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Abstract. Equiintegrability in a compact interval E may be defined as a uniform integra-
bility property that involves both the integrand fn and the corresponding primitive Fn. The
pointwise convergence of the integrands fn to some f and the equiintegrability of the func-
tions fn together imply that f is also integrable with primitive F and that the primitives Fn

converge uniformly to F . In this paper, another uniform integrability property called uni-
form double Lusin condition introduced in the papers E. Cabral and P.Y. Lee (2001/2002)
is revisited. Under the assumption of pointwise convergence of the integrands fn, the
three uniform integrability properties, namely equiintegrability and the two versions of the
uniform double Lusin condition, are all equivalent. The first version of the double Lusin con-
dition and its corresponding uniform double Lusin convergence theorem are also extended
into the division space.

Keywords: Kurzweil-Henstock integral; g-integral; double Lusin condition; uniform dou-
ble Lusin condition

MSC 2010 : 26A39

1. Introduction

It is now known that a function f on a closed and bounded interval E in R
n is

Kurzweil-Henstock integrable with primitive F if and only if f and F satisfy the

following: for every ε > 0 there exists a gauge δ on E such that

(D)
∑

|f(x)||I| < ε and (D)
∑

|F (I)| < ε
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whenever D is a δ-fine partial division of E in Γε, where

Γε = {(x · I) : I ⊂ E, x is a vertex of I and |F (I) − f(x)|I|| > ε|I|}.

This condition was introduced in [3] and called the double Lusin condition in [4].

A sequence {fn} of Kurzweil-Henstock integrable functions with the corresponding

primitives {Fn} is said to satisfy the uniform double Lusin condition or simply UI1

if given ε > 0 there is a common gauge δ for all fn such that

(D)
∑

|fn(x)||I| < ε and (D)
∑

|Fn(I)| < ε

whenever D is a δ-fine partial division of E in Γε,n, where

Γε,n = {(x · I) : I ⊂ E, x is a vertex of I and |Fn(I)− fn(x)|I|| > ε|I|}.

It was shown in [3] that if the functions fn satisfy the UI1 condition and fn → f

pointwise everywhere then f is Kurzweil-Henstock integrable and

∫

f = lim
n→∞

∫

fn.

The proof of this convergence theorem makes use of the fact that UI1 implies equi-

integrability of the functions fn. In this paper this convergence theorem is proved

by looking at the behavior of Γε,n as n approaches infinity and by comparing it

with Γε. Furthermore, supposing the functions fn are integrable with primitives Fn

and fn → f pointwise everywhere then the following will be shown to be equivalent:

(i) the functions fn satisfy the UI1 condition;

(ii) the functions fn satisfy the UI2 condition, that is, for every ε > 0 there exists

a gauge δ on E such that for all n

(D)
∑

|I| < ε and (D)
∑

|Fn(I)| < ε

whenever D is a δ-fine partial division of E in Γε,n;

(iii) the functions fn are equiintegrable, that is, for every ε > 0 there exists a gauge δ

on E such that for all n

(D)
∑

|fn(x)|I| − Fn(I)| < ε

whenever D is a δ-fine partial division of E.

An axiomatic approach to the Kurzweil-Henstock integral can be found in [5].

This general theory is called the division space. In the division space we have de-

fined an integral called the g-integral, which includes the Kurzweil-Henstock integral,
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the McShane integral, and the approximate Perron integral. The double Lusin char-

acterization of the g-integral and the corresponding convergence theorem will also

be given.

2. The Kurzweil-Henstock integral in R
n

Let E be a compact interval in R
n described by E =

n
∏

j=1

[aj , bj], where [aj, bj ],

j = 1, 2, . . . , n, is a compact interval in R. From this point onwards, E will always

refer to an interval while I will denote any subinterval of E in general. It is also

useful to denote E = [a, b], where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). The

measure of E is its outer Lebesgue measure |E| given by |E| =
m
∏

j=1

(bj − aj). In

general, the measure of any interval I is equal to its outer Lebesgue measure |I|.

In our discussion, Rm will be equipped with the norm ‖·‖ defined by

‖x‖ =

Ã

n
∑

i=1

x2
i

for x = (x1, x2, . . . , xn) in R
n. Given x ∈ R

n and r > 0 we set

B(x, r) = {y ∈ R
n : ‖x− y‖ < r},

where x− y = (x1 − y1, x2 − y2, . . . , xn − yn).

A partial division D = {(x, I)} of E is any finite set of point-interval pairs with x

a vertex of the corresponding subinterval I ⊂ E and with the interiors of the subin-

tervals I disjoint. If for some partial division D = {(x, I)},
⋃

(x,I)∈D

I = E,

then D is said to be a division of E. A gauge on E is a function δ : E → (0,∞).

A partial division D = {(x, I)} is said to be δ-fine if for each pair (x, I) in D,

I ⊂ B(x, δ(x)).

A function f : E → R is said to be Kurzweil-Henstock integrable if there is a real

number A such that given ε > 0 there is a gauge δ on E such that for any δ-fine

division of E we have
∣

∣

∣
(D)

∑

f(x)|I| −A
∣

∣

∣
< ε,

where (D)
∑

f(x)|I| denotes the sum over all the pairs (x, I) in D. The number A

is called the integral of f over E and we write
∫

E

f = A.
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If f is Kurzweil-Henstock integrable on E then f is Kurzweil-Henstock integrable on

any subinterval I of E. Hence, we can define an additive interval function F by

F (I) =

∫

I

f.

We call F the primitive of f . Then F is an additive interval function in the sense

that for any finite collection {Ii : i = 1, . . . , n} whose union is a subinterval I of E

we have

F

( n
⋃

i=1

Ii

)

=

n
∑

i=1

F (Ii).

Note that if we have a primitive interval function F , we can define a point function

corresponding to F , and conversely. Let x ∈ E, where x = (x1, x2, . . . , xm). If for

some i, xi = ai, set F (x) = 0. In case xi 6= ai for all i, set F (x) = F ([a, x]).

Then we have a unique point function. Conversely, given a point F on E, we can

define an interval function as follows: let I = [α, β], where α = (α1, α2, . . . , αm)

and β = (β1, β2, . . . , βm). Write γ = (γ1, γ2, . . . , γm), where γi = αi or βi and n(γ)

denotes the number of terms for which γi = αi. Define

F (I) =
∑

γ

(−1)n(γ)F (γ),

where the summation is over all the vertices γ. We have a unique interval function F .

Given a primitive point function, we may recover the primitive interval function as

described above. Hence, we may identify them with each other.

The following theorems were proved in [3].

Theorem 2.1. Let f and F be functions defined on E, where the interval function

corresponding to F is additive. Then f is Kurzweil-Henstock integrable on E with

primitive F if and only if given ε > 0 there exists a gauge δ on E such that for any

δ-fine partial division D of E we have

(D ∩ Γε)
∑

|f(x)||I| < ε and (D ∩ Γε)
∑

|F (I)| < ε.

Theorem 2.2. Let f and F be functions defined on E where the interval function

corresponding to F is additive. Then f is Kurzweil-Henstock integrable on E with

primitive F if and only if given ε > 0 there exists a gauge δ on E such that for any

δ-fine partial division D of E we have

(D ∩ Γε)
∑

|I| < ε and (D ∩ Γε)
∑

|F (I)| < ε.
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3. Convergence theorems involving uniform integrability

Let {fn} be a sequence of Kurzweil-Henstock integrable functions on E with the

corresponding primitives Fn and Γε,n being as defined above.

Theorem 3.1. Suppose the functions fn satisfy the UI1 condition. If fn(x)→f(x)

for all x ∈ E, then f is Kurzweil-Henstock integrable on E and

∫

E

f = lim
n→∞

∫

E

fn.

Theorem 3.2. Suppose the functions fn satisfy the UI2 condition. If fn(x)→f(x)

for all x ∈ E, then f is Kurzweil-Henstock integrable on E and

∫

E

f = lim
n→∞

∫

E

fn.

We shall show alternative proofs of Theorem 3.1 and Theorem 3.2 in the succeeding

discussions.

Lemma 3.1. Suppose the functions fn are Kurzweil-Henstock integrable on E

with the corresponding primitives Fn such that fn(x) → f(x) for all x ∈ E. If given

ε > 0 there exists a gauge δ on E such that for any δ-fine partial division D of E

there exists a positive integer ND such that for n > ND

(D ∩ Γε,n)
∑

|fn(x)||I| < ε and (D ∩ Γε,n)
∑

|Fn(I)| < ε,

then the following hold:

(i) there exists a function F on E such that Fn(x) → F (x) for all x ∈ E,

(ii) the function f is integrable with primitive F and
∫

E
f = lim

n→∞

∫

E
fn.

P r o o f. (i) Let ε > 0 and x ∈ E, where [a, x] is a nondegenerate interval. We

will show that {Fn(x)} is a Cauchy sequence. Hence it is convergent.

There exists a gauge δx such that for every δx-fine division D of [a, x] there exists

a positive integer ND for which for n > ND

(D ∩ Γε/k,n)
∑

|fn(ξ)||I| <
ε

k
and (D ∩ Γε/k,n)

∑

|Fn(I)| <
ε

k
,

where k = 5 + 2|E|.
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Let Dx be a fixed δx-fine division of [a, x]. We can find Mx > NDx
such that for

all n,m > Mx

|fn(ξ)− fm(ξ)| <
ε

k|E|
.

It follows that for n,m > Nx,

|Fn(x)− Fm(x)| = |Fn([a, x])− Fm([a, x])|

6

∣

∣

∣
Fn([a, x])− (Dx)

∑

fm(ξ)|I|
∣

∣

∣

+
∣

∣

∣
(Dx)

∑

fn(ξ)|I| − (Dx)
∑

fm(ξ)|I|
∣

∣

∣

+
∣

∣

∣
(Dx)

∑

fm(ξ)|I| − Fm([a, x])
∣

∣

∣
< ε.

Choose F (x) = lim
n→∞

Fn(x).

We will now show that f is integrable and F is its primitive.

(ii) Given ε > 0 there exists a gauge δ on E such that if D is a δ-fine partial

division of E, there is a positive integer ND such that for n > ND

(D ∩ Γε/2,n)
∑

|f(x)||I| <
ε

2
and (D ∩ Γε/2,n)

∑

|Fn(I)| <
ε

2
.

Since fn(x) → f(x) and Fn(x) → F (x) for all x ∈ E, there exists a positive integer

M1 > ND such that for n > M1 the inequalities

(D)
∑

|fn(x)− f(x)||I| <
ε

2
and (D)

∑

|Fn(I)− F (I)| <
ε

2

hold. Furthermore, there exists a positive integer M2 > M1 such that for n > M2,

D ∩ Γε ⊂ D ∩ Γε/2,n.

Then for n > M2,

(D ∩ Γε)
∑

|f(x)||I| 6 (D ∩ Γε)
∑

|f(x)− fn(x)||I| + (D ∩ Γε)
∑

|fn(x)||I|

<
ε

2
+

ε

2
= ε

and

(D ∩ Γε)
∑

|F (I)| 6 (D ∩ Γε)
∑

|F (I)− Fn(I)|+ (D ∩ Γε)
∑

|Fn(I)|

<
ε

2
+

ε

2
= ε.

The proof is complete. �

Correspondingly, we have the following result for UI2.
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Lemma 3.2. Suppose the functions fn are Kurzweil-Henstock integrable on E

with the corresponding primitives Fn such that fn(x) → f(x) for all x ∈ E. If given

ε > 0 there exists a gauge δ on E such that for any δ-fine partial division D of E

there exists a positive integer ND such that for n > ND

(D ∩ Γε,n)
∑

|I| < ε and (D ∩ Γε,n)
∑

|Fn(I)| < ε,

then f is Kurzweil-Henstock integrable and
∫

E f = lim
n→∞

∫

E fn.

Theorem 3.1 and Theorem 3.2 follow from Lemma 3.1 and Lemma 3.2, respectively.

We will now show the equivalence that we described in the introduction.

Theorem 3.3. Let {fn} be a sequence of integrable functions on E with the

corresponding primitives Fn and suppose that fn(x) converges for all x ∈ E. Then

the following statements are equivalent:

(1) fn satisfy the UI1 condition,

(2) fn satisfy the UI2 condition,

(3) fn are equiintegrable.

Given fn pointwise convergent everywhere to a function f , each of the statements

above implies that f is Kurzweil-Henstock integrable and
∫

E f = lim
n→∞

∫

E fn.

P r o o f. (1) ⇒ (2): Suppose the functions fn satisfy the UI1 condition. Given

ε > 0 there exists a gauge δ on E independent of n such that for any δ-fine partial

division D of E we have

(D ∩ Γε2/2,n)
∑

|fn(x)||I| <
ε2

2
and (D ∩ Γε2/2,n)

∑

|Fn(I)| <
ε2

2
.

We may assume ε < 1. Then Γε,n ⊂ Γε2/2,n. Hence, for any δ-fine partial division

D of E, we have

(D ∩ Γε,n)
∑

|I| < ε and (D ∩ Γε,n)
∑

|Fn(I)| < ε.

(2) ⇒ (1): Suppose the functions fn satisfy the UI2 condition. Given ε > 0 and

a positive integer i, there exists a gauge δi on E independent of n such that for any

δi-fine partial division Di of E we have

(Di ∩ Γεi,n)
∑

|I| < εi,

where εi = ε/(i2i). Since for every x the sequence {fn(x)} is convergent, {fn(x)} is

bounded. Let

Xi = {x ∈ E : |fn(x)| < i, ∀n ∈ N}
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and put Y1 = X1 and for i = 2, 3, . . .

Yi = Xi \

i−1
⋃

k=1

Xk.

Define δ(x) = δi(x) when x ∈ Yi. Let D be a δ-fine partial division of E. Split D

into Di, i = 1, 2, . . ., where Di contains those pairs with tags in Yi. For any n and i

(Di ∩ Γεi,n)
∑

|I| < εi.

Thus, for any n,

(D ∩ Γε,n)
∑

|fn(x)||I| 6

∞
∑

i=1

i(Di ∩ Γε,n)
∑

|I| < ε.

Furthermore, since fn satisfy the UI2 condition, we may choose δ appropriately so

that

(D ∩ Γε,n)
∑

|Fn(I)| < ε.

Hence fn satisfy UI1.

In [3], it was shown that (1) implies (3).

(3) ⇒ (1): Suppose the functions fn are equiintegrable. Then for any positive

number ε and positive integer i, there exists a gauge δi on E independent of n such

that for any δi-fine partial division D of E we have

(D)
∑

|Fn(I)− fn(x)|I|| < ε2i ,

where εi = ε/(i2i+1).

Then for any δi-fine partial division D of E

(D ∩ Γεi)
∑

|I| 6
1

εi
(D ∩ Γεi,n)

∑

|Fn(I)− fn(x)|I|| < εi.

Following the argument we used in the proof that (2) implies (1), there exists

a gauge δ on E independent of n such that for any δ-fine partial division D of E we

have

(D ∩ Γε/2,n)
∑

|fn(x)||I| <
ε

2
.

We may assume that ε < 1. Then for any δ-fine partial division D and any n we

have (D ∩ Γε,n)
∑

|I| < ε and

(D ∩ Γε,n)
∑

|Fn(I)| 6 (D ∩ Γε,n)
∑

|Fn(I)− fn(x)|I||

+ (D ∩ Γε,n)
∑

|fn(x)||I|

<
ε

2
+

ε

2
= ε.

The proof is complete. �
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4. The g-integral

To describe the division space we isolate the properties of δ-fine divisions that

make integration work. These are properties (i) to (iv) given below. In addition to

these four properties, a fifth property called decomposability (v) has to be added in

order to prove convergence theorems. A decomposable division space consists of three

mathematical objects: a space T , a family I of intervals I in T , and a collection A

of families of some point-interval pairs (x, I) satisfying certain conditions. A set E

is an elementary set of T if it is a finite union of intervals in I. We shall agree that

for any elementary set E and any I ∈ I, E \ I is an elementary set or it is empty.

A division D of E is the family of a finite number of mutually disjoint intervals I with

union E. A subfamily I1 of I divides E if a division D of E exists with the intervals

of D belonging to I1. Let U = {(x, I)} ∈ A. Then U divides E if {I : (x, I) ∈ U}

divides E.

The triple (T, I,A) is called a decomposable division space if the following condi-

tions are satisfied:

(i) For every elementary set E of T there is U ∈ A dividing E.

(ii) If both U1, U2 ∈ A are dividing E there is U3 ∈ A dividing E with U3 ⊂ U1∩U2.

(iii) If U0 ∈ A divides the union of two disjoint elementary sets E1 and E2 then

a family U1 = {(x, I)} ⊂ U0 with I ⊂ E1 belongs to A and divides E1.

(iv) Given disjoint elementary sets E1 and E2, if U1 ∈ A divides E1 with I ⊂ E1

for all (x, I) ∈ U1, and U2 ∈ A divides E2 with I ⊂ E2 for all (x, I) ∈ U2, then

there is U3 ∈ A dividing E1 ∪ E2 with U3 ⊂ U1 ∪ U2.

(v) (Decomposability) For all elementary sets K, all sequences Uj dividing K, and

all sequences {Ej} of mutually disjoint subsets of E there is U0 ∈ A dividing K

such that

U0[Ej ] ⊂ Uj [Ej ], j = 1, 2, . . . ,

where

U [X ] = {(x, I) ∈ U : x ∈ X}.

Definition 4.1. Let X ⊂ E and g :
⋃

U∈A

U → R. We say that g has a bounded

Riemann sums on X (BRS(X)) if there exists U ∈ A such that

(D)
∑

|g(x, I)| < M, for some M > 1

whenever D is a partial division of E from U [X ]. The function g(x, I) is said to have

countably bounded Riemann sums on E (CBRS(E)) if

⊲ there exists a sequence of set-number pairs {(Xi,Mi)} with
∞
⋃

i=1

Xi = E and

1 < M1 6 M2 6 M3 . . .
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⊲ and for every i, there exists Ui ∈ A dividing E such that

(D)
∑

|g(x, I)| < Mi

whenever D is a partial division of E from Ui[Xi].

Supposing g(x, I) has countably bounded Riemann sums (using Xi,Mi, Ui) we

denote

VH(g,Xi, Ui) = sup
D∈Ui[Xi]

∑

|g(x, I)| 6 Mi.

In what follows, let g :
⋃

U∈A

U → R have countably bounded Riemann sums on E

(using Xi,Mi, Ui).

Definition 4.2. A function h :
⋃

U∈A

U → R is said to be g-integrable with prim-

itive H if for every positive integer i, for every ε > 0 there exists Uε
i ∈ A dividing E

with Uε
i [Xi] ⊂ Ui[Xi] such that

(D)
∑

x∈Xi

|h(x, I)−H(I)| < εVH(g;Xi, Ui)

for all partial divisions D of E from Uε
i .

The family Uε
i in Definition 4.2 is a function of i. That is, the inequality stated in

the definition holds when the sum is taken over all x ∈ Xi using U
ε
i but may not hold

when the sum is taken over all x ∈ Xj , j 6= i. However, there is a family Uε which

is uniform with respect to i. That is, inequality in Definition 4.2 holds regardless

of, where the sum is being taken over. This is what the next theorem says. The

advantage of saying Definition 4.2 with Uε
i instead of U

ε is in the proof of the double

Lusin formulation (Theorem 4.3) where Uε
i is more quickly obtained than Uε.

Theorem 4.1. If h(x, I) is g-integrable on E with primitive H then for every

ε > 0 there exists Uε ∈ A dividing E with Uε[Xi] ⊂ Ui[Xi] for each i, such that for

each i,

(D)
∑

x∈Yi

|h(x, I) −H(I)| < εVH(g;Xi, Ui)

for all partial divisions D of E from Uε.

P r o o f. Let Y1 = X1. For i > 1, let

Yi = Xi \

i−1
⋃

j=1

Xj.

162



The sets Yi are pairwise disjoint. In Definition 4.1, we can actually let the se-

quence {Xi} to be nondecreasing and

U [Xi−1] = Ui−1[Xi−1]

so that for all i,

VH(g;Xi, Ui) > VH(g;Xi−1, Ui−1).

By Definition 4.2, for every i ∈ N, for every ε > 0 there exists Uε
i ∈ A dividing E

with Uε
i [Xi] ⊂ Ui[Xi] such that

(D)
∑

x∈Xi

|h(x, I)−H(I)| <
ε

2i
VH(g;Xi, Ui)

for all partial divisions D in Uε
i . By the decomposability property, we can choose

Uε ∈ A dividing E such that

Uε[Yi] ⊂ Uε
i [Yi].

Then for each i ∈ N,

(D)
∑

x∈Xi

|h(x, I)−H(I)| =

i
∑

k=1

(D)
∑

x∈Yk

|h(x, I)−H(I)|

<

i
∑

k=1

ε

2k
VH(g;Xk, Uk)

6 VH(g;Xi, Ui)
i

∑

k=1

ε

2k
< εVH(g;Xi, Ui)

for all partial divisions D in Uε. The proof is complete. �

The next theorem says that Definition 4.2 is just a special case of the generalized

Riemann integral defined in ([5], page 165).

Theorem 4.2. If h(x, I) is g-integrable with primitive H then h(x, I) is general-

ized Riemann integrable and the two integrals coincide.

P r o o f. Let Yi be as in the proof of the preceding theorem.

By Definition 4.2, for every positive integer i, for every ε > 0 there exists Uε
i ∈ A

dividing E with Uε
i [Xi] ⊂ Ui[Xi] such that,

(D)
∑

x∈Xi

|h(x, I)−H(I)| <
ε

2iMi
VH(g;Xi, Ui)

for all partial divisions D of E from Uε
i . By the decomposability property, we can

choose Uε ∈ A dividing E such that Uε[Yi] ⊂ Uε
i [Yi].
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Then for all divisions D of E from Uε, we have

(D)
∑

|h(x, I)−H(I)| =
∞
∑

i=1

(D)
∑

x∈Yi

|h(x, I) −H(I)|

<
∞
∑

i=1

ε

2iMi
VH(g;Xi, Ui) 6 ε.

This is precisely the definition of the generalized Riemann integral. �

Definition 4.3. We say that a function h(x, I) satisfies the αg-condition on E

if for every x ∈ E there is a minimum number α(x) ∈ Z
+ such that for any (x, I) in

the division space we have

|h(x, I)| 6 α(x)|g(x, I)|.

Given functions H and h(x, I), and U ∈ A, we denote

Γε = {(x, I) ∈ U : |H(I)− h(x, I)| > ε|g(x, I)|}.

We are now ready to present the double Lusin formulation for the g-integral.

Theorem 4.3. Let h :
⋃

U∈A

U → R satisfy the αg-condition and H : I(E) → R.

Then h(x, I) is g-integrable on E with primitive H if and only if for every i, for every

ε > 0 there exists Uε
i ∈ A with Uε

i [Xi] ⊂ Ui[Xi] such that

(D ∩ Γε)
∑

x∈Xi

|h(x, I)| < εVH(g;Xi, Ui)

and

(D ∩ Γε)
∑

x∈Xi

|H(I)| < εVH(g;Xi, Ui)

for all partial divisions D of E from Uε
i .

P r o o f. (⇒) Suppose h(x, I) is g-integrable with primitive H. Let

Ek = {x ∈ E : α(x) = k}.

Given 0 < ε < 1 and a positive integer i, for every k there exists Uε,k
i ∈ A

dividing E with Uε,k
i [Xi] ⊂ Ui[Xi] such that

(D)
∑

x∈Xi

|h(x, I) −H(I)| <
ε2

k2k+1
VH(g;Xi, Ui)

for all partial divisions D of E from Uε,k
i .
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By decomposability, there exists Uε
i ∈ A dividing E with

Uε
i [Ek] ⊂ Uε,k

i [Ek].

Then for all partial divisions D of E from Uε
i , we have

(D ∩ Γε)
∑

x∈Xi

|h(x, I)| 6

∞
∑

k=1

(D ∩ Γε)
∑

x∈Xi∩Ek

k|g(x, I)|

6

∞
∑

k=1

k

ε
(D ∩ Γε)

∑

x∈Xi∩Ek

|h(x, I) −H(I)|

<

∞
∑

k=1

k

ε

ε2

k2k+1
VH(g;Xi, Ui)

< εVH(g;Xi, Ui)

and

(D ∩ Γε)
∑

x∈Xi

|H(I)| 6 (D ∩ Γε)
∑

x∈Xi

|H(I)− h(x, I)|+ (D ∩ Γε)
∑

x∈Xi

|h(x, I)|

<
ε

2
VH(g;Xi, Ui) +

ε

2
VH(g;Xi, Ui) = εVH(g;Xi, Ui).

(⇐) For the converse, given i, for every ε > 0 choose Uε
i such that

(D ∩ Γε/3)
∑

x∈Xi

|h(x, I)| <
ε

3
VH(g;Xi, Ui)

and

(D ∩ Γε/3)
∑

x∈Xi

|H(I)| <
ε

3
VH(g;Xi, Ui)

for all partial divisions D of E from Uε
i . Then for a partial division D of E from Uε

i

we have

(D)
∑

x∈Xi

|h(x, I)−H(I)| 6 (D ∩ Γε)
∑

x∈Xi

|h(x, I)|+ (D ∩ Γε)
∑

x∈Xi

|H(I)|

+ (D \ Γε)
∑

x∈Xi

|h(x, I)−H(I)|

<
ε

3
VH(g;Xi, Ui) +

ε

3
VH(g;Xi, Ui)

+ (D \ Γε)
∑

x∈Xi

ε

3
|g(x, I)|

< εVH(g;Xi, Ui).

The proof is complete. �
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We now present a generalization of Theorem 3.1 to the decomposable division

space.

Theorem 4.4. Let {hn(x, I)} be a sequence of g-integrable functions satisfying

the αg-condition with the corresponding primitives Hn. If the following conditions

are satisfied:

(1) hn(x, I) → h(x, I) for all (x, I) in the division space, where h(x, I) :
⋃

U∈A

U → R,

(2) for every i, for every ε > 0 there exists Uε
i ∈ A independent of n with Uε

i [Xi] ⊂

Ui[Xi] such that for any partial division D of E in Uε
i [Xi] we have

(D ∩ Γε,n)
∑

|hn(x, I)| < εVH(g;Xi, Ui)

and

(D ∩ Γε,n)
∑

|Hn(I)| < εVH(g;Xi, Ui).

Then the following statements hold:

(i) there exists function H such that Hn(I) → H(I) for all I ∈ I(E),

(ii) h(x, I) is g-integrable with

∫

E

h(x, I) = lim
n→∞

∫

E

hn(x, I).

P r o o f. Let I0 ∈ I, U ∈ A dividing I0 and D a division of I0. By the triangle

inequality

(D)
∑

|Hm(I)−Hn(I)| 6 (D)
∑

|Hm(I)− hm(x, I)|

+ (D)
∑

|hm(x, I) − hn(x, I)|

+ (D)
∑

|hn(x, I) −Hn(I)|.

In view of condition (2), the fact that hn(x, I) converges for all (x, I), and the

inequality above it follows that {Hn(I)} is Cauchy and hence convergent. We letH(I)

be its limit.

Consider Xi. Let Xi = X and ε > 0. In view of condition (2), there exists

Uε/2 ∈ A independent of n with Uε/2[X ] ⊂ U [X ] such that for any partial divisionD

of E in Uε/2[X ] we have

(D ∩ Γε/2,n)
∑

|hn(x, I)| <
ε

2
VH(g;X,U)

and

(D ∩ Γε/2,n)
∑

|Hn(I)| <
ε

2
VH(g;X,U).
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LetD be any partial division ofE in V ε[X ]. By condition (3) there exists a positive

integer N1 such that for any n > N1 we have

|H(I)−Hn(I)| <
ε

2
|g(x, I)| ∀ (x, I) ∈ D.

From condition (1), given the same there exists a positive integer N2 > N1 such

that for any n > N2 we have

|h(x, I) − hn(x, I)| <
ε

2
|g(x, I)| ∀ (x, I) ∈ D.

Finally, in view of conditions (1) and (3) there exists a positive integer ND > N2

such that for n > ND we have

D ∩ Γε ⊂ D ∩ Γε/2,n.

Then for n > ND,

(D ∩ Γε)
∑

|h(x, I)| 6 (D ∩ Γε)
∑

|h(x, I) − hn(x, I)|+ (D ∩ Γε)
∑

|hn(x, I)|

<
ε

2
(D ∩ Γε)

∑

|g(x, I)|+
ε

2
VH(g;X,U)

6 εVH(g;X,U)

and

(D ∩ Γε)
∑

|H(I)| 6 (D ∩ Γε)
∑

|H(I)−Hn(I)|+ (D ∩ Γε)
∑

|Hn(I)|

<
ε

2
(D ∩ Γε)

∑

|g(x, I)|+
ε

2
VH(g;X,U)

6 εVH(g;X,U).

Therefore h(x, I) is g-integrable and H(I) is its primitive. �

The double Lusin condition that is used to characterize the Kurzweil-Henstock

integral uses point-interval pairs (x, I) such that x is contained in I. It can be shown

that the McShane integral has a similar double Lusin characterization with tags x

floating around I (see [2]). The approximate Perron (AP) integral was given in [5].

A double Lusin characterization of AP integral can also be given. The Henstock-

Stieltjes integral was given in [1] with a function g of bounded variation (BV). In

our characterization of the g-integral it is possible for g to be BV G∗, where V BG∗

is defined as follows: Given a subset X of E, an interval function g on E is said

to be BV ∗(X) if there exists a nonnegative number M such that for any X-tagged

partial division D of E we have (D)
∑

|g(I)| 6 M and g is BV G∗ on E if E =
∞
⋃

i=1

Xi

such that for each i, g is BV ∗(Xi). It remains to be explored what happens when g

is BV G∗.
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