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PRINCIPAL BLOCKS AND p-RADICAL GROUPS
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Abstract. Let G be a finite group and k a field of characteristic p > 0. In this paper, we
obtain several equivalent conditions to determine whether the principal block B0 of a finite
p-solvable group G is p-radical, which means that B0 has the property that e0(kP )

G is
semisimple as a kG-module, where P is a Sylow p-subgroup of G, kP is the trivial kP -
module, (kP )

G is the induced module, and e0 is the block idempotent of B0. We also give
the complete classification of a finite p-solvable group G which has not more than three
simple B0-modules where B0 is p-radical.
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1. Introduction

Let G be a finite group and k a field of characteristic p > 0. Let P be a Sylow

p-subgroup of G. In [15], Motose and Ninomiya first introduced the definition of

p-radical groups. Namely, G is a p-radical group if the induced module (kP )
G of the

trivial kP -module kP is semisimple as a left kG-module. From the definition, it can

be easily seen that G is a p-radical group if G is a p-group or a p′-group. In [19],

Okuyama states that any p-radical group is p-solvable, so the discussion of p-radical

groups can be carried out in finite p-solvable groups. In [12], Koshitani obtained

a sufficient condition on p-radical groups, that is, if the vertex of V is contained in

Ker(V ) for any simple kG-module V then G is p-radical, where Ker(V ) = {x ∈ G :

xv = v, for any v ∈ V }. Tsushima [23] discussed the relationship between p-nilpotent

groups and p-radical groups and asserted that, if G has an abelian p-complement,

The research has been supported by National Natural Science Foundation of China
(No. 11261060, No. 11201385) and Natural Science Foundation of Fujian Province of
China (No. 2015J01027).

431



then G is p-radical. However, we cannot say that any p-nilpotent group is p-radical.

For instance, if p = 3 and G = SL(2, 3), then G is 3-nilpotent but not 3-radical

(see [15], Remark 2). Thus a much more profound theorem of Tsushima [23] claims

that a p-nilpotent group G is p-radical if and only if [Op′(G), D] ∩ COp′ (G)(D) = 1

for any p-subgroup D of G. In order to prove this theorem, Tsushima generalized

the concept of p-radical groups to a p-block form. Let B be a p-block of G and eB be

the block idempotent in kG corresponding to B. Then B is called a p-radical block

if eB(kP )
G is semisimple.

Evidently, G is p-radical if and only if every block of G is p-radical, so the study

of p-radical blocks significantly assists the study of p-radical groups. In [5], Hida

generalized Koshitani’s result (see [12]) to a p-block version and claimed that, if the

vertex of V is contained in Ker(V ) for any simple kG-module V in a p-block B of G,

then B is p-radical.

As we all know, the principal block of a group algebra plays an important role in

the study of the theory of modular representations of finite groups. This prompts

us to investigate when the principal block of a finite group is p-radical. We will give

the definition of principal p-radical groups as follows:

Definition 1.1. G is called a principal p-radical group if the principal block of

G is p-radical.

In this paper, we focus on the connection between p-radical groups and principal p-

radical groups in finite p-solvable groups. Use the properties of p-constrained groups

(see [6], Chapter 7, Theorem 13.6), the principal block B0 of G is isomorphic with

the group algebra k(G/Op′(G)), which is due to [3]. We can prove the following

theorem.

Theorem 1.2. Let G be a finite group. Then the following results hold.

(i) If G is principal p-radical, and if G/Op′,p(G) is principal p-radical, then G is

p-solvable.

(ii) If G is p-solvable, then the following conditions are equivalent:

(a) G is principal p-radical.

(b) G/Op′(G) is p-radical.

(c) G/Op′,p(G) is p-radical.

(iii) G is a p-solvable and principal p-radical group if and only if every simple kG-

module S in the principal block of G satisfies the following property (P):

(P) There exist a subgroup H of G and a simple kH-module U such that

(1) S = UG and some vertex D of S is contained in Ker(U),

(2) H ∩ P g ∈ Sylp(H) for every g ∈ G.
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Corollary 1.3. Let G be p-solvable and principal p-radical, and let S, H , U ,

and D be as in Theorem 1.2 (iii). Then

(i) (UH∩NG(D))
NG(D) is the Green correspondent of S with respect to (G,D,NG(D)),

(ii) if D ⊂ Ker(S), then SNG(D) = (UH∩NG(D))
NG(D) is a simple kNG(D)-module.

Corollary 1.4. If the vertex D of S is contained in Ker(S) for any simple kG-

module S in the principal block of G, then G is principal p-radical, and SNG(D) is

a simple kNG(D)-module.

We can easily prove that every p-nilpotent group is principal p-radical. The class

of p-radical groups is properly contained in the class of principal p-radical groups

(see Remark 3.2). We also give an example (Example 3.7(ii)) to show that there

exists a p-solvable group G such that G is not principal p-radical. This allows us to

consider when p-solvable groups are principal p-radical. Let l(B) be the number of

non-isomorphic simple B-modules and B0 be the principal block of G. We obtain

the following theorem.

Theorem 1.5. Let G be a p-solvable group with l(B0) 6 3. Then G is principal

p-radical except for the following situations:

(i) p = 3 and G/Op′,p(G) ∼= SL(2, 3),

(ii) p = 2 and G/Op′,p(G) ∼= M(3) ⋊ P , where P is Z8 or SD16, where M(3) =

〈x, y : x3 = y3 = z3 = 1, yx = yz, zx = z, zy = z〉, the non-abelian 3-group

which is of order 27 and has exponent 3, and SD16 denotes the semi-dihedral

group of order 16. In particular, if l(B0) 6 2, then G is principal p-radical.

All groups in this paper are finite and all modules are finitely generated left mod-

ules. Furthermore, Zn denotes the cyclic group of order n. Epn is the elementary

abelian group of order pn. Further Q8 denotes the quaternion group of order 8,

Sn is the symmetric group of degree n. Let q be a prime. Following [21], page 229,

we define T0(q) to be the subgroup of GL(2, q) consisting of the matrices
( x 0

0 ±x−1

)
,

( 0 x

±x−1 0

)
, x ∈ GF(q), x 6= 0. J (kG) denotes the Jacobson radical of the group

algebra kG. Let B0 be the principal block of G and e0 be the block idempotent in

kG corresponding to B0. Let ∆(G) be the augmentation ideal of kG. For a subset

S of G, Ŝ denotes the sum of all elements of S. If T is a subset of kG, we write

r(T ) = rG(T ) and l(T ) = lG(T ) for the right and left annihilators of T in kG. The

notation and terminology undefined are standard, the reader is referred to [1] and [4].
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2. Preliminaries

Let A(G) = {H ⊂ G : J (B0) ⊂ kG · J (kH)}, let B(G) = {H ⊂ G : the

induced kG-module e0W
G is semisimple for every simple kH-module W} and let

C(G) = {H ⊂ G : H contains a Sylow p-subgroup of G}.

Lemma 2.1. A(G) = B(G) ⊂ C(G).

P r o o f. Following [10], Lemma 1.5, A(G) = B(G). We need only verify that

B(G) ⊂ C(G). IfH ∈ B(G), by [11], Theorem 2.2, we may choose a simple kG-module

V in B0 such that some Sylow p-subgroup P is a vertex of V . Let W be a simple

submodule of VH . Since e0V = V , we have 0 6= HomkH(W,VH) ∼= HomkG(W
G, V ) ∼=

HomkG(e0W
G, V ). Hence, V is a direct summand of WG since e0W

G is semisimple.

It follows that V is H-projective, and so P ⊂G H . Thus H ∈ C(G). �

Remark 2.2. For an arbitrary extension field K of k there holds J (KG) =

K ⊗k J (kG) and J (kG) = J (KG) ∩ kG since kG/J (kG) is a separable algebra.

Thus it easily holds that J (B̃0) ⊂ KG · J (KH) if and only if J (B0) ⊂ kG · J (kH)

for any subgroup H of G, where B̃0 and B0 are the principal blocks of KG and kG,

respectively. This means that A(G) is determined by G and p.

Lemma 2.3 ([8], Chapter 5, Lemma 4.3). Let P be a Sylow p-subgroup of G.

Then

(i)
⋂

x∈G

kG ·∆(P x) =
⋂

x∈G

∆(P x) · kG is a nilpotent ideal of kG,

(ii)
⋂

x∈G

kG ·∆(P x) =
{ ∑
x∈G

uxx :
∑
y∈S

uxy = 0 for all x ∈ G and all S ∈ Sylp(G)
}

=
{ ∑
x∈G

uxx :
∑
y∈S

uyx = 0 for all x ∈ G and all S ∈ Sylp(G)
}
.

In the following theorem, we give some characterizations for principal p-radical

groups.

Theorem 2.4. The following conditions are equivalent:

(i) G is a principal p-radical group.

(ii) A(G) = B(G) = C(G).

(iii) J (B0) ⊂ kG ·∆(P ) for some (and hence all) P ∈ Sylp(G).

(iv) J (B0) ⊂
⋂

S∈Sylp(G)

kG ·∆(S).

(v) lG(J (B0)) ⊃
∑

S∈Sylp(G)

Ŝ · kG.

(vi) J (B0) ⊂
{ ∑
x∈G

uxx :
∑
y∈S

uxy = 0 for all x ∈ G and all S ∈ Sylp(G)
}
.
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P r o o f. The equivalence of (iv) and (vi) follows from Lemma 2.3.

(i)⇔ (iii): By Lemma 2.1, e0(kP )
G is semisimple if and only if J (B0) ⊂ kG·∆(P )

for P ∈ Sylp(G).

(ii) ⇒ (iii): For any P ∈ Sylp(G), since P is of p′-index, then by hypothesis

J (B0) ⊂ kG ·∆(P ).

(iii)⇒ (iv): If J (B0) ⊂ kG ·∆(P ) for some P ∈ Sylp(G), then, for all x ∈ G,

J (B0) = J (B0)
x ⊂ kG ·∆(P )x = kG ·∆(P x),

and hence J (B0) ⊂
⋂

S∈Sylp(G)

kG ·∆(S).

(iv) ⇒ (ii): Let H ∈ C(G). Then H contains a Sylow p-subgroup P of G. Let

G =
n⋃

i=1

xiH be a left coset decomposition of G over H . Then we have J (B0) ⊂

⋂
x∈G

kG · ∆(P x) ⊂
⋂

x∈H

kG · ∆(P x) =
⋂

x∈H

( n∑
i=1

xikH · ∆(P x)
)

=
n∑

i=1

xi

( ⋂
x∈H

kH ×

∆(P x)
)

⊂ kG ·
( ⋂
x∈H

kH · ∆(P x)
)

⊂ kG · J (kH). Hence H ∈ A(G), and so the

desired conclusion follows by virtue of Lemma 2.1.

(iv) ⇒ (v): lG(J (B0)) ⊃ lG

( ⋂
S∈Sylp(G)

kG · ∆(S)
)

=
∑

S∈Sylp(G)

rG(kG · ∆(S)) =

∑
S∈Sylp(G)

rG(lG(Ŝ)) =
∑

S∈Sylp(G)

rG(lG(Ŝ · kG)) =
∑

S∈Sylp(G)

Ŝ · kG.

(v) ⇒ (iv): J (B0) = lG(rG(J (B0))) ⊂ lG

( ∑
S∈Sylp(G)

Ŝ · kG
)
=

⋂
S∈Sylp(G)

lG(Ŝ ×

kG) =
⋂

S∈Sylp(G)

lG(Ŝ) =
⋂

S∈Sylp(G)

kG ·∆(S). Hence, the result follows. �

Let N be a normal subgroup of G and let ν : G → G/N be the natural ho-

momorphism. Then ν∗ : kG → k(G/N) in the algebra homomorphism induced by

ν and the kernel of this homomorphism is Ker(ν∗) = kG · ∆(N). A group G is

called p-constrained if CG(Op′,p(G)/Op′(G)) ⊂ Op′,p(G). It is well-known (see [4],

pages 268–270, or [6], Chapter 7, Definition 13.3) that any p-solvable group is p-

constrained.

Lemma 2.5 ([3], Theorem 2.1). Let G be p-constrained. Then kG is indecom-

posable if and only if Op′(G) = 1.

Lemma 2.6 ([6], Chapter 7, Theorem 13.6). Let G be p-constrained, let N =

Op′(G) and e = |N |−1N̂ . Then kGe ∼= k(G/N) is the principal block of G and

ν∗(e) = 1, where ν∗ : kG → k(G/N) induced by the natural homomorphism ν : G →

G/N .
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We now state some preliminary results on p-radical groups.

Lemma 2.7 ([1], Chapter 6, Theorem 6.5). Assume that N ⊳ G. Then the

following statements hold.

(i) If G is p-radical, so are N and G/N .

(ii) If N is a p-group, then G is p-radical if and only if G/N is p-radical.

(iii) If G/N is a p′-group, then G is p-radical if and only if N is p-radical.

Lemma 2.8 ([23], Theorem 2). Let G be a p-nilpotent group. Then G is p-radical

if and only if [Op′(G), D] ∩ COp′ (G)(D) = 1 for any p-subgroup D of G.

3. Proof of Theorem 1.2

The proof of (i) is inspired by [19]. Let S be a simple kG-module in B0 and Q be

its vertex. Let H be a subgroup of G. By [1], Chapter 3, Lemma 4.9; Chapter 2,

Lemma 3.7, then

TrGH(HomkH(S, S)) =

{
HomkG(S, S), Q ⊂G H,

0, otherwise.

Since G is principal p-radical, e0(kP )
G is semisimple. From [23], Lemma 2, it follows

that

TrGH(HomkH(e0(kP )
G, S)) =

{
HomkG(e0(kP )

G, S), Q ⊂G H,

0, otherwise.

By Mackey decomposition theorem, we have that kQ is a trivial source module of S.

Let U be an indecomposable direct summand of SP , it follows that

U |SP |((kQ)
G)P =

⊕

t∈Q\G/P

(ktQt∩P )
P .

This implies that U ∼= (kQt∩P )
P for some t ∈ Q\G/P . By [1], Chapter 2, Lemma 2.5

and 3.5, we have TrGQt∩P (Homk(Qt∩P )(e0(kP )
G, S)) 6= 0. Hence Qx = Qt∩P for some

x ∈ G. This implies SP = ⊕(kQx)P for some x with Qx ⊂ P . By [9], Corollary 3.6,

there exists a block b of QxCG(Q
x) such that Qx is a defect group of b and bG = B0.

Since B0 is the principal block of G, Brauer’s third main theorem implies that b is

the principal block of QxCG(Q
x). It follows that Qx is the unique Sylow p-subgroup

of QxCG(Q
x). Therefore, Z(P ) ⊂ Qx as Qx ⊂ P . This proves that Z(P ) ⊂ Ker(S).

By [1], Chapter 4, Lemma 4.12, 1 6= Z(P ) ⊂ Op′,p(G). Hence G is p-solvable by

induction.
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For (ii), (a) ⇒ (b): Let N = Op′(G) and let G = G/N . Let ν : G → G be the

natural homomorphism, and ν∗ : kG → kG the algebra homomorphism induced by ν.

Since G is p-solvable, G is p-constrained. Thus, we have B0
∼= kG and ν∗(e0) = 1

by Lemma 2.6. Let P ∈ Sylp(G). If B0 is p-radical, then J (B0) ⊂ kG · ∆(P ). It

follows that ν∗(J (B0)) ⊂ ν∗(kG ·∆(P )). This implies that J (kG) ⊂ kG ·∆(P ).

(b)⇒ (a): Assume that G is p-radical. Then J (kG) ⊂ kG ·∆(P ), and thus

J (B0) = J (kG)e0 ⊂ kG ·∆(P ) + Ker(ν∗) = kG ·∆(P ) + kG(1− e0),

and

J (B0) ⊂ (kG ·∆(P ) + kG(1 − e0))e0 ⊂ kG ·∆(P )e0 ⊂ kG ·∆(P ).

The result follows from Theorem 2.4.

(b)⇔ (c): The equivalence of (b) and (c) follows from Lemma 2.7.

For (iii), assume that G is a p-solvable and principal p-radical group. By [24],

Theorem 3, then if S is a simple kG-module with S ∈ B0, there exist a sub-

group H of G and a simple kH-module U such that S = UG and dimk(U) is a p′-

number. By [23], Lemma 2, and Fong’s dimension formula [2], Theorem (2B), we

have dimk(HomkG(S, (kP )
G)) = dimk(HomkG(S, e0(kP )

G)) = dimk(S)p′ , the p′-part

of dimk(S), since e0(kP )
G is semisimple. The result follows from [13], Lemma 4.

Conversely, assume that every simple kG-module in B0 satisfies the property (P).

Then G is p-solvable by [13], Lemma 2. By hypothesis, there exist a subgroupH of G

and a simple kH-module U such thatH∩P g ∈ Sylp(H) for every g ∈ G, S = UG, and

some vertexD of S is contained in Ker(U). We may assume without loss of generality

that D ⊂ P . Since H is p-solvable, there exist a subgroup K of H and a simple kK-

module W such that U = WH and dimk(W ) is a p′-number by [24], Theorem 3. For

any g ∈ G, we can find x ∈ H such thatH∩P g = (H∩P )x. Since Ker(U) ⊂ Ker(W ),

we have Dx ⊂ Ker(W ) ∩ (H ∩ P )x = Ker(W ) ∩H ∩ P g ⊂ K ∩ H ∩ P g = K ∩ P g.

Further [16], Chapter 4, Lemma 3.4 and Theorem 7.8, imply that D is a vertex

of W since S = WG. By [16], Chapter 4, Theorem 7.5, then D ∈ Sylp(K) be-

cause dimk(W ) is a p′-number. Hence K ∩ P g ∈ Sylp(K). By [13], Lemma 4,

we have dimk(HomkG(S, e0(kP )
G)) = dimk(HomkG(S, (kP )

G)) = dimk(S)p′ . It fol-

lows that dimk(HomkG(S, Soc(e0(kP )
G))) = dimk(S)p′ since HomkG(S, e0(kP )

G) =

HomkG(S, Soc(e0(kP )
G)). By [23], Lemma 2, and Fong’s dimension formula [2], The-

orem (2B), we have that e0(kP )
G is semisimple, as required. �

P r o o f of Corollary 1.3. For (i), let S̃ = (UH∩NG(D))
NG(D). By Mackey decom-

position theorem,

S̃D =
⊕

t∈H∩NG(D)\NG(D)/D

(U t
D∩Ht∩NG(D)t)

D =
⊕

t

(U t
D∩Ht)D.
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Since D ⊳ NG(D) and D ⊂ Ker(U), we have D ⊂ Ker(S̃). By [16], Chapter 4,

Lemma 3.4 and Theorem 7.8, then D is a vertex of every indecomposable direct

summand of S̃ since D is a vertex of S and S̃|SNG(D). It can be easily proved

that S̃ is the Green correspondent of S with respect to (G,D,NG(D)) by Green’s

theorem [16], Chapter 4, Theorem 4.3.

For (ii), by Green’s theorem, we have SNG(D) = S̃ ⊕ (⊕Ui) for indecomposable

kNG(D)-module Ui such that Ui is X -projective for all i, where X = {H : H is

a subgroup ofDx∩NG(D) for some x ∈ G−NG(D)}. By [1], Chapter 3, Lemma 4.12,

there exist no such Ui’s since D ⊂ Ker(S). Hence SNG(D) = (UH∩NG(D))
NG(D).

Since G is principal p-radical, it follows by Mackey decomposition theorem that S is

a trivial source module. The result follows from [20], Lemma 2.2. �

Remark 3.1. Using Theorem 1.2 (ii), obviously, if lp(G) = 1, then G is principal

p-radical.

Remark 3.2. Note that every p-radical group is principal p-radical. It is there-

fore appropriate to ask, whether any principal p-radical group is p-radical. The an-

swer is no. The following example is due to Saksonov [22]. If p = 3 and G = SL(2, 3),

then G is 3-nilpotent but not 3-radical (see [15], Remark 2). But, by Remark 3.1,

G is principal 3-radical.

Following Theorem 1.2, we can formulate several sufficient conditions for principal

p-radical groups.

P r o o f of Corollary 1.4. The results follow from Theorem 1.2 (iii) and Corol-

lary 1.3. �

Corollary 3.3. If all simple kG-modules belonging to B0 have k-dimension 1,

then G is principal p-radical.

P r o o f. This follows by [14], Theorem 6, and Remark 3.2. �

Corollary 3.4. If the principal block B0 of G satisfies J (B0)
2 = 0, then G is

principal p-radical.

P r o o f. The result follows by [26], Theorem. �

Assuming that G is a p-solvable and principal p-radical group, we give a group

theoretical characterization of G.

Proposition 3.5. If G is a p-solvable and principal p-radical group, then

k(G/Op′(G)) has no blocks of defect zero if and only if each pair of Sylow p-

subgroups of G/Op′(G) has a nontrivial intersection. In particular, if Op′(G) = 1,

then the conclusion holds for G.
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P r o o f. By Theorem 1.2 (ii), we have that G = G/Op′(G) is p-radical.

From [15], Theorem 10, it follows that kG has no blocks of defect zero if and

only if each pair of Sylow p-subgroups of G has a nontrivial intersection. The proof

is completed. �

Remark 3.6. Assume that G is a p-solvable and principal p-radical group. It

is not necessarily true that each pair of Sylow p-subgroups of G has nontrivial in-

tersection. For example, if p = 2 and G = S3, then G is principal 2-radical by

Theorem 1.2 (ii) since G is 2-nilpotent. But the intersection of different Sylow 2-

subgroups is trivial.

Let D be the set of all p-nilpotent groups, E be the set of all p-solvable groups,

F be the set of all p-constrained groups, and G be the set of all principal p-radical

groups. We have the following example.

Example 3.7. (i) D ( G: By Remark 3.1, we just need to find a group G

with G ∈ G − D. Let p = 2 and G = G48 (see [7], Chapter 12, Definition 8.4,

and Lemma 4.7). Then G is 2-solvable but not 2-nilpotent. Since O2(G) ∼= Q8 and

G/O2(G) ∼= S3, we have that G is 2-radical by Lemma 2.7. Therefore, G ∈ G.

(ii) E * G, F * G: Let p = 3 and G = (Z3 × Z3) ⋊ SL(2, 3), where the semidi-

rect product is with respect to the canonical homomorphism SL(2, 3) ⊂ GL(2, 3) ∼=

Aut(Z3 × Z3). Thus G is 3-solvable and O3′(G) = 1. By Theorem 1.2 (ii), if G is

principal 3-radical, then G is 3-radical. From Lemma 2.7, we have that SL(2, 3) is

3-radical. That is a contradiction (see Remark 3.2).

Proposition 3.8. If G ∈ F and G /∈ E , then

(i) G/Op′(G) /∈ G,

(ii) G /∈ G.

P r o o f. (i) Assume that G/Op′(G) ∈ G. Since G ∈ F , we have that

G/Op′(G) ∈ F . Thus G/Op′(G) is p-radical by Theorem 1.2 (ii). From [19], Theo-

rem 1, it follows that G/Op′(G) is p-solvable. Therefore G ∈ E is a contradiction.

(ii) The required assertion is a consequence of (i) and Theorem 1.2 (ii). �

4. Proof of Theorem 1.5

The proof of Theorem 1.5 relies on Ninomiya’s classification theorem (see [18],

Theorem A and Theorem B, and [17], Theorem). By Lemma 2.6, B0
∼= k(G/Op′(G)).

It follows that l(B0) is equal to the number of p-regular classes of G/Op′,p(G). Thus,

following Theorem 1.2 (ii), we just need to determine whether G/Op′,p(G) is p-

radical. Consider the case when l(B0) 6 2, and we have the following lemma.
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Lemma 4.1. If l(B0) 6 2, then G is principal p-radical.

P r o o f. If l(B0) = 1, then the conclusion follows directly by Corollary 3.3. If

l(B0) = 2, by [18], Theorem A, G/Op′,p(G) has an abelian p-complement. Thus

G/Op′,p(G) is p-radical from [23], Proposition 2. This proves our conclusion. �

In the proof of Lemma 4.1, we can see that if l(B0) 6 3 and G/Op′,p(G) has an

abelian p-complement, then G is principal p-radical. Using [18], Theorem B, and [17],

Theorem, we shall consider the following ten cases:

(I) p = 3 and G1 = SL(2, 3),

(II) p = 2 and G2 = M(3)⋊ P , where P is Z8 or SD16,

(III) p 6= 2 and G3 = Zr ⋊ (Z2 × Zpn), where r = 2pn + 1 is a prime,

(IV) p 6= 2, 3 and G4 = E3l ⋊ (Z2 × Zpn), where 3l = 2pn + 1,

(V) p = 2 and G5 = E52 ⋊H , where H = 〈w, a〉; w3 = a8 = 1, a−1wa = w−1,

(VI) p = 2 and G6 = E52 ⋊H , where H = 〈w, a, b〉; w3 = a8 = b2 = 1, a−1wa = w,

b−1wb = w−1, b−1ab = a5,

(VII) p = 2 and G7 = E34 ⋊ H , where H = 〈w, a, b〉; w5 = a8 = 1, b4 = a4,

a−1wa = w, b−1wb = w2, b−1ab = a3,

(VIII) p = 2 andG8 = E34⋊H , whereH = 〈w, a, b〉; w5 = a16 = b4 = 1, a−1wa = w,

b−1wb = w2, b−1ab = a11,

(IX) p = 2 and G9 = E72 ⋊ T , where T = 〈R,w, x〉; Q8
∼= R ⊳ T , w3 = x4 = 1,

x2 ∈ R, x−1wx = w−1,

(X) p = 2 and G10 = E52 ⋊T , where T = 〈R,w, x〉; T0(5) ∼= R ⊳ T , w3 = x8 = 1,

x2 ∈ R, x−1wx = w−1.

Therefore, we shall check the situations (I)–(X) and determine whether Gi (i =

1, . . . , 10) is p-radical. For this purpose, we have to prove the following lemma.

Lemma 4.2. Let G be a p-solvable group of p-length 1. Then G is p-radical if

and only if [Op′(G), D] ∩ COp′ (G)(D) = 1 for any p-subgroup D of G.

P r o o f. Since lp(G) = 1, then Op′,p(G) is p-nilpotent and is of p′-index in G. It

follows that Op′(Op′,p(G)) = Op′(G). By Lemma 2.7, we have that G is p-radical if

and only if Op′,p(G) is p-radical. The proof of the lemma is completed by Lemma 2.8.

�

Lemma 4.3. G1 and G2 are not p-radical.

P r o o f. By Remark 3.2, G1 = SL(2, 3) is not 3-radical. For Case (II), since

Aut(M(3)) ∼= E32 ⋊ GL(2, 3), we may regard P as a subgroup of GL(2, 3) (see the

proof of Proposition 3.3 in [18]). Let M(3) = 〈x, y : x3 = y3 = z3 = 1, yx =

yz, zx = z, zy = z〉. Then there exists t ∈ P such that t−1zt = z. In fact,
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since all cyclic subgroups of order 8 or all semi-dihedral subgroups of order 16 in

GL(2, 3) are conjugate to each other, we may without loss of generality assume that

P =
〈(

1 1

2 1

)〉
or

〈(
1 1

2 1

)
,
(

1 0

0 2

)〉
, and we can choose t =

(
2 0

0 2

)
∈ P with t−1zt = z.

Let H = M(3) ⋊ 〈t〉. Then H ⊳ G2, and if G2 is 2-radical, then H is 2-radical

from Lemma 2.7. Since H ′ = M(3), we know that H = H ′〈t〉. Moreover, since

z ∈ NH(〈t〉), H is not a Frobenius group with 〈t〉 as a complement. Therefore we

have J (kH) * Z(kH) from [25], Theorem A. Using the definition of p-radical groups,

it suffices to show that I =
⋂

h∈H

kH ·∆(〈t〉h) ⊂ Z(kH). Let U be the set of all elements

ofH of order 2. Since I ⊂ kH(u−1) for any u ∈ U , we have I(u−1) ⊂ kH(u−1)2 = 0.

Obviously, {t, xt, yt} ⊂ U and H = 〈U〉. It follows that ∆(H) =
∑
u∈U

(u−1)kH . This

implies I · ∆(H) = 0, and thus I ⊂ lH(∆(H)) = kĤ ⊂ Z(kH). This leads to

a contradiction. �

Lemma 4.4. G3 and G4 are p-radical.

P r o o f. For Case (III), let G3 = 〈a〉 ⋊ (〈b〉 × 〈c〉), where 〈a〉 ∼= Zr, 〈b〉 ∼= Z2,

〈c〉 ∼= Zpn . Then we have Op′(G3) = 〈a〉 ⋊ 〈b〉, and 〈a〉 ⋊ 〈c〉 is a Frobenius group

with 〈c〉 as a complement from the proof of Theorem in [17]. By Sylow’s theorem,

we may without loss of generality choose a nontrivial subgroup D of 〈c〉. Then

〈b〉 ⊂ COp′ (G3)(D). For any 1 6= u ∈ D, since 〈a〉 ⋊ 〈c〉 is a Frobenius group,

this implies COp′ (G3)(D) ⊂ COp′ (G3)(u) = 〈b〉. It follows that COp′ (G3)(D) = 〈b〉.

Assume that b ∈ [Op′(G3), D], then there exist aibj ∈ Op′(G3) and ck ∈ D such

that b = [aibj , ck]. It follows that b = b−ja−ic−kaibjck = (a−i(ai)c
k

)b
j

∈ 〈a〉. This

leads to a contradiction. Since G3 is p-nilpotent, by Lemma 4.2, we have that G3 is

p-radical.

For Case (IV), the proof is similar and therefore will be omitted. �

Lemma 4.5. G5 and G6 are p-radical.

P r o o f. By the proof of Theorem in [17], we can see H ⊂ GL(2, 5). Choose

w =
( 2 2

4 2

)
and P = 〈a, b〉 ∈ Syl2(G6), where a =

( 0 1

2 0

)
, b =

( 1 0

0 4

)
. Then G5 =

E52 ⋊ 〈w, ab〉 and G6 = E52 ⋊ 〈w, a, b〉. It follows that G5 ⊳ G6. It suffices to show

that G6 is 2-radical from Lemma 2.7. Set E52 = 〈x〉 × 〈y〉. Obviously, we have

O2′(G6) = E52 ⋊ 〈w〉. We can easily find that G6 has exactly three elements of

order 2, which are a4, b, a4b. For any nontrivial subgroup D of P , by Lemma 4.2,

we will show this result in three steps.

Step 1. If any two of a4, b, a4b are contained in D, then CO
2′
(G6)(D) = 1.

Without loss of generality, assume that a4, b ∈ D. We can easily check that

CO
2′
(G6)(D) ⊂ 〈w〉 ∩ 〈x〉 = 1.
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Step 2. If D = 〈a4〉 or 〈a4b〉 or 〈b〉, then [O2′(G6), D] ∩ CO
2′
(G6)(D) = 1.

Assume that D = 〈a4〉. From Step 1, we have CO
2′
(G6)(D) ⊂ 〈w〉 and

[O2′(G6), a
4] ⊂ E52 . This proves our conclusion. For the rest of these situations, the

proof is similar.

Step 3. If |D| > 4, then the conclusion of Step 2 still holds.

By Step 1, we need only verify that this result holds for Z4 ⊂ D. After a simple

calculation, we deduce that G6 has exactly two cyclic subgroups of order 4, which are

〈a2〉, 〈a2b〉. This implies that a4 is contained in two subgroups. If there is no element

of the form alb in D, then [O2′(G6), D] ⊂ E52 . Since CO
2′
(G6)(D) ⊂ 〈w〉, the con-

clusion is proved. If there exists alb ∈ D, then CO
2′
(G6)(D) ⊂ CO

2′
(G6)(a

lb) ⊂ E52 .

Thus CO
2′
(G6)(D) = 1, as required. �

Using the method of Lemma 4.5, we can obtain the following lemma.

Lemma 4.6. G7 and G8 are p-radical.

S k e t c h o f p r o o f. By the proof of Theorem in [17], we have H ⊂ GL(4, 3).

Set

w =




1 2 2 2

1 2 0 1

1 0 2 0

1 1 2 0


 , a =




0 2 1 0

2 1 2 0

0 1 0 2

1 2 0 2


 , b =




0 2 1 2

0 0 1 2

0 0 1 0

2 2 0 2


 .

Then G7 = E34 ⋊ 〈w, a2, ab〉 and G8 = E34 ⋊ 〈w, a, b〉. Hence G7 ⊳ G8. We need

only verify that G8 is 2-radical by Lemma 2.7. Note that G8 has exactly three

elements of order 2, which are a8, b2, a8b2. For any nontrivial subgroup D of 〈a, b〉,

we get CO
2′
(G8)(D) = 1 if any two of a8, b2, a8b2 are contained in D. And we

can also deduce that [O2′(G8), D] ∩ CO
2′
(G8)(D) = 1, where D = 〈a8〉 or 〈a8b2〉

or 〈b2〉. Therefore, we may assume that D ⊃ Z4. If a
8 ∈ D, then a8 ∈ 〈a4〉 or

〈a4b2〉 or 〈a12b2〉. Imitating the proof of Step 3 in the above lemma, we can obtain

[O2′(G8), D] ∩ CO
2′
(G8)(D) = 1. Similarly, for the case b2 ∈ D or a8b2 ∈ D, the

conclusion holds for G8. �

Now, if we can show that G9 and G10 are p-radical, then Theorem 1.5 is completed

by Theorem 1.2 (ii). Note that Gi (i = 1, . . . , 8) are of p-length 1 in Cases (I)–(VIII),

respectively, thus we can use Lemma 4.2 to prove the required conclusion. But G9

and G10 are of 2-length 2, so Lemma 4.2 is inappropriate for Cases (IX) and (X).

This forces us back to the definition of p-radical blocks to prove our results. We have

the following lemma.

Lemma 4.7. G9 and G10 are p-radical.
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P r o o f. For Case (IX), by the proof of Proposition 6.2 in [18], we have

O2′(G9) = E72 and T is a group G48 given in [7], Chapter 12, Definition 8.4.

Since T/O2(T ) ∼= S3, this implies T is 2-radical from Lemma 2.7. Let B be a block

of G9. Then there exists a block b of O2′(G9) which is covered by B. We continue

the proof by the following steps.

Step 1. If b is the principal block of O2′(G9), then J (B) ⊂ kG9 · ∆(P ), where

P ∈ Syl2(G9).

Let χ ∈ Irr(B). Then the principal character ofO2′(G9) is a constituent of χO
2′
(G9)

by [1], Chapter 5, Lemma 2.3. This implies O2′(G9) ⊂ Ker(χ), and it follows that

O2′(G9) ⊂ Ker(B). Hence B is the principal block of G9/O2′(G9) by Lemma 2.5.

Since T is 2-radical, let G9 = G9/O2′(G9), and then J (kG9) ⊂ kG9 · ∆(P ). The

conclusion follows directly by the proof of Theorem 1.2 (ii).

Step 2. If b is not the principal block of O2′(G9), then the conclusion of Step 1

still holds.

Obviously, b contains a unique irreducible character µ which is not the principal

character of O2′(G9). Let T (b) be the inertia group of b in G9. Then T (µ) = T (b)

contains a defect group D of B by [1], Chapter 5, Corollary 2.6. Since O2′(G9) = E72

is abelian, µ is a linear character and O2′(G9)/Ker(µ) is cyclic. Hence D central-

izes O2′ (G9)/Ker(µ) 6= 1. This implies O2′(G9) = CO
2′
(G9)(D) × [O2′(G9), D] =

CO
2′
(G9)(D) · Ker(µ) ! Ker(µ). It follows that CO

2′
(G9)(D) 6= 1, and thus there

exists an element u ∈ O2′(G9)
# such that D ⊂ CG9

(u). Since T ⊂ GL(2, 7) and T

acts transitively on O2′(G9)
#, we have CT (u) = 1 by |T | = |G48| = 48. This implies

CG9
(u) = E72 . Note that T has a unique element x

2 of order 2 and x2 ∈ Z(T ).

It follows that E72 ⋊ 〈x2〉 ⊳ G9. Moreover, D ⊂ E72 ⋊ 〈x2〉. We can see that

E72 ⋊ 〈x2〉 is 2-radical by [23], Proposition 2. Following [1], Chapter 6, Theorem 2.3,

J (B) = B · J (k(E72 ⋊ 〈x2〉)) ⊂ kG9 ·∆(〈x2〉) ⊂ kG9 ·∆(P ), where P ∈ Syl2(G9).

Consequently, we have J (B) ⊂ kG9 · ∆(P ) for any block B of G9. Therefore,

G9 is 2-radical.

For Case (X), G10 satisfies all crucial conditions which are used to prove that G9

is 2-radical. Therefore, we can prove similarly that G10 is 2-radical. �
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