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Abstract. The aim of this work is to study oscillation properties for a scalar linear
difference equation of mixed type

∆x(n) +

q∑

k=−p

ak(n)x(n+ k) = 0, n > n0,

where ∆x(n) = x(n + 1) − x(n) is the difference operator and {ak(n)} are sequences of
real numbers for k = −p, . . . , q, and p > 0, q > 0. We obtain sufficient conditions for
the existence of oscillatory and nonoscillatory solutions. Some asymptotic properties are
introduced.
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1. Introduction

The aim of this work is to study oscillation properties for a scalar linear difference

equation of mixed type

(1) ∆x(n) +

q
∑

k=−p

ak(n)x(n + k) = 0, n > n0,

where ∆x(n) = x(n+1)− x(n) is the difference operator and {ak(n)} are sequences

of real numbers for k = −p, . . . , q, and p > 0, q > 0.

Differential equations with delayed and advanced arguments (also called mixed

differential equations or equations with mixed arguments) occur in many problems
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of economy, biology and physics (see for example [2], [6], [8], [9], [11]), because differ-

ential equations with mixed arguments are much more suitable than delay differential

equations for an adequate treatment of dynamic phenomena. The concept of delay is

related to the memory of a system, past events are important for the current behavior,

and the concept of advance is related to potential future events which can be known

at the current time and could be useful for decision-making. The study of various

problems for differential equations with mixed arguments can be found in [3], [5], [4],

[7], [10], [12], [13], [14]. It is well known that the solutions of these types of equations

cannot be obtained in closed-form. In the absence of closed-form solutions a reward-

ing alternative is to resort to the qualitative study of the solutions of these types

of differential equations. But it is not quite clear how to formulate an initial value

problem for such equations and the existence and uniqueness of solutions becomes a

complicated issue. To study the oscillation of solutions of differential equations, we

need to assume that there exists a solution of such equations on the half line.

2. Oscillatory behavior

As is customary, a solution is called nonoscillatory if it is eventually positive or

eventually negative. Otherwise it is oscillatory. Equation (1) is called oscillatory if

all its solutions are oscillatory.

First, we will consider the coefficients ak(n) nonnegative for all k ∈ {−p, . . . , q}

and n > n0.

Theorem 1. Let ak(n) be nonnegative for all k ∈ {−p, . . . , q} and n > n0. If

(2)

−1
∑

k=−p

ak(n+ 1) +

0
∑

k=−p

ak(n) > 1

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

P r o o f. Assume, for the sake of contradiction, that equation (1) has a nonoscil-

latory solution. Without loss of generality we may assume that {x(n)} is eventually

positive, i.e., there exists n1 > n0 such that x(n) > 0 for n > n1. By (1) it is easy

to see that {x(n)} is decreasing, since

∆x(n) = −

q
∑

k=−p

ak(n)x(n+ k) 6 0.

So,

0 = x(n+ 2)− x(n+ 1) +

q
∑

k=−p

ak(n+ 1)x(n+ k + 1)
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> − x(n+ 1) +

q
∑

k=−p

ak(n+ 1)x(n+ k + 1)

> − x(n+ 1) +

−1
∑

k=−p

ak(n+ 1)x(n+ k + 1)

> − x(n+ 1) +
−1
∑

k=−p

ak(n+ 1)x(n).

Consequently,

(3) x(n+ 1) >
−1
∑

k=−p

ak(n+ 1)x(n).

On the other hand, we have

0 = x(n+ 1)− x(n) +

q
∑

k=−p

ak(n)x(n + k)

> x(n+ 1)− x(n) +

0
∑

k=−p

ak(n)x(n + k)

> x(n+ 1)− x(n) +

0
∑

k=−p

ak(n)x(n).

Consequently,

(4) x(n+ 1) 6 x(n) −

0
∑

k=−p

ak(n)x(n).

Using inequalities (3) and (4), we get

−1
∑

k=−p

ak(n+ 1)x(n) < x(n) −

0
∑

k=−p

ak(n)x(n)

or
−1
∑

k=−p

ak(n+ 1) +

0
∑

k=−p

ak(n) < 1.

This way we obtain a contradiction. �
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Corollary 2. Let ak(n) be nonnegative for all k ∈ {−p, . . . , q} and n > n0. If

there exists m ∈ {−p, . . . , 0} such that

(5)

m
∑

k=−p

ak(n) > 1

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

Agarwal, in [1], Section 6.4, studies the oscillatory behavior of the difference equa-

tion

(6) p(k)u(k + 1) + p(k − 1)u(k − 1) = q(k)u(k), k ∈ N(1),

where the functions p and q are defined on N and N(1), respectively, and p(k),

q(k) > 0 for all k ∈ N.

Equation (1) generalizes equation (6) and Theorem 1 extends Theorem 6.4.1 of [13]

as we can see in next corollary.

Corollary 3. Let ak(n) be nonegative for all k ∈ {−p, . . . , q} and n > n0. If

(7) a0(n) > 1− pmin{ak(n) : k = −p, . . . ,−1} > 0

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

P r o o f. We have

0
∑

k=−p

ak(n) = a0(n) +
−1
∑

k=−p

ak(n) > a0(n) + pmin{ak(n) : k = −p, . . . ,−1} > 1.

�

Corollary 4. Let ak(n) be nonegative for all k ∈ {−p, . . . , q} and n > n0. If

(8) a−p(n) < . . . < a−1(n) and a0(n) > 1− pa−p(n)

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

Corollary 5. Let ak(n) be nonegative for all k ∈ {−p, . . . , q} and n > n0. If

(9) a−p(n) > . . . > a−1(n) and a0(n) > 1− pa−1(n)

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.
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E x am p l e 6. Consider the difference equation

(10) ∆x(n) +

0
∑

k=−2

n− 1

|k − 2|(n+ 1)
x(n+ k) +

q
∑

k=1

bk(n)x(n+ k) = 0, n > 4,

where bk(n) is a nonnegative sequence for all k ∈ {1, . . . , q} and q > 1. Since

n

4(n+ 2)
+

n

3(n+ 2)
+

n− 1

4(n+ 1)
+

n− 1

3(n+ 1)
+

n− 1

2(n+ 1)
> 1

for n > 2, condition (2) holds, by Theorem 1 we can conclude that equation (10) is

oscillatory.

We consider now the case when the coefficients ak(n) are nonpositive for all

k ∈ {−p, . . . , q}.

Theorem 7. Let ak(n) be nonpositive for all k ∈ {−p, . . . , q}, q > 2 and n > n0. If

(11)

q
∑

k=1

ak(n) +

q
∑

k=2

ak(n− 1) 6 −1

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

P r o o f. Assume, for the sake of contradiction, that equation (1) has a nonoscil-

latory solution. Without loss of generality we may assume that x(n) is eventually

positive, i.e., there exists n1 > n0 such that x(n) > 0 for n > n1. By (1) it is easy

to see that {x(n)} is increasing since

∆x(n) = −

q
∑

k=−p

ak(n)x(n+ k) > 0.

So,

0 = x(n) − x(n− 1) +

q
∑

k=−p

ak(n− 1)x(n+ k − 1)

< x(n) +

q
∑

k=−p

ak(n− 1)x(n+ k − 1)

6 x(n) +

q
∑

k=2

ak(n− 1)x(n+ k − 1)

6 x(n) +

q
∑

k=2

ak(n− 1)x(n+ 1).
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Consequently,

(12) x(n) > −

q
∑

k=2

ak(n− 1)x(n+ 1).

On the other hand, we have

0 = x(n+ 1)− x(n) +

q
∑

k=−p

ak(n)x(n + k)

< x(n+ 1)− x(n) +

q
∑

k=1

ak(n)x(n + k)

6 x(n+ 1)− x(n) +

q
∑

k=1

ak(n)x(n + 1).

Consequently

(13) x(n) < x(n+ 1) +

q
∑

k=1

ak(n)x(n+ 1).

Using the inequalities (12) and (13), we get

−

q
∑

k=2

ak(n− 1)x(n+ 1) < x(n+ 1) +

q
∑

k=1

ak(n)x(n+ 1)

or
q

∑

k=1

ak(n) +

q
∑

k=2

ak(n− 1) > −1.

This way we obtain a contradiction. �

Corollary 8. Let ak(n) be nonpositive for all k ∈ {−p, . . . , q} and n > n0. If

there exists m ∈ {1, . . . , q} such that

(14)

m
∑

k=1

ak(n) 6 −1

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

Corollary 9. Let ak(n) be nonpositive for all k ∈ {−p, . . . , q} and n > n0. If

(15) a1(n) 6 −1− qmax{ak(n) : k = 2, . . . , q}

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.
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Corollary 10. Let ak(n) be nonpositive for all k ∈ {−p, . . . , q} and n > n0. If

(16) a2(n) < . . . < aq(n) and a1(n) < −1− qaq(n)

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

Corollary 11. Let ak(n) be nonpositive for all k ∈ {−p, . . . , q} and n > n0. If

(17) a2(n) > . . . > aq(n) and a1(n) < −1− qa2(n)

for all n > n1 > n0, then all solutions of the difference equation (1) are oscillatory.

E x am p l e 12. Consider the difference equation

(18) ∆x(n) +

0
∑

k=−p

ck(n)x(n+ k) +

3
∑

k=1

k(e−n − 1)

k + 1
x(n+ k) = 0, n > 1,

where ck(n) is a nonpositive sequence for all k ∈ {−p, . . . , 0} and p > 0. Since

e−n − 1

2
+

2(e−n − 1)

3
+

3(e−n − 1)

4
+

2(e−(n−1) − 1)

3
+

3(e−(n−1) − 1)

4
< −1

for n > 1, by Theorem 7 we can conclude that equation (18) is oscillatory.

In the next theorem we will establish a condition to get oscillatory solutions inde-

pendently of the coefficients’ sign.

Theorem 13. Assume that for each k ∈ {−p, . . . , q} there exists the limit

(19) lim
n→∞

ak(n) = ak 6= 0.

If all roots λ1, λ2, . . . , λq+p of the equation

(20) λ− 1 +

q
∑

k=−p

akλ
k = 0

satisfy |λ1| > |λ2| > . . . > |λq+p| and n of them are negative (where n 6 q+ p), then

equation (1) has n oscillatory solutions.

P r o o f. Denote by λk the real negative root of (20). By Perron’s theorem

(see [13]), (1) has a solution u such that

lim
n→∞

uk(n+ 1)

uk(n)
= λk < 0.

Thus such a solution is necessarily an oscillatory solution of (1). �
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E x am p l e 14. Consider the difference equation

∆x(n)−
6n

n+ 6
x(n− 2) +

5n+ 1

n
x(n− 1) + 6(e−n + 1)x(n)(21)

+ 6(e−n − 1)x(n+ 1) +
n

n+ 1
x(n+ 2) = 0,

n > 1. Since

a−2(n) = −
6n

n+ 6
−→
n→∞

−6,

a−1(n) =
5n+ 1

n
−→
n→∞

5,

a0(n) = 6(e−n + 1) −→
n→∞

6,

a1(n) = 6(e−n − 1) −→
n→∞

−6,

a2(n) =
n

n+ 1
−→
n→∞

1,

equation (20) gives

λ− 1− 6λ−2 + 5λ−1 + 6− 6λ+ λ2 = 0

or

(22) λ4 − 5λ3 + 5λ2 + 5λ− 6 = 0.

Equation (22) has four different roots: λ1 = 3, λ2 = 2, λ3 = 1, and λ4 = −1, so by

Theorem 13, equation (21) has an oscillatory solution.

3. Nonoscillatory behavior

In this section we will study the nonoscilatory behavior of the autonomous equation

(23) ∆x(n) +

q
∑

k=−p

akx(n+ k) = 0, n > 1.

According to Krisztin [9], the oscillatory behavior of equation (23) can be studied

similarly as for delay equations.

The equation

(24) ∆x(n) +

q
∑

k=−p

akx(n+ k) = 0, n > n0

176



is nonoscillatory if there exists λ ∈ R
+ such that

(25) λ− 1 +

q
∑

k=−p

akλ
k = 0.

We define

(26) N(λ) = 1− λ−

q
∑

k=−p

akλ
k.

Theorem 15. If a−paq < 0 for all n > n1 > n0, then equation (1) is nonoscilla-

tory.

P r o o f. Consider a−p < 0 and aq > 0. Notice that

(27) N(λ) = 1− λ−

−1
∑

k=−p

akλ
k −

q
∑

k=0

akλ
k −→
λ→0+

∞

and

(28) N(λ) = 1− λ−
−1
∑

k=−p

akλ
k −

q
∑

k=0

akλ
k −→
λ→∞

−∞.

By the continuity, there exists λ0 > 0 such that N(λ0) = 0.

Analogously, we prove that there exists λ1 > 0 such that N (λ1) = 0, when

a−p > 0, aq < 0. �

E x am p l e 16. Consider the equation

(29) ∆x(n)+ax(n−1)+(1−3a)x(n)− (1−3a)x(n+1)−ax(n+2) = 0, n > 1.

By Theorem 15, the difference equation (21) has a nonoscillatory solution, since

a−1 = a = −a2.

In fact x(n) = n is a nonoscilatory solution of (29).

Theorem 17. Let ak > 0 for every k ∈ {−p, . . . , q} and

(30) max

{(

p

q
∑

k=−p

ak

)1/(p+1)

,

( q
∑

k=−p

ak

)1/(p+1)
p+ 1

pp/(p+1)

}

< 1.

Then equation (1) is nonoscillatory.
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P r o o f. Notice that

N(λ) = 1− λ−

q
∑

k=−p

akλ
k < 1− λ

and consequently, N(λ) < 0 for λ > 1.

Let λ < 1. So,

N(λ) = 1− λ−

q
∑

k=−p

akλ
k > 1− λ− λ−p

q
∑

k=−p

ak.

The function

f(λ) = 1− λ− λ−p

q
∑

k=−p

ak

has a maximum for λ0 =
(

p
q
∑

k=−p

ak

)1/(p+1)

and

f(λ0) = 1−

( q
∑

k=−p

ak

)1/(p+1)
p+ 1

pp/(p+1)
> 0.

Consequently, N(λ0) > 0. �

Theorem 18. Let ak < 0 for every k ∈ {−p, . . . , q} and

(31) min

{(

−q

q
∑

k=−p

ak

)

−1/(q−1)

,

(

−

q
∑

k=−p

ak

)

−1/(q−1)
q + 1

qq/(q−1)

}

> 1.

Then equation (1) is nonoscillatory.

P r o o f. Notice that

N(λ) = 1− λ−

q
∑

k=−p

akλ
k > 1− λ

and consequently, N(λ) > 0 for λ 6 1.

Let λ > 1. So,

N(λ) = 1− λ−

q
∑

k=−p

akλ
k > 1− λ− λq

q
∑

k=−p

ak.
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The function

g(λ) = 1− λ− λq

q
∑

k=−p

ak

has a minimum for λ1 =
(

−q
q
∑

k=−p

ak

)

−1/(q−1)

and

g(λ1) = 1−

(

−

q
∑

k=−p

ak

)

−1/(q−1)
q + 1

qq/(q−1)
6 0.

Consequently, N(λ1) > 0. �

E x am p l e 19. Consider the equation

(32) ∆x(n) +
253

2048
x(n− 1) +

1

512
x(n) +

1

256
x(n+ 1) +

1

64
x(n+ 3) = 0, n > 1.

In this case we have p = 1,

(

p

q
∑

k=−p

ak

)1/(p+1)

=

√

253

2048
+

1

512
+

1

256
+

1

64
=

√

297

2048
< 1,

and
( q

∑

k=−p

ak

)1/(p+1)
p+ 1

pp/(p+1)
= 2

√

297

2048
=

√

297

512
< 1.

Consequently, by Theorem 17, the difference equation (32) has a nonoscillatory so-

lution. In fact, x(n) = 2−n is a nonoscilatory solution of (32).

4. Asymptotic behavior

Now we will study the asymptotic behavior of the nonoscillatory solutions.

Theorem 20. Let ak(n) > 0 for every k ∈ {−p, . . . , q}, n > n0 and

(33)

∞
∑

n=n1

q
∑

k=−p

ak(n) = ∞.

If x is an eventually positive solution of (1), then

lim
n→∞

x(n) = 0.
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P r o o f. Suppose x(n) > 0 for n > n1, so ∆x(n) < 0 and consequently {x(n)}

is decreasing and has a finite limit. If

lim
n→∞

x(n) = d > 0,

then x(n) > d for any n > n1 and

∆x(n) = −

q
∑

k=−p

ak(n)x(n + k) < −d

q
∑

k=−p

ak(n).

So,

x(n+ 1) < x(n1)− d

n
∑

i=n1

q
∑

k=−p

ak(i) −→
n→∞

−∞.

This is a contradiction and this way we prove that d = 0. �

Theorem 21. Let ak(n) 6 0 for every k ∈ {−p, . . . , q}, n > n0 and

(34)

∞
∑

n=n2

q
∑

k=−p

ak(n) = −∞.

If x is an eventually positive solution of (1), then

lim
n→∞

x(n) = 0.

P r o o f. Suppose x(n) > 0 for n > n1, so ∆x(n) > 0 and consequently {x(n)}

is increasing and

∆x(n) = −

q
∑

k=−p

ak(n)x(n+ k) > −x(n− p)

q
∑

k=−p

ak(n).

So,

x(n+ 1) < x(n− p)

(

1−

n
∑

i=n−p

q
∑

k=−p

ak(i)

)

−→
n→∞

∞.

This completes the proof. �

E x am p l e 22. Consider the equation

(35) ∆x(n)+3−1−(2nk−k2)/(2n+1)x(n−k)+3−1+(2nl+l2)/(2n+1)x(n+ l) = 0, n > 1,
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where k, l > 1. Notice that

∞
∑

n=1

(3−1−(2nk−k2)/(2n+1) + 3−1+(2nl+l2)/(2n+1))

=
1

3

∞
∑

n=1

(3−(2nk−k2)/(2n+1) + 3(2nl+l2)/(2n+1)) = ∞,

since
∞
∑

n=1
3(2nl+l2)/(2n+1) is divergent. So, by Theorem 20, if x is an eventually

positive solution of (35), then lim
n→∞

x(n) = 0. In fact, x(n) = 3−n2/(2n+1) is a positive

solution of (35) and lim
n→∞

3−n2/(2n+1) = 0.
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