ n0. Therefore, λ(gn(xn), gn+1(xn), tn) ∈
W0 and limn→∞ λ(gn(xn), gn+1(xn), tn) = g(x). The theorem is proved for n = 2.

Now assume that n ≥ 3 and suppose that the theorem is true for mappings of
(n−1) variables with diagonals of the (n−2) – th Baire class. We will prove that
the theorem is true for mappings of n variables with diagonals of the (n− 1) – th
Baire class.

Take a sequence (gk)∞k=1 of mappings gk ∈ Bn−2(X,Z) such that gk → g

pointwise on X . By the inductive assumption for every k ∈ N there exists a
separately continuous mapping fk : Xn−1 → Z with the diagonal gk. We put
G0 = F0 = Xn,

Gk =
{

(x1, . . . , xn) ∈ Xn : max
1≤i,j≤n

|xi − xj |X <
1

k

}



Diagonals of separately continuous functions of n variables 109

and

Fk =
{

(x1, . . . , xn) ∈ Xn : max
1≤i,j≤n

|xi − xj |X ≤
1

k + 1

}

.

Notice that every Gk is open, every Fk is closed,

Fk ⊆ Gk ⊆ Gk ⊆ Fk−1

for every k ∈ N and
⋂∞

k=0 Fk =
⋂∞

k=0Gk = ∆n. Moreover, we choose a sequence

(ϕk)∞k=1 of continuous mappings ϕk : Xn → [0, 1] such that Xn \ Gk ⊆ ϕ−1
k (0)

and Fk ⊆ ϕ−1
k (1) for every k ∈ N.

Fix i ∈ {1, . . . , n}. For any x = (x1, ..., xn) ∈ Xn we put

x̃i = (x1, ..., xi−1, xi+1, ..., xn).

Denote

Di = {x ∈ Xn : x̃i ∈ ∆n−1}.

Notice that a function ψi : Xn \ ∆n → [0, 1] defined by

ψi(x1, . . . xn) =
max{|xj − xk|X : 1 ≤ j < k ≤ n, j, k 6= i}

max{|xj − xk|X : 1 ≤ j < k ≤ n}

is continuous, ψi(x) = 0 if x ∈ Di \ ∆n and ψi(x) = 1 if x ∈ Dj \ ∆n for j 6= i.
Consider a mapping hi : Xn → Z,

(4) hi(x) =

{

λ(fk(x̃i), fk+1(x̃i), ϕk(x)), x ∈ Fk−1 \ Fk

g(u), x = (u, . . . , u) ∈ ∆n.

It is easy to see that

(5) hi(x) = λ(λ(fk(x̃i), fk+1(x̃i), ϕk(x)), fk+2(x̃i), ϕk+1(x))

for all k ∈ N and x ∈ Fk−1 \ Fk+1.
Since the mappings λ, ϕk and ϕk+1 are continuous and the mappings fk, fk+1

and fk+2 are separately continuous, we get that hi is separately continuous on
the open set Gk \Fk+1 for every k ∈ N. Moreover, hi is separately continuous on
the open set G0 \ F1 = F0 \ F1. Then hi is separately continuous on the open set
Xn \ ∆n =

⋃∞
k=1(Gk−1 \ Fk).

We show that the mapping hi is continuous with respect to the i–th variable at
every point of the set ∆n. Let u ∈ X , x = (u, . . . , u) ∈ ∆n, z0 = hi(x) = g(u) and
W0 be a neighborhood of z0 in Z. Since λ is continuous and λ(z0, z0, t) = z0 for
every t ∈ [0, 1], there exists a neighborhood W of z0 such that λ(z1, z2, t) ∈ W0

for any z1, z2 ∈ W and t ∈ [0, 1]. Taking into consideration that limk→∞ gk(u) =
g(u) = z0 we obtain that there exists a number k0 such that gk(u) ∈W for every
k ≥ k0. Now we take any v ∈ X such that v 6= u, y = (x1, . . . , xn) ∈ Fk0−1, where
xj = u for j 6= i and xi = v. Choose k ≥ k0 with y ∈ Fk−1 \ Fk. Then

hi(y) = λ(fk(ỹi), fk+1(ỹi), ϕk(y)) = λ(gk(u), gk+1(u), ϕk(y)) ∈W0.
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Consider a mapping f : Xn → Z,
(6)

f(x) =

{

λn−1(h1(x), . . . , hn(x), ψ1(x), . . . , ψn−1(x)), x ∈ Xn \ ∆n

g(u), x = (u, . . . , u) ∈ ∆n.

Since the mappings h1, . . . , hn are separately continuous and the mappings λn−1,
ψ1, . . . , ψn−1 are continuous, the mapping f is separately continuous on the set
Xn \ ∆n. It remains to prove that f is continuous with respect to every variable
xi at each point of ∆n.

Fix i ∈ {1, . . . , n} and take any x ∈ Di \ ∆n. Since ψi(x) = 0 and ψj(x) = 1
for j 6= i, properties (i) and (ii) of the function λ and the definition (1) of the
functions λk imply the equality

f(x) = λn−1(h1(x), . . . , hn(x), ψ1(x), . . . , ψn−1(x)) = hi(x).

Hence, f |Di
= hi|Di

. Therefore, the continuity of f with respect to the i–th
variable at every point of ∆n follows from the similar property of the mapping hi.

�

Theorem 5. Let X be a metrizable space, (Z, λ) be a strongly σ-metrizable

equiconnected space with a perfect stratification (Zk)∞k=1 assigned with λ, n ∈
N and g ∈ Bn(X,Z). Then there exists a mapping f ∈ CBn−1(X × X,Z) ∩
CCn−1(X ×X,Z) with the diagonal g.

Proof: For a multi-index α = (α1, . . . , αm) ∈ N
m we denote |α| = α1 + · · ·+αm.

For n = 1 the theorem is a particular case of Theorem 4.
Assume n ≥ 2. Inductively for m = 1, . . . , n − 1 we choose families (gα : α ∈

N
m) of mappings gα ∈ Bn−m(X,Z) such that

(7) gα(x) = lim
k→∞

gα,k(x)

for all x ∈ X , 0 ≤ m ≤ n − 2 and α ∈ N
m. Notice that according to [16,

Lemma 3.27] these families can be chosen such that

(8) gα = gβ,

if α = (α1, . . . , αm−2, αm−1, αm) ∈ N
m and β = (α1, . . . , αm−2, αm, αm−1).

For every α ∈ N
n−1 by Proposition 3 we take sequences (g̃α,k)∞k=1 of con-

tinuous mappings g̃α,k : X → Zk and (Wα,k)∞k=1 of open neighborhoods of the
diagonal ∆2 which satisfy the condition 2) of Proposition 3 which we will de-
note by (2α). For every α = (α1, . . . , αm−2, αm−1, αm) ∈ N

m we put gα = g̃α

if αm ≥ αm−1, and gα = g̃β, where β = (α1, . . . , αm−2, αm, αm−1) if αm <

αm−1. Notice that the family (gα : α ∈ N
n) satisfies (8), and the sequences

(gα,k)∞k=1 satisfy (2α). Moreover, gα(X) ⊆ Zk, where k = max{αm−1, αm} for
α = (α1, . . . , αm−2, αm−1, αm) ∈ N

m.
Let | · − · |X be a metric on X which generates its topological structure.



Diagonals of separately continuous functions of n variables 111

For every α ∈ N
n we choose a closed neighborhood Vα ⊆ Wα of ∆2. Put

G0 = F0 = X2. Inductively for k ∈ N we put

Gk = {(x, y) ∈ X2 : |x− y|X <
1

k
}∩ int(Fk−1)∩

⋂

α∈Nn, |α|≤2k

{(x, y) : (y, x) ∈Wα}

and choose a closed neighborhood Fk of △ in X2 such that

Fk ⊆ {(x, y) ∈ X2 : |x− y|X ≤
1

k + 1
} ∩

⋂

α∈Nn, |α|≤2k

{(x, y) : (y, x) ∈ Vα} ∩Gk.

Every set Gk is open and

Fk ⊆ Gk ⊆ Gk ⊆ Fk−1

for every k ∈ N and
⋂∞

k=0 Fk =
⋂∞

k=0Gk = ∆2. Similarly as in the proof of
Theorem 4 we choose a sequence (ϕk)∞k=1 of continuous functions ϕk : X2 → [0, 1]

such that X2 \Gk ⊆ ϕ−1
k (0) and Fk ⊆ ϕ−1

k (1) for every k ∈ N.
For any m ∈ {0, 1, . . . n− 1} and α ∈ N

m we consider a mapping fα : X2 → Z,

(9) fα(x, y) =

{

λ(gα,k(y), gα,k+1(y), ϕk(x, y)), (x, y) ∈ Fk−1 \ Fk

gα(x), (x, y) ∈ ∆2.

In the same manner as in the proof of the continuity of hi with respect to the i–th
variable in Theorem 4, by condition (7) and by the continuity of λ and ϕk, we
obtain that every fα is continuous with respect to the first variable. For α ∈ N

n−1

we observe that every fα is continuous with respect to the second variable on the
set X2 \ ∆2, since gα,k is continuous with respect to the second variable.

Let 0 ≤ m ≤ n− 2, α = (α1, . . . , αm) ∈ N
m and l ∈ N. It follows from (8) that

fα,l(x, y) =

{

λ(gα,k,l(y), gα,k+1,l(y), ϕk(x, y)), (x, y) ∈ Fk−1 \ Fk

gα,l(x), (x, y) ∈ ∆2.

Letting l → ∞, applying continuity of λ and conditions (7), (9), we get

fα(x, y) = lim
l→∞

fα,l(x, y).

It remains to check that the mappings fα, α ∈ N
n−1, are continuous with respect

to the second variable on the set ∆2. Fix α ∈ N
n−1 and x ∈ X . Let z0 = gα(x)

and W0 be a neighborhood of z0 in Z. Since λ(z0, z0, t) = z0 for every t ∈ [0, 1]
and the mapping λ is continuous, there exists a neighborhood W of z0 such
that λ(z1, z2, t) ∈ W0 for any z1, z2 ∈ W and t ∈ [0, 1]. We show that there
exists k0 ∈ N such that λ(gα,k(y), gα,k+1(y), ϕk(x, y)) ∈ W0 for all y ∈ X with
(x, y) ∈ Fk−1 \ Fk for k ≥ k0. It is sufficient to prove that gα,k(y), gα,k+1(y) ∈W

for all y ∈ X with (x, y) ∈ Fk−1 \ Fk for k ≥ k0.
Assume the contrary. Then there exists a strictly increasing sequence (ki)

∞
i=1 of

numbers ki and a sequence (yi)
∞
i=1 of points yi ∈ X such that (x, yi) ∈ Fki−1\Fki

,
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gα,ki
(yi) 6∈ W or gα,ki+1(yi) 6∈ W for all i ∈ N. Let gα,ki

(yi) 6∈ W for all
i ∈ N. We choose i0 ∈ N such that |α, ki| ≤ 2(ki − 1) for all i ≥ i0. Since
(x, yi) ∈ Fki−1, by the definition of Fki−1 it follows that (yi, x) ∈ Vα,ki

⊆ Wα,ki
.

Then by condition (2α) we have limi→∞ gα,ki
(yi) = gα(x) = z0, which contradicts

to the condition gα,ki
(yi) 6∈ W for all i ∈ N. We apply this argument again when

gα,ki+1(yi) 6∈ W for all i ∈ N.
Hence, fα is continuous with respect to the second variable at the point (x, x),

which completes the proof. �

The following theorem generalizes Corollary 3.2 from [10] and Theorem 3.28
from [16].

Theorem 6. Let X be a topological space, (Z, λ) be a strongly σ-metrizable

equiconnected space with a perfect stratification (Zk)∞k=1 assigned with λ, n ∈
N and g ∈ Bn(X,Z). Then there exists a separately continuous mapping f :

Xn+1 → Z with the diagonal g and a mapping f̃ ∈ CBn−1(X×X,Z)∩CCn−1(X×
X,Z) with the diagonal g.

Proof: Let α = (α1, . . . , αm) ∈ N
m and αm+1 ∈ N. Then we will identify the

multi-index (α1, . . . , αm+1) ∈ N
m+1 with the pair α, αm+1. For m = 0 we suppose

that N
0 = {∅} and hα = h for any mapping h and α ∈ N

0.
Successively for m = 1, . . . , n we choose families (gα : α ∈ N

m) of mappings
gα ∈ Bn−m(X,Z) such that

(10) gα(x) = lim
k→∞

gα,k(x)

for all x ∈ X , 0 ≤ i ≤ n − 1 and α ∈ N
i. According to Proposition 2 we may

assume without loss of generality that gα,k ∈ C(X,Zk) for any α ∈ N
n−1 and

k ∈ N.
Consider a continuous mapping

ϕ = ∆
α∈Nn

gα : X → ZN
n

,

ϕ(x) = (gα(x))α∈Nn . Denote Y = ϕ(X). Since gα(X) is a metrizable subspace of
Z for every α ∈ N

n, Y is metrizable. For every α ∈ N
n we consider a continuous

mapping hα : Y → Z, hα(y) = gα(x), where y = ϕ(x), i.e.,

(11) hα(ϕ(x)) = gα(x).

Passaging to the limit in the last equality and using (10) we obtain for m =
1, . . . , n families (hα : α ∈ N

m) of mappings hα ∈ Bn−m(Y, Z) such that

(12) hα(y) = lim
k→∞

hα,k(y)

and

(13) hα(ϕ(x)) = gα(x)
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for all x ∈ X , y ∈ Y , 0 ≤ i ≤ n− 1 and α ∈ N
i.

In particular, h ∈ Bn(Y, Z). By Theorem 4 there exists a separately con-

tinuous mapping h̃ : Y n+1 → Z with the diagonal h. Now it remains to put
f(x1, . . . xn+1) = h̃(ϕ(x1), . . . , ϕ(xn+1)).

The existence of f̃ can be proved similarly using Theorem 5. �

Corollary 7. Let X be a topological space, (Z, λ) be a metrizable equiconnected

space, n ∈ N and g ∈ Bn−1(X,Z). Then there exists a separately continuous

mapping f : Xn → Z with the diagonal g and a mapping h ∈ CBn−1(X ×
X,Z) ∩ CCn−1(X ×X,Z) with the diagonal g.

4. Baire classification of CBn-mappings

Proposition 8. Let X,Y be topological spaces and (fi)i∈I be at most countable

family of continuous mappings fi : X → Y such that each space fi(X) is metriz-

able. Then there exists a metrizable space Z, a continuous surjective mapping

ϕ : X → Z and a family (gi)i∈I of continuous mappings gi : Z → Y such that

fi(x) = gi(ϕ(x)) for all i ∈ I and x ∈ X .

Proof: Consider a continuous mapping

ϕ = ∆
i∈I

fi : X → Y I ,

ϕ(x) = (fi(x))i∈I , and denote Z = ϕ(X). Since each space fi(X) is metrizable,
Z is metrizable. It remains to put gi(z) = zi, where z = (zj)j∈I ∈ Z. �

Proposition 9. Let X be a topological space and Y be a metrizable space. Then

Bn(X,Y ) ⊆ Σf
n(X,Y )

for every n ∈ N.

Proof: Consider a mapping f ∈ Bn(X,Y ) and let (fk1k2...kn
: k1, k2, . . . , kn ∈ N)

be a family of continuous mappings fk1k2...kn
: X → Y such that

lim
k1→∞

lim
k2→∞

. . . lim
kn→∞

fk1k2...kn
(x) = f(x)

for every x ∈ X . According to Proposition 8 we choose a metrizable space Z, a
continuous surjective mapping ϕ : X → Z and a family (gk1k2...kn

: k1, k2, . . . , kn ∈
N) of continuous mappings gk1k2...kn

: Z → Y such that

fk1k2...kn
(x) = gk1k2...kn

(ϕ(x))

for all x ∈ X and k1, . . . kn ∈ N. Now for every z = ϕ(x) ∈ Z we put

g(z) = lim
k1→∞

lim
k2→∞

. . . lim
kn→∞

gk1k2...kn
(z)

= lim
k1→∞

lim
k2→∞

. . . lim
kn→∞

fk1k2...kn
(x) = f(x).
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Hence, g ∈ Bn(Z, Y ). If follows from [8] that g ∈ Σf
n(Z, Y ). Since ϕ is continuous,

f ∈ Σf
n(X,Y ). �

Proposition 10. Let X be a PP-space, Y be a topological space, Z be a metriz-

able space and n ∈ N ∪ {0}. Then

CBn(X × Y, Z) ⊆ Σf
n+1(X × Y, Z).

Proof: Let f ∈ CBn(X × Y, Z). Consider a homeomorphic embedding ψ : Z →
ℓ∞ and denote g = ψ ◦ f . Then g ∈ CBn(X × Y, ψ(Z)) ⊆ Bn+1(X × Y, ℓ∞) by

[22, Theorem 1]. Applying Proposition 9 we obtain that g ∈ Σf
n+1(X × Y, ψ(Z)).

Since ψ : Z → ψ(Z) is a homeomorphism, f ∈ Σf
n+1(X × Y, Z). �

Proposition 11. Let X be a topological space, (Y, | · − · |Y ) be a metric arcwise

connected space, f : X → Y be a mapping, (Fk : 1 ≤ k ≤ n) be a family of

strongly functionally discrete families Fk = (Fi,k : i ∈ Ik) of functionally closed

sets Fi,k in X such that Fk+1 ≺ Fk and for every i ∈ Ik and x1, x2 ∈ Fi,k there

exists a continuous mapping γ : [0, 1] → Y with γ(0) = f(x1), γ(1) = f(x2)
and diam(γ([0, 1])) < 1

2k+2 for every k. Then there exists a continuous mapping

g : X → Y such that the inclusion x ∈ ∪Fk for k = 1, . . . , n implies

(14) |f(x) − g(x)|Y <
1

2k
.

Proof: Take a discrete family (Ui,1 : i ∈ I1) of functionally open sets in X such

that Fi,1 ⊆ Ui,1, Fi,1 = ϕ−1
i,1 (0) and X \ Ui,1 = ϕ−1

i,1 (1), where ϕi,1 : X → [0, 1]

is a continuous function, and put Vi,1 = ϕ−1
i,1 ([0, 1

2 )) for every i ∈ I1. Then

Fi,1 ⊆ Vi,1 ⊆ Ui,1. Now choose a discrete family (Gi,2 : i ∈ I2) of functionally
open sets such that Fi,2 ⊆ Gi,2 for every i ∈ I2. Since F2 ≺ F1, for every i ∈ I2 we

fix a unique j ∈ I1 such that Fi,2 ⊆ Fj,1. Let Ui,2 = Gi,2∩Vj,1. Then Fi,2 = ϕ−1
i,2 (0)

and X \ Ui,1 = ϕ−1
i,2 (1) for some continuous function ϕi,2 : X → [0, 1]. Denote

Vi,2 = ϕ−1
i,2 ([0, 1

2 )). Then Fi,2 ⊆ Vi,2 ⊆ Ui,2 ⊆ Vj,1. Proceeding analogously we

get discrete families (Ui,k : i ∈ Ik) and (Vi,k : i ∈ Ik) of functionally open subsets
of X for k = 1, . . . , n such that for every k = 1, . . . , n− 1 and i ∈ Ik+1 there is a
unique j = jk(i) ∈ Ik with

(15) Fi,k+1 ⊆ Vi,k+1 ⊆ Ui,k+1 ⊆ Vj,k.

For every k we put

Uk =
⋃

i∈Ik

Ui,k

and observe that the sets

Hk =
⋃

i∈Ik

ϕ−1
i,k ([0, 1

2 ]) and Ek = X \ Uk
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are disjoint and functionally closed in X . Take a continuous function hk : X →
[0, 1] such that Hk = h−1

k (1) and Ek = h−1
k (0).

Fix arbitrary points y0 ∈ f(X) and yi,k ∈ f(Fi,k) for every k and i ∈ Ik, and
for all x ∈ X put g0(x) = y0. Since Y is arcwise connected, for every i ∈ I1
there exists a continuous function γi,1 : [0, 1] → Y such that γi,1(0) = y0 and
γi,1(1) = yi,1. Now for every 1 < k ≤ n and i ∈ Ik there exists a continuous
function γi,k : [0, 1] → Y such that γi,k(0) = yj,k−1, where j ∈ Ik−1 satisfies
Fi,k ⊆ Fj,k−1, γi,k(1) = yi,k and

(16) diam(γi,k([0, 1])) <
1

2k+1
.

Inductively for k = 0, . . . n− 1 we define a continuous mapping gk+1 : X → Y ,

gk+1(x) =

{

gk(x), x ∈ Ek+1,

γi,k+1(hk+1(x)), i ∈ Ik+1, x ∈ Ui,k+1.

Notice that gk+1(x) = yi,k+1 for all x ∈ Vi,k+1 and i ∈ Ik+1.
We show that for all x ∈ X the inequality

(17) |gk+1(x) − gk(x)|Y <
1

2k+2

holds for k ≥ 1. Clearly, (17) is valid if x ∈ Ek+1. Let x ∈ Ui,k+1 for i ∈ Ik+1.
Then gk+1(x) = γi,k+1(hk+1(x)) and gk(x) = yj,k = γi,k+1(0), since x ∈ Vj,k for
j = jk(i) ∈ Ik. Taking into account (16) we obtain (17).

We put g = gn. Let 1 ≤ k ≤ n and x ∈ ∪Fk. Then x ∈ Fi,k for some i ∈ Ik. It
follows that gk(x) = yi,k ∈ f(Fi,k). Then |f(x) − gk(x)|Y ≤ 1

2k+1 . The inequality
(17) implies that

|f(x) − g(x)|Y ≤ |f(x) − gk(x)|Y +
n−1
∑

i=k

|gi(x) − gi+1(x)|Y <
1

2k+1
+

1

2k+1
=

1

2k
.

�

The similar result to the following theorem was obtained also in [13, Theo-
rem 4.1], but we include its proof for the sake of completeness.

Theorem 12. Let X be a topological space, Y be a metrizable arcwise connected

and locally arcwise connected space. Then Σf
1 (X,Y ) ⊆ B1(X,Y ).

Proof: Fix a metric | ·− · |Y on Y which generates its topological structure. For
every k ∈ N and y ∈ Y we take an open neighborhood Uk(y) of y such that any
points from Uk(y) can be joined with an arc of a diameter < 1

2k+1 .

Let f ∈ Σf
1 (X,Y ). It is easy to see that f has a σ-strongly functionally discrete

base B which consists of functionally closed sets in X . For every k ∈ N we put

Bk = (B ∈ B : ∃y ∈ Y | B ⊆ f−1(Uk(y))).
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Then Bk is a σ-strongly functionally discrete family and X = ∪Bk for every k.
According to [12, Lemma 13] for every k ∈ N there exists a sequence (Bk,n)∞n=1

of strongly functionally discrete families Bk,n = (Bk,n,i : i ∈ Ik,n) of functionally
closed subsets of X such that Bk,n ≺ Bk and Bk,n ≺ Bk,n+1 for every n ∈ N and
⋃∞

n=1

⋃

Bk,n = X . For all k, n ∈ N we put

Fk,n = (B1,n,i1 ∩ · · · ∩Bk,n,ik
: im ∈ Im,n, 1 ≤ m ≤ k).

Notice that every family Fk,n is strongly functionally discrete, consists of func-
tionally closed sets and

(a) Fk+1,n ≺ Fk,n,
(b) Fk,n ≺ Fk,n+1,
(c)

⋃∞
n=1

⋃

Fk,n = X .

For every n ∈ N we apply Proposition 11 to the function f and the families F1,n,
F2,n,. . . ,Fn,n. We obtain a sequence of continuous mappings gn : X → Y such
that

|f(x) − gn(x)|Y <
1

2k

if x ∈ Fk,n for k ≤ n.
Now conditions (b) and (c) imply that gn → f pointwise on X . Hence,

f ∈ B1(X,Y ). �

Let Z be a topological space and (Zk)∞k=1 be a sequence of sets Zk ⊆ Z such
that Z =

⋃∞
k=1 Zk. We say that the pair (Z, (Zk)∞k=1) has the property (∗) if

for every convergent sequence (xm)∞m=1 in Z there exists a number k such that
{xm : m ∈ N} ⊆ Zk.

Proposition 13. Let X be a PP-space, Y be a topological space,

n ∈ N ∪ {0}, (Z, (Zk)∞k=1) have the property (∗), Zk be functionally closed in

Z and f ∈ CBn(X × Y, Z). Then there exists a sequence (Bk)∞k=1 of sets of the

functionally multiplicative class n in X × Y such that
⋃∞

k=1 Bk = X × Y and

f(Bk) ⊆ Zk for every k ∈ N.

Proof: Take a sequence (Um = (Ui,m : i ∈ Im))∞m=1 of locally finite functionally
open coverings of X and a sequence ((xi,m : i ∈ Im))∞m=1 of families of points
from X such that

(18) (∀x ∈ X)((∀m ∈ N x ∈ Uim,m) =⇒ (xim ,m → x)).

By [19, Corollary 3.1] there exists a weaker metrizable topology T on X in
which every Ui,m is open. Since (X, T ) is paracompact, for every m there exists a
locally finite open covering Vm = (Vs,m : s ∈ Sm) which refines Um. It follows from
[4, Theorem 1.5.18] that for every m there exists a locally finite closed covering
(Fs,m : s ∈ Sm) of (X, T ) such that Fs,m ⊆ Vs,m for every s ∈ Sm. Now for every
s ∈ Sm we choose im(s) ∈ Im such that Fs,m ⊆ Uim(s),m.
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For all m, k ∈ N and s ∈ Sm we denote i = im(s) and put

As,m,k = (fxi,m)−1(Zk), Bm,k =
⋃

s∈Sm

(Fs,m ×As,m,k), Bk =

∞
⋂

m=1

Bm,k.

Since f belongs to the n–th Baire class with respect to the second variable, for
every k the set As,m,k is of the functionally multiplicative class n in Y for all
m ∈ N and s ∈ Sm. Then the set Bm,k is of the functionally multiplicative class n
in (X, T )×Y as a locally finite union of sets of the n–th functionally multiplicative
class. Hence, Bk is of the n–th functionally multiplicative class in (X, T ) × Y ,
and, consequently, in X × Y for every k.

We show that f(Bk) ⊆ Zk for every k. Fix k ∈ N and (x, y) ∈ Bk. Take
a sequence (sm)∞m=1 of indexes sm ∈ Sm such that x ∈ Fsm,m ⊆ Uim(sm),m

and f(xim(sm),m, y) ∈ Zk. Then xim(sm),m →m→∞ x. Since f is continuous with
respect to the first variable, f(xim(sm),m, y)→m→∞ f(x, y). Since Zk is closed,
f(x, y) ∈ Zk.

It remains to show that
⋃∞

k=1 Bk = X × Y . Let (x, y) ∈ X × Y . Then there
exists a sequence (sm)∞m=1 such that sm ∈ Sm and x ∈ Fsm,m ⊆ Uim(sm),m. Notice
that f(xim(sm),m, y)→m→∞ f(x, y). Since (Z, (Zk)∞k=1) satisfies (∗), there exists
a number k such that the set {f(xim(sm),m, y) : m ∈ N} is contained in Zk, i.e.
y ∈ Asm,m,k for every m ∈ N. Hence, (x, y) ∈ Bk. �

The following result will be useful (see [11, Proposition 5.2]).

Proposition 14. Let 0 < α < ω1, X be a topological space, Z =
⋃∞

k=1 Zk be a

contractible space, f : X → Z be a mapping, (Xk)∞k=1 be a sequence of sets of the

α-th functionally additive class in X such that X =
⋃∞

k=1Xk, f(Xk) ⊆ Zk and

assume that there exists a function fk ∈ Bα(X,Zk) with fk|Xk
= f |Xk

for every

k ∈ N. Then f ∈ Bα(X,Z).

Theorem 15. Let n ∈ N, X be a PP-space, Y be a topological space and Z be

a contractible space. Then

CBn(X × Y, Z) ⊆ Bn+1(X × Y, Z).

If, moreover, Z is a strongly σ-metrizable space with a perfect stratification

(Zk)∞k=1, where every Zk is an arcwise connected and locally arcwise connected

subspace of Z, then

CC(X × Y, Z) ⊆ B1(X × Y, Z).

Proof: By the definition of a PP -space we choose a sequence ((hn,i : i ∈ In))∞
n=1

of locally finite partitions of unity (hn,i : i ∈ In) on X and a sequence (αn)∞n=1

of families αn = (xn,i : i ∈ In) of points xn,i ∈ X such that for any x ∈ X the
condition x ∈ supphn,i implies that xn,i → x. According to [19, Proposition 3.2]
there exists a continuous pseudo-metric p on X such that each function hn,i is
continuous with respect to p. Then the first inclusion CBn(X×Y, Z) ⊆ Bn+1(X×
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Y, Z) in fact was proved in [2, Theorem 5.3], where X is a metrically quarter-
stratifiable space (i.e., Hausdorff PP-space [19]). Another proof of this inclusion
can be obtained analogously to the proof of Theorem 6.6 from [9].

Now we prove the second inclusion. Let f ∈ CC(X×Y, Z). For every k ∈ N we
consider a retraction πk : Z → Zk. Notice that every subspace Zk is functionally
closed in Z as the preimage of closed set under a continuous mapping ϕ : Z →
∏∞

k=1 Zk, ϕ(z) = (πk(z))∞k=1. By Proposition 13 we take a sequence (Bk)∞k=1 of
functionally closed subsets of X×Y such that

⋃∞
k=1 Bk = X×Y and f(Bk) ⊆ Zk

for every k ∈ N. Observe that

fk = πk ◦ f ∈ CC(X × Y, Zk) ⊆ Σf
1 (X × Y, Zk)

by Proposition 10. According to Theorem 12, fk ∈ B1(X × Y, Zk). Moreover,
fk|Bk

= f |Bk
. It remains to notice that every set Bk belongs to the first function-

ally additive class in X × Y and to apply Proposition 14. �

The following result generalizes Theorem 3.3 from [10] and gives a characteri-
zation of diagonals of separately continuous mappings.

Theorem 16. Let X be a topological space, (Z, λ) be a strongly σ-metrizable

equiconnected space with a perfect stratification (Zk)∞k=1 assigned with λ, n ∈ N,

g : X → Z and at least one of the following conditions holds:

(1) every separately continuous mapping h : Xn+1 → Z belongs to the n–th

Baire class;

(2) X is a PP -space (in particular, X is a metrizable space).

Then the following conditions are equivalent:

(i) g ∈ Bn(X,Z);
(ii) there exists a separately continuous mapping f : Xn+1 → Z with the

diagonal g.

Proof: In the case (1) the theorem is a corollary from Theorem 6.
In the case (2) the theorem follows from Theorem 15 and case (1). �

The following characterizations of diagonals of separately continuous mappings
can be proved similarly.

Theorem 17. Let X be a topological space, (Z, λ) be a strongly σ-metrizable

equiconnected space with a perfect stratification (Zk)∞k=1 assigned with λ, n ∈ N,

g : X → Z and at least one of the following conditions holds:

(1) every separately continuous mapping h : X2 → Z belongs to the first

Baire class;

(2) X is a PP -space (in particular, X is a metrizable space).

Then the following conditions are equivalent:

(i) g ∈ Bn(X,Z);
(ii) there exists a mapping f ∈ CBn−1(X ×X,Z) ∩ CCn−1(X ×X,Z) with

the diagonal g.
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5. Examples and questions

For a topological space Y by F(Y ) we denote the space of all nonempty closed
subsets of Y with the Vietoris topology.

A multi-valued mapping f : X → F(Y ) is said to be upper (lower) continuous
at x0 ∈ X if for any open set V ⊆ Y with f(x0) ⊆ V (f(x0)∩ V 6= ∅) there exists
a neighborhood U of x0 in X such that f(x) ⊆ V (f(x)∩V 6= ∅) for every x ∈ U .
If a multi-valued mapping f is upper and lower continuous at x0 simultaneously,
then it is called continuous at x0.

Proposition 18. There exists an equiconnected space (Z, λ) with a metrizable

equiconnected subspace Z1 and a mapping g ∈ B1([0, 1], Z) such that

(1) there exists a sequence (gn)∞n=1 of continuous mappings gn : [0, 1] → Z1

which is pointwise convergent to g;

(2) g is not a diagonal of any separately continuous mapping f : [0, 1]2 → Z.

Proof: Let Y = [0, 1] × [0, 1) and

Z = {{x} × [0, y] : x ∈ [0, 1], y ∈ [0, 1)} ∪ {{x} × [0, 1) : x ∈ [0, 1]}

be a subspace of F(Y ). Notice that Z1 = {{x} × [0, y] : x ∈ [0, 1], y ∈ [0, 1)}
is dense metrizable subspace of Z, since Z1 consists of compacts subsets of a
metrizable space Y .

We show that Z is equiconnected. Firstly we consider the space Q = [0, 1]2.
For q1 = (x1, y1), q2 = (x2, y2) ∈ Q we set

θ(q1, q2) = min{y1, y2, 1 − |x1 − x2|},

α1(q1, q2) = y1 − θ(q1, q2), α2(q1, q2) = |x1 − x2|, α3(q1, q2) = y2 − θ(q1, q2)
and α(q1, q2) = α1(q1, q2) + α2(q1, q2) + α3(q1, q2). We denote θ = θ(q1, q2),
α1 = α1(q1, q2), α2 = α2(q1, q2), α3 = α3(q1, q2), α = α(q1, q2) and set
(19)

µ(q1, q2, t) =



















(x1, y1 − tα), q1 6= q2, t ∈ [0, α1

α
];

(x1 + (tα− α1)sign(x2 − x1), θ), q1 6= q2, t ∈ [α1

α
, α1+α2

α
];

(x2, θ + tα− α1 − α2), q1 6= q2, t ∈ [α1+α2

α
, α1+α2+α3

α
];

q1, q1 = q2, t ∈ [0, 1].

The function µ : Q2 × [0, 1] → Q is continuous and the space (Q,µ) is equicon-
nected.

Consider the continuous bijection ϕ : Z → Q,

(20) ϕ(z) =

{

(x, y), z = x× [0, y];
(x, 1), z = x× [0, 1).
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Note that the inverse mapping ψ = ϕ−1 : Q → Z is lower continuous on Q and
continuous on [0, 1] × [0, 1). For every z1, z2 ∈ Z and t ∈ [0, 1] we set

λ(z1, z2, t) = ψ (µ(ϕ(z1), ϕ(z2), t)) .

Obviously, the mapping λ : Z2 × [0, 1] → Z is lower continuous and continuous at
a point (z1, z2, t) if λ(z1, z2, t) ∈ Z1.

We show that λ is upper continuous at a point (z1, z2, t) if λ(z1, z2, t) ∈ Z \Z1.
Let λ(z1, z2, t0) ∈ Z \ Z1. Then λ(z1, z2, t0) = z1 or λ(z1, z2, t0) = z2. Suppose
that λ(z1, z2, t0) = z1 = x1 × [0, 1) and z2 ⊆ x2 × [0, 1). Fix a set G open in Y

such that z1 ⊆ G.
Let x1 6= x2. Note that t0 = 0. Choose a neighborhood U1 of z1, a neighbor-

hood U2 of z2 and δ > 0 such that z ⊆ G for every z ∈ U1 and

α1(ϕ(z′), ϕ(z′′))

α(ϕ(z′), ϕ(z′′))
≥ δ

for every z′ ∈ U1 and z′′ ∈ U2. According to (19), λ(z′, z′′, t) ⊆ G for every
z′ ∈ U1, z

′′ ∈ U2 and t ∈ [0, δ).
Now let x1 = x2. Choose a set G0 open in Y such that z1 ⊆ G0 ⊆ G and if

(x′, y), (x′′, y) ∈ G0 then ({x′} × [0, y]) ∪ ([x′, x′′] × {y}) ⊆ G0. It follows from
(19) that λ(z′, z′′, t) ⊆ G0 for every z′, z′′ ⊆ G0 and t ∈ [0, 1].

In the case of λ(z1, z2, t0) = z2 = x2 × [0, 1) we argue analogously. Thus the
mapping λ is continuous and, consequently, (Z, λ) is equiconnected. Moreover,
λ(Z1 × Z1 × [0, 1]) ⊆ Z1. Hence, Z1 is an equiconnected subspace of Z.

We define a mapping g : [0, 1] → Z,

g(x) = {x} × [0, 1)

and for every n ∈ N we consider a continuous mapping gn : [0, 1] → Z1,

gn(x) = {x} ×
[

0, 1 −
1

n

]

.

It is easy to see that limn→∞ gn(x) = g(x) for every x ∈ [0, 1], i.e. the condition
(1) of the proposition holds.

Now we verify (2). Assume to the contrary that there exists a separately
continuous mapping f : [0, 1]2 → Z such that f(x, x) = g(x) for every x ∈ X .
Since f is separately upper continuous on the set ∆ = {(x, x) : x ∈ [0, 1]}, for
every x ∈ [0, 1] there exists δx ∈ (0, 1) such that

(f(x, y) ∪ f(y, x)) ∩ ([0, 1] × [1 − δx, 1)) ⊆ g(x)

for every y ∈ [0, 1] with |x− y| < δx.
Take δ > 0, an open nonempty set U ⊆ [0, 1] and a set A dense in U such

that δx ≥ δ for every x ∈ A. Without loss of generality we may suppose that
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diam(U) < δ. Then

f(x, y) ∩ ([0, 1]× [1 − δ, 1)) ⊆ g(x) ∩ g(y)

for any x, y ∈ A. Since g(x) ∩ g(y) = ∅ for any distinct x, y ∈ [0, 1], f(x, y) ⊆
[0, 1] × [0, 1 − δ] for any distinct x, y ∈ A. Since f is separately lower continuous
and A is dense in U , f(x, y) ⊆ [0, 1] × [0, 1 − δ] for any x, y ∈ U , which leads to
a contradiction, provided g is a diagonal of f . �

Question 1. Let Z be a topological vector space and g ∈ B1([0, 1], Z). Does

there exist a separately continuous mapping f : [0, 1]2 → Z with the diagonal g?
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