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A SHORT NOTE ON Lq THEORY FOR STOKES PROBLEM

WITH A PRESSURE-DEPENDENT VISCOSITY

Václav Mácha, Praha

(Received December 9, 2014)

Abstract. We study higher local integrability of a weak solution to the steady Stokes
problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the
elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and
on the symmetric part of a gradient of u, namely, it is represented by a stress tensor
T (Du, p) := ν(p, |D|2)D which satisfies r-growth condition with r ∈ (1, 2]. In order to get
the main result, we use Calderón-Zygmund theory and the method which was presented for
example in the paper Caffarelli, Peral (1998).
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1. Introduction

In the celebrated Navier-Stokes system, which deals with the flow of Newtonian

incompressible fluids, viscosity is assumed to be constant. However, the constant vis-

cosity cannot explain many interesting physical phenomena such as shear-thinning,

shear-thickening, die-swell, etc. Viscosity of non-Newtonian fluids is not generally

constant but depends on shear rate and, as many experimental works show, there

are fluids whose viscosity depends also on pressure. On the other hand, changes in

the density of these liquids are negligible as the pressure grows and thus these fluids

can be still treated as incompressible, see [2]. Also in some situations the pressure

grows tremendously and its influence on viscosity cannot be neglected. For example,

in works written by Knauf et al. and Lanzendörfer ([14], [15]) the authors provide

numerical simulation of the flow of a lubricant through a ball bearing (or, journal

This work was supported by the GA ČR project GA13-00522S in the general framework
of RVO: 67985840.
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bearing). The governing equation for a steady flow of a fluid with a pressure- and

shear rate-dependent viscosity has the form

− div T (Du, p) + div(u⊗ u) +∇p = div T (F, 0) in Ω,

div u = 0 in Ω,

where Ω ⊂ R
d is a domain, T : R

d2

×R → R
d2

and F : Ω → R
d2

are given functions,

u : Ω → R
d and p : Ω → R are unknowns and Du stands for the symmetric part of

a gradient of u, i.e., 2Du = ∇u+ (∇u)T .

A plenty of works studying this system have been published sofar. Regarding the

steady case, Gazzola and Secchi in [11] consider a viscosity depending only on the

pressure. The existence of a solution for more general viscosities is discussed by

Bulíček and Fišerová in [3], by Lanzendörfer and Stebel in [17] and also by Franta

et al. in [10]. C1,α interior regularity in two dimensions is solved by Bulíček and

Kaplický in [4], Hölder regularity in the three-dimensional case was announced by

Mingione, Málek and Stará in [21]. Further, C1,α regularity under Dirichlet boundary

conditions in three dimensions is provided in [18]. The unsteady case was investi-

gated, for example, by Bulíček, Málek and Rajagopal in [5].

This article is devoted to the interior Lq regularity for a simplified problem which

has the following form:

(P) − divT (Du, p) +∇p = div T (F, 0) in Ω,

div u = 0 in Ω.

Since this article concerns only local properties of the solution, we do not care about

any boundary conditions.

The stress tensor T is considered to be in the form T (Du, p) = ν(p, |Du|2)Du.

Moreover, we suppose that following growth conditions are fulfilled.

γ1(1 + |D|2)(r−2)/2|B|2 6
∂(ν(p, |D|2)Dij)

∂Dkl
BijBkl 6 γ2(1 + |D|2)(r−2)/2|B|2,(A1)

∣∣∣
∂ν(p, |D|2)

∂p
D
∣∣∣ 6 γ3(1 + |D|2)(r−2)/4.(A2)

Furthermore, γ3 is assumed to be small, specifically

(A3) γ3 <
γ1

cdiv(γ1 + γ2)
,

where the constant cdiv comes from Bogovskii inequality—see Lemma 4.

For physically relevant viscosities fulfilling (A1), (A2) and (A3) we refer the reader

to [15], [20] or [22].
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We point out that the form of the right-hand side of (P)1 is not restrictive since

for every G : Ω → R
d2

there exists F such that G = T (F, 0). The chosen form of the

right-hand side allows us to write the main result in a clear way.

In what follows, usual Lebesque spaces of functions defined on a set Ω are denoted

by Ls(Ω), Sobolev spaces are denoted by W 1,s(Ω). Lebesque (or, Sobolev) spaces

of vector-valued functions are denoted by Ls(Ω)d (or, W 1,s(Ω)d). However, we will

use Ls(Ω) (or, W 1,s(Ω)) for vector-valued functions in cases where there is no risk

of misunderstanding. Norms in these spaces will be denoted by ‖·‖s (or, ‖·‖1,s). In

case we want to emphasize the supporting set, we write ‖·‖s,Ω (or, ‖·‖1,s,Ω), i.e.,

‖f‖s,Ω = (
∫
Ω
|f |s)1/s. Further, Ls

loc(Ω) (or, W
1,s
loc (Ω)) stands for a local version of

Lebesque (or, Sobolev) space. A space of all functions from W 1,s(Ω) with compact

support is denoted by W 1,s
c (Ω). We define also an integral average as

∫

Ω

f :=
1

|Ω|

∫

Ω

f.

For α > 0 and a cube Q ⊂ R
d centered at a ∈ R

d we define a cube αQ as

αQ :=
{
x ∈ R

d :
x− a

α
∈ Q

}
.

A weak solution of (P) is a pair (u, p) ∈ W 1,r
loc (Ω)× Lr′

loc(Ω), div u = 0 fulfilling

∫

Ω

T (Du, p)∇ϕ−

∫

Ω

p divϕ =

∫

Ω

T (F, 0)∇ϕ

for every ϕ ∈ W 1,r
c (Ω). The existence of a weak solution to (P) is solved by Theo-

rem 3.11 in [16]. We also refer to Theorem 2 in [15] and references given there. In

the rest of this paper we always assume that (A1), (A2) and (A3) hold.

The main result of this paper is summed up in the following theorem.

Theorem 1. Let r ∈ (1, 2], q ∈ (1, d/(d− 2)) (or q ∈ (1,∞) in the case d = 2)

and let assumptions (A1)–(A3) be fulfilled. Let F ∈ Lqr(Ω), (u, p) be a weak solution

to (P) and let Q ⊂ 4Q ⊂ Ω be a sufficiently small cube. Then1

∫

Q

((1 + |Du|2)(r−2)/2|Du|2)q(1.1)

6 c

(
1 +

∫

4Q

F qr +

(∫

4Q

(1 + |Du|2)(r−2)/2|Du|2
)q)

,

1Hereinafter we use the letter c for a constant which may vary from line to line, however,
it is always independent of the solution and right-hand side.
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and, moreover,

(1.2)

∫

Q

∣∣∣∣p−
∫

Q

p

∣∣∣∣
qr′

6 c

(
1 +

∫

4Q

F qr +

(∫

4Q

(1 + |Du|2)(r−2)/2|Du|2
)q)

,

where c is a constant independent of f, u, p and Q.

The method of the proof is based on a local comparison with the solution to the

problem with zero right-hand side. Among lots of papers based on the comparison

technique we would like to mention [13], where Iwaniec showed a Lq theory result

for the linear problem, [6], where Caffarelli and Peral proved Lq estimates for elliptic

equations in divergence form, and [8], where Diening and Kaplický used the method

to derive Lq estimates of Stokes system with general growth. Our approach is based

on [6], Theorem A. However, since our system is slightly more complicated than the

one in [6], we have to use a more general version which is presented here as Lemma 5.

2. Preliminaries

We define a function V : R
d2

→ R
d2

as V (D) :=
√
ν(0, |D|2)D and, for every

s > 0, a function Φ′(s) = ν(0, |s|2)s. We emphasize that Φ(x) :=
∫ x

0 Φ′(s) ds is an

N-function satisfying the∆2 condition and, moreover,Φ
′(s) ∼ (1+s2)(r−2)/2s. By Φ∗

we denote an N-function which is complementary to Φ. Hereinafter, we suppose that

r 6 2.

Lemma 2. For all cubes Q, u, v ∈ W 1,r(Q) and p, π ∈ Lr′(Q) it holds that

Φ′(|Du|) ∼ |T (Du, p)| uniformly in p;

|V (Du)|2 ∼ T (Du, p)Du ∼ (1 + Du)(r−2)/2|Du|2 ∼ Φ(|Du|) ∼ Φ∗(Φ′(|Du|)),

uniformly in p;

I(u,v) :=

∫ 1

0

(1 + |Dv + s(Du−Dv)|2)(r−2)/2 ds |Du−Dv|2(2.1)

6
2

γ1
(T (Du, p)− T (Dv, π))(Du −Dv) +

γ23
γ21

|p− π|2;

I(u,v,Q) :=
∫
Q
Iu,v ∼

∫
Q
|V (Du)− V (Dv)|2;

for all ϕ ∈W 1,2(Q′) it holds that

∫

Q

(T (Du, p)− T (Dv, π))(Dϕ) 6 γ2
√
Iu,v,Q‖∇ϕ‖2,Q + γ3‖p− π‖2‖∇ϕ‖2.
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P r o o f. Since T (0, p) = 0, it holds that

|T (Du, p)||Du| =

∫ 1

0

∂

∂s
|T (s(Du), p)| ds |Du| ∼

∫ 1

0

(1 + |sDu|2)(r−2)/2 ds |Du|2

∼ (1 + |Du|2)(r−2)/2|Du|2 ∼ Φ′(|Du|)|Du|,

where we use [7], Lemma 19. The first estimate follows easily.

The second estimate is an easy consequence of the first estimate and of the fol-

lowing sequence of inequalities (which can be found e.g. as [7], Lemma 3):

|V (Du)|2 ∼ Φ(|Du|) ∼ Φ′(|Du|)|Du| ∼ Φ∗(Φ′(|Du|)).

For the third inequality, we refer the reader to [10], Lemma 3.3.

In order to prove the fourth inequality it is enough to see that

I(u,v,Q) ∼

∫

Q

∫ 1

0

∂

∂s
T ((s(Du−Dv) +Dv), 0) ds(Du −Dv)

=

∫

Q

(T (Du, 0)− T (Dv, 0))(Du−Dv) ∼

∫

Q

|V (Du)− V (Dv)|2,

where the last estimate comes from [7], Lemma 3.

It remains to prove the fifth estimate. It holds that
∫

Q

(T (Du, p)− T (Dv, π))Dϕ

=

∫

Q

(∫ 1

0

∂

∂s
T (Dv + s(Du−Dv), π + s(p− π)) ds

)
Dϕ

=

∫

Q

∫ 1

0

∂T

∂D
(Dv + s(Du−Dv), π + s(p− π))(Du −Dv) dsDϕ

+

∫

Q

∫ 1

0

∂T

∂p
(Dv + s(Du−Dv), π + s(p− π))(p− π) dsDϕ

6 γ2

∫

Q

∫ 1

0

(1 + |Dv + s(Du −Dv)|2)(r−2)/2|Du −Dv| ds |Dϕ|

+ γ3

(∫

Q

|p− π|2
)1/2(∫

Q

|∇ϕ|2
)1/2

Further, since r 6 2, Hölder inequality yields
∫

Q

∫ 1

0

(1 + |Dv + s(Du−Dv)|2)(r−2)/2|Du−Dv| ds |Dϕ|

6

(∫

Q

∫ 1

0

(1 + |Dv + s(Du−Dv)|2)(r−2)/2 ds |Du−Dv|2
)1/2(∫

Q

|∇ϕ|2
)1/2

and the required estimate follows. �
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Lemma 3 ([9], Theorem 6.10). Let ϕ ∈ W 1,ϕ
0 (Q). There exists a constant c

independent of Q and ϕ such that
∫

Q

Φ(|∇ϕ|) 6 c

∫

Q

Φ(|Dϕ|).

Lemma 4 ([1], Lemma 3.3). Let s ∈ (1,∞). There is a constant c such that for

a cube Q and for all f ∈ Ls′(Q) there exists a function ϕ ∈W 1,s(Q) such that

divϕ = |f |s
′
−2f −

∫

Q

|f |s
′
−2f in Q,

ϕ|∂Q = 0

and

‖ϕ‖1,s,Q 6 c‖f‖
1/(s−1)
s′,Q .

For the case s = 2 we write cdiv instead of c.

3. Proof of the main theorem

The proof of the main theorem relies on the following lemma.

Lemma 5 ([19], Lemma 2.7). Let O ⊂ R
n, 1 6 p < q < s < ∞, f ∈ Lq/p(O),

g ∈ Lq/p(O) and w ∈ Lp(O)n. Further, let Q ⊂ O be a cube and Qk be dyadic cubes

obtained from Q. Then there exists ε > 0 independent of Q and O such that the

following implication holds:

If for every dyadic sub-cube Qk ⊂ Q there exists wa ∈ Lp(4Q̃k ∩ O)n with the

following properties:

(∫

2Q̃k∩O

|wa|
s

)1/s
6
C

2

(∫

4Q̃k∩O

|wa|
p

)1/p
,(3.1)

∫

4Q̃k∩O

|wa|
p 6 C

∫

4Q̃k∩O

|w|p + C

∫

4Q̃k∩O

|g|,(3.2)

∫

4Q̃k∩O

|w − wa|
p
6 ε

∫

4Q̃k∩O

|w|p + C

∫

4Q̃k∩O

|f |,(3.3)

then w ∈ Lq(Q)n. Positive constants C and ε are independent of Qk, wa and w.

Furthermore, there exists a positive constant c independent of f , g and w such that

(3.4)

∫

Q

|w|q 6 c

(∫

4Q∩O

|f |q/p +

∫

4Q∩O

|g|q/p +

(∫

4Q∩O

|w|p
)q/p)

.
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Let Q′/4 be an arbitrary dyadic cube obtained from Q. We consider a reference

system

(R) − div T (Dv, π) +∇π = 0 in Q′,

div v = 0 in Q′,

v|∂Q′ = u,

where we assume that
∫
Q′
π =

∫
Q′
p. The existence of such solution is due to

monotone operator method, see [23], Chapter 2.

Lemma 6. Let v, π be a solution to (R) on a domain Q′. Let Q ⊂ Q ⊂ Q′ be

a cube. Let α ∈ (0, 1) and ξ ∈ C∞(Q) be such that ξ|αQ = 1, supp ξ ⊂ Q and

ξ(x) ∈ [0, 1] for every x ∈ Q. Then there exists δ < 1 such that for all i ∈ {1, . . . , d}

∫

Q

∂iT (Dv, π)(ξ
2∂i∇v) > lim

h→0

1

h2
I(v(x+hei),v(x),αQ) − δ lim

h→0

1

h2
I(v(x+hei),v(x),Q).

P r o o f. We start with the term

Jh :=

∫

Q

(T (Dv(x+ hei), p(x + hei))− T (Dv(x), p(x)))(Dv(x + hei)−Dv(x))ξ2.

Note that T is symmetric and thus
∫
Q
∂iT (Dv, π)(ξ

2∂i∇v) = lim
h→0

Jh/h
2. We inte-

grate (2.1) with u = v(x+ hei) over Q and we get

(3.5) I(v(x+hei),v(x),αQ) 6
2

γ1
Jh +

γ23
γ21

∫

Q

|π(x+ hei)− π(x)|2.

For a general function f we define the operator δ−h,i as δ−h,if = f(x− hei)− f(x).

Furthermore, we define a test function ϕ as

divϕ = π(x+ hei)− π(x) −

∫

Q

(π(x + hei)− π(x)) on Q

ϕ = 0 on ∂Q.

We test (R) by δ−h,iϕ and, as far as δ−h,iK = 0 for every constant K, we get

according to Lemma 2

∫

Q

|π(x + hei)− π(x)|2 6 γ2cdiv

√
I(v(x+hei),v(x),Q) ‖π(x+ hei)− π(x)‖2,Q

+ γ3cdiv

∫

Q

|π(x + hei)− π(x)|2,
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consequently,

γ23
γ21

∫

Q

|π(x + hei)− π(x)|2 6

( γ2γ3cdiv
γ1(1− γ3cdiv)

)2
I(v(x+hei),v(x),Q).

We would like to emphasize that due to (A3) it holds that

( γ2γ3cdiv
γ1(1− γ3cdiv)

)2
< 1.

In order to get the claim it suffices to put this estimate into (3.5), divide by h2 and

let h→ 0. �

Estimates (3.1) and (3.2) are verified in the following lemma.

Lemma 7. There exists a constant c independent of v, π, u, p and Q′ such that

(3.6)

(∫

Q′/2

|V (Dv)|q
)1/q

6 c

(∫

Q′

|V (Dv)|2
)1/2

,

where q ∈ (1, 2d/(d− 2)] (or q ∈ (1,∞) in the case d = 2).

Furthermore,

(3.7)

∫

Q′

|V (Dv)|2 6 c

∫

Q′

|V (Du)|2.

P r o o f. For simplicity we assume that d = 3. This assumption will be com-

mented later. Using the standard bootstrap argument one may also easily show that

v ∈ W 2,p
loc (Q

′) and ∇V (Dv) ∈ L2
loc(Q

′). See [21].

Let q : R
3 → R

3 be a linear function with ∇q = 〈∇v〉Q′ . Let α and α′ be

such that 3/8 6 α < α′ 6 3/4 and let ξ ∈ C∞(Q) be a smooth test func-

tion such that ξ|αQ′ = 1, supp ξ ⊂ α′Q′, ξ(x) ∈ [0, 1] for x ∈ α′Q′ and |∇jξ| 6

C/((α′ − α)j |diamQ′|). We test (R) by ϕ = curl(ξ2 curl(v − q)).

We would like to point out that curl v = (∂3v2 − ∂2v3, ∂1v3 − ∂3v1, ∂2v1 − ∂1v2).

It follows that ϕ is not a suitable test function. Instead, one has to take ψ =

curl(ξ2 curlh(v − q)), where curlh is defined as curlh(v) = (δh,3v2 − δh,2v3, δh,1v3 −

δh,3v1, δh,2v1 − δh,1v2). Note that divϕ = divψ = 0. For the sake of clarity we work

with ϕ instead of ψ. After some cumbersome manipulation we get

∫

α′Q′

∇T (Dv, π)ξ2∇2v =

∫

α′Q′

T (Dv, π)(∇(∇(ξ2)× curl(v − q))

+ div(∇(ξ2)⊗∇(v − q))−∇(∇(ξ2)∇(v − q))).
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In the same way as in the proof of [8], Lemma 3.5, we derive

∫

α′Q′

∇T (Dv, π)ξ2∇2v 6
c(ε)

(α′ − α)2|diamQ′|2

∫

α′Q′

|V (Dv)|2 + ε

∫

α′Q′

|∇V (Dv)|2,

where ε comes from Young’s inequality. Further, since

d∑

i=1

lim
h→0

1

h2
I(v(x+hei),v(x),α′Q′) ∼

∫

α′Q′

|∇V (Dv)|2,

Lemma 6 gives

d∑

i=1

lim
h→0

1

h2
I(v(x+hei),v(x),αQ′) 6 (δ + ε)

d∑

i=1

lim
h→0

1

h2
I(v(x+hei),v(x),α′Q′)

+
c(ε)

(α′ − α)2|diamQ′|2

∫

αQ′

|V (Dv)|2.

As far as ε could be chosen such that δ+ ε < 1, we may use an algebraic lemma (for

example [12], Lemma 6.1) in order to get

∫

3Q′/8

|∇V (Dv)|2 ∼

d∑

i=1

lim
h→0

1

h2
I(v(x+hei),v(x),1/2Q′) 6

c(ε)

(diamQ′)2

∫

3Q′/4

|V (Dv)|2.

The estimate (3.6) follows due to the Poincaré inequality and a standard covering

argument.

The case of general dimension is just a matter of a suitable test function ϕ. See [19],

Proof of Lemma 3.3, for more details.

To prove the second estimate we test (R) by ϕ = u− v. We get

∫

Q′

T (Dv, π)(Du −Dv) = 0.

Consequently, due to Lemma 2

∫

Q′

|V (Dv)|2 ∼

∫

Q′

T (Dv, π)Dv =

∫

Q′

T (Dv, π)Du

6 δ

∫

Q′

Φ∗(|T (Dv, π)|) + cδ

∫

Q′

Φ(|Du|)

6 δ

∫

Q′

|V (Dv)|2 + cδ

∫

Q′

|V (Du)|2,

where δ comes from Young’s inequality. The estimate (3.7) follows immediately. �
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P r o o f of Theorem 1. In order to use Lemma 5 it remains to verify (3.3). We

subtract (R) from (P). Thus, for all ϕ ∈W 1,r
0 (Q′), it holds that

(3.8)

∫

Q′

(T (Du, p)− T (Dv, π))Dϕ−

∫

Q′

(p− π) divϕ =

∫

Q′

F∇ϕ.

Taking ϕ = u− v in (3.8), we get

I(u,v,Q′) 6
2

γ1

∫

Q′

(T (Du, p)− T (Dv, π))(Du−Dv) +
γ23
γ21

∫

Q′

|p− π|2(3.9)

= c

∫

Q′

T (F, 0)(∇(u− v)) +
γ23
γ21

∫

Q′

|p− π|2,

where we use Lemma 2. Let ϕ be a solution to

divϕ = p− π in Q′,

ϕ|∂Q′ = 0.

We use this ϕ as a test function in (3.8). Lemma 2 yields

‖p− π‖22,Q′ 6

∫

Q′

(T (Du, p)− T (Dv, π))Dϕ −

∫

Q′

T (F, 0)∇ϕ

6 γ2

√
I(u,v,Q′) ‖∇ϕ‖2,Q′ + γ3‖p− π‖2,Q′‖∇ϕ‖2,Q′ +

∫

Q′

T (F, 0)∇ϕ

and, due to Lemma 4 and Hölder inequality,

(1− cdivγ3)‖p− π‖2,Q′ 6 cdivγ2

√
I(u,v,Q′) + ‖T (F, 0)‖2,Q′ .

Consequently

‖p− π‖22,Q′ 6

(( cdivγ2
1− cdivγ3

)2
+ ε

)
I(u,v,Q′) + c(ε)‖T (F, 0)‖22,Q′ .

We get, according to Lemma 3, Lemma 2, Young’s inequality and (3.7), that

∫

Q′

T (F, 0)(∇(u− v)) 6 c(ε1)

∫

Q′

Φ∗(Φ′(|F |)) + ε1

∫

Q′

Φ(|Du−Dv|)

6 c(ε1)

∫

Q′

Φ(|F |) + ε1

∫

Q′

Φ(|Du|) + ε1

∫

Q′

Φ(|Dv|)

6 c(ε1)

∫

Q′

Φ(|F |) + ε

∫

Q′

|V (Du)|2.
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We put all these estimates into (3.9) and we get

I(u,v,Q′) 6

(( γ3cdivγ2
γ1(1 − cdivγ3)

)2
+ ε

)
I(u,v,Q′) + c(ε)

∫

Q′

Φ(|F |)

+ c

∫

Q′

|T (F, 0)|2 + ε1

∫

Q′

|V (Du)|2.

Due to (A3) there exists ε such that it holds that ((γ3cdivγ2)/(γ1(1− cdivγ3)))
2 +

ε < 1 and thus

I(u,v,Q′) 6 c

∫

Q′

(Φ(|F |) + |T (F, 0)|2) + ε1

∫

Q′

|V (Du)|2.

According to Lemma 2

∫

Q′

|V (Du)− V (Dv)|2 6 ε1

∫

Q′

|V (Dv)|2 + c

∫

Q′

(Φ(|F |) + |T (F, 0)|2).

Further, since Φ(|F |) ∼ (1+ |F |2)(r−2)/2|F |2 6 |F |r and |T (F, 0)|2 ∼ (1+ |F |2)r−2 ×

|F |2 6 (1 + |F |2)(r−2)/2 6 |F |r we get

∫

Q′

|V (Du)− V (Dv)|2 6 ε

∫

Q′

|V (Dv)|2 + c

∫

Q′

|F |r.

All assumptions of Lemma 5 are met and the estimate (1.1) follows directly

from (3.4).

Let p = p−
∫
Q
p. We consider a test function ϕ fulfilling

divϕ = |p|s
′
−2p−

∫

Q

|p|s
′
−2p in Q,

ϕ|∂Q = 0,

where s is such that s′ = qr′. Lemma 4 yields

(3.10) ‖∇ϕ‖s,Q 6 c‖p‖
1/(s−1)
s′,Q .

We multiply (P)1 by this ϕ in order to get

‖p‖s
′

s′,Q 6 (‖T (Du, p)‖s′,Q + ‖T (F, 0)‖s′,Q)‖∇ϕ‖s,Q,

and, together with (3.10), we obtain

(3.11) ‖p‖s′,Q 6 c(‖T (Du, p)‖s′,Q + ‖T (F, 0)‖s′,Q).
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Further, since tr
′

6 cΦ∗(t), we have

|T (Du, p)|qr
′

6 c(Φ∗(Φ′(|Du|)))q ∼ ((1 + |Du|2)(r−2)/2|Du|2)q.

This together with (3.11) yields

∫

Q

|p|qr
′

6 c

∫

Q

((1 + |Du|2)(r−2)/2|Du|2)q + c

∫

Q

((1 + |F |2)(r−2)/2|F |2)q.

Using (1.1) one may easily conclude (1.2). �
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