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Abstract. A non-regular primitive permutation group is called extremely primitive if
a point stabilizer acts primitively on each of its nontrivial orbits. Let S be a nontrivial
finite regular linear space and G 6 Aut(S). Suppose that G is extremely primitive on
points and let rank(G) be the rank of G on points. We prove that rank(G) > 4 with few
exceptions. Moreover, we show that Soc(G) is neither a sporadic group nor an alternating
group, and G = PSL(2, q) with q + 1 a Fermat prime if Soc(G) is a finite classical simple
group.

Keywords: linear space; automorphism; point-primitive automorphism group; extremely
primitive permutation group

MSC 2010 : 05B05, 05B25, 20B15, 20B25

1. Introduction

For positive integers v and b satisfying b > v, a finite linear space S is an incidence

structure (P ,L) consisting of a set P of v points and a collection L of b distinguished

subsets of P called lines, such that any two points are incident with exactly one line.

The linear space is said to be nontrivial if every line is incident with at least three

points and there are at least two lines. If every line has the same number, say k,

of points, then S is called a regular linear space, or a 2-(v, k, 1) design. Further, in

a regular linear space, the set of r lines through a given point, say α, is named the

pencil through α, denoted by L(α).

An automorphism of S is a permutation of P which leaves L invariant. The full

automorphism group of S is denoted by Aut(S) and any subgroup G 6 Aut(S) is

called an automorphism group of S. Such a group G is called point-primitive if it

The research has been supported by the National Natural Science Foundation of China
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is primitive on P , and flag-transitive if it acts transitively on the set of flags of S,

where a flag is an incident point-line pair (α, λ). A flag-transitive pair (S, G) is said

to be locally primitive if every point stabilizer Gα acts primitively on the pencil L(α)

through α (see [8]).

Several papers have already been devoted to the study of linear spaces having

a point-primitive automorphism group. First observe that any flag-transitive group

of a nontrivial linear space must be point-primitive (see [11]). In 1990, Buekenhout

et al. classified the linear spaces admitting a flag-transitive automorphism group [3],

apart from the unresolved case where the group is a one-dimensional affine group,

which was settled in a later work of Liebeck [14]. The linear spaces admitting an

automorphism group which is 2-transitive on points have been classified by Kan-

tor [13]. A natural generalization is the classification of linear spaces admitting

a primitive rank 3 automorphism group. Devillers classified these linear spaces when

the automorphism groups are of almost simple type and grid type [10], [9]. In recent

works [1], [16], Biliotti, Francot and Montinaro have completed the classification in

the case when the automorphism groups are of affine type.

Our purpose is to explore the theory of point-primitive linear spaces, with the fo-

cus on the case when an automorphism group acts extremely primitively on points.

Here, a non-regular primitive permutation group is extremely primitive if the point

stabilizer acts primitively on each of its nontrivial orbits. According to [15], Theo-

rem 1.1, a finite extremely primitive group is either of affine type or almost simple.

The almost simple extremely primitive groups whose socle is sporadic, alternating or

classical are classified by Burness, Praeger and Seress [5], [4]. In this paper, we use

these works to investigate the finite linear spaces admitting an extremely primitive

automorphism group. The main results of this paper are as follows.

Theorem 1.1. Let S = (P ,L) be a nontrivial finite regular linear space and

let G 6 Aut(S) be extremely primitive on P . Then rank(G) > 3. In particular, if

rank(G) = 3, then S is the affine space AG(m, 3) and G 6 AΓL(1, 3m).

Theorem 1.2. Let S = (P ,L) be a nontrivial finite regular linear space and let

G 6 Aut(S) be almost simple and extremely primitive on P . Then Soc(G) is a group

of Lie type, with G = PSL(2, 22
n

) if Soc(G) is classical.

Remark 1.3. (i) For the case when rank(G) = 3, the pair (S, G) in Theorem 1.1

is locally primitive, m > 3 is an odd integer and r = (3m − 1)/2 is a prime.

(ii) For the case when G = PSL(2, 22
n

) in Theorem 1.2, the action of G on P is

permutationally isomorphic to the action of G on the cosets of a dihedral subgroup

D2(22n+1), where 2
2n + 1 is a Fermat prime.
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Combining Theorems 1.1 and 1.2 with [5], Theorem 1, and [4], Theorem 1.1, we

have the following corollary.

Corollary 1.4. Let S = (P ,L) be a nontrivial finite regular linear space and let

G 6 Aut(S) be extremely primitive on P . Then one of the following statements holds:

(i) Soc(G) is an elementary abelian group.

(ii) Soc(G) is an exceptional group of Lie type.

(iii) G = PSL(2, 22
n

), the group G acting on P is permutationally isomorphic to G

acting on the cosets of a dihedral subgroup D2(22n+1), where 2
2n +1 is a Fermat

prime.

2. Preliminary results

Our discussion is based on a partial classification of the finite extremely primitive

groups. The extremely primitive permutation groups of almost simple type are

classified in [5], [4], except the case of exceptional groups.

Lemma 2.1 ([5], Theorem 1). Let G be a finite almost simple primitive per-

mutation group, with stabilizer H and socle G0. Assume that G0 is a sporadic or

alternating group. Then G is extremely primitive if and only if (G0, H) is one of the

cases listed in Table 1, where a = |G : G0|.

Case G0 H Rank Subdegrees Conditions

1 A2m NG((Sm ≀ S2) ∩G) (m+ 1)/2
(

m
i

)2
, 0 6 i 6 (m− 1)/2 m odd

2 An NG(An−1) 2 1, n− 1 G 6 Sn

3 An NG(D10) 2 1, 5 n = 5

4 M11 S6 2 1, 10

5 M11 PSL(2, 11) 2 1, 11

6 M12 M11 2 1, 11 G = G0

7 M22 PSL(3, 4).a 2 1, 21

8 M23 M22 2 1, 22

9 M24 M23 2 1, 23

10 J2 PSU(3, 3).a 3 1, 36, 63

11 HS M22.a 3 1, 22, 77

12 HS PSU(3, 5) 2 1, 175 G = G0

13 Suz G2(4).a 3 1, 416, 1365

14 McL PSU(4, 3).a 3 1, 112, 162

15 Ru 2F4(2) 3 1, 1755, 2304

16 Co2 PSU(6, 2).2 3 1, 891, 1408

17 Co2 McL 6 1, 275, 2025, 7128, 15400, 22275

18 Co3 McL.2 2 1, 275

Table 1. The extremely primitive sporadic and alternating groups.
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Lemma 2.2 ([4], Theorem 1.1). Let G be a finite almost simple classical primitive

permutation group, with stabilizer H and socle G0. Then G is extremely primitive

if and only if (G0, H) is one of the cases listed in Table 2.

Case G0 Type of H v Rank Conditions

1 PSL(2, q) P1 q + 1 2 q > 4

2 PSp(2m, 2)′ O±(2m, 2) 22m−1 ∓ 2m−1 2 n > 4

3 PSL(2, q) D2(q+1) q(q − 1)/2 q/2 G = G0, q > 2,

q + 1 Fermat prime

4 PSL(4, 2) A7 8 2

5 PSU(4, 3) PSL(3, 4) 162 3 G = G0.2
2 or G0.2

6 PSL(3, 4) A6 56 3 G = G0.2
2 or G0.2

7 PSL(2, 11) A5 11 2 G = G0

Table 2. The extremely primitive classical groups.

Remark 2.3. In Table 2, ‘Type of H ’ describes the approximate group-theoretic

structure of H , v is the degree of G, ‘P1’ denotes a Borel subgroup of G which is the

stabilizer of a 1-dimensional subspace of the natural G0-module. The entries in the

column ‘Subdegrees’ in Table 1 can be found in the on-line Atlas of Finite Group

Representations [18], and the information in the columns ‘v’ and ‘Rank’ in Table 2

can be found in [4], Table 1 (or computed directly, using Magma [2]).

In the following, we always assume that S = (P ,L) is a nontrivial finite regular

linear space with parameters v, b, k and r as described in Section 1, and G 6 Aut(S).

The first lemma is well-known.

Lemma 2.4 ([6], Lemma 2.1). For parameters v, b, k and r of S, we have

r =
v − 1

k − 1
, b =

v(v − 1)

k(k − 1)
,

and k(k − 1) + 1 6 v.

Lemma 2.5. Let G be point-transitive and let L0 be an orbit of G on L of

length b0. Then every point occurs in exactly r0 lines in L0, where r0 = b0k/v.

P r o o f. Let (α, λ) be a flag of S, let L0(α) = L(α) ∩ L0 and let β ∈ P be

another point. Since G 6 Aut(S) is point-transitive, there exists an element g ∈ G

such that αg = β. Thus

L0(α)
g = L(α)g ∩ L0 = L(β) ∩ L0 = L0(β).
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It follows that the number of lines in L0(α) is independent of the choice of α, denoted

by r0. Let X = {(α, λ) : α ∈ λ, λ ∈ L0}; counting it in two ways, we get b0k = vr0.

�

Let H be a group acting transitively on a set Ω. Recall that a block ∆ for H is

a subset of Ω such that for every g ∈ H either ∆g = ∆ or ∆g ∩∆ = ∅. Clearly, the

empty set ∅, the singletons {α} (α ∈ Ω), and Ω are blocks; they are called the trivial

blocks. Any other block is called nontrivial.

Lemma 2.6. Let G be point-transitive and let (α, λ) be a flag. Assume that ∆

is a nontrivial orbit of Gα on P that meets λ. Then λ ∩∆ is a block for Gα on ∆.

Moreover, if ∆1,∆2, . . . ,∆s are the nontrivial orbits of Gα that meet λ, that is,

λ = {α} ∪ (λ ∩∆1) ∪ (λ ∩∆2) ∪ . . . ∪ (λ ∩∆s),

where |λ ∩∆i| > 0 and ∆i 6= ∆j (i 6= j) for all i, j = 1, 2, . . . , s, then

(2.1) k = 1 +
s

∑

i=1

|∆i|

t
,

where

t = |λGα | =
|∆i|

|λ ∩∆i|
, i = 1, 2, . . . , s.

P r o o f. Assume that (λ ∩ ∆) ∩ (λ ∩ ∆)g 6= ∅ for some g ∈ Gα. Let β ∈

(λ ∩∆) ∩ (λ ∩∆)g . Then α and β are incident with both λ and λg. It follows that

λ = λg, so λ ∩∆ = (λ ∩∆)g. Therefore, λ ∩∆ is a block for Gα, and (λ ∩∆)Gα is

a partition of ∆ with t parts of length |λ ∩∆|, where t = |∆|/|λ ∩∆|. Since

|∆|

|λ ∩∆|
= |(λ ∩∆)Gα | = |Gα : (Gα)λ∩∆| = |Gα : Gαλ| = |λGα |,

then t = |λGα |, and hence k = 1 +
s
∑

i=1

|λ ∩∆i| = 1 +
s
∑

i=1

|∆i|/t. �

The next lemma is a slight modification of [1], Proposition 2, that will be useful

in the proofs of our main results.
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Lemma 2.7. Let G be point-transitive of rank 3. If the subdegrees of G on P

are 1, r1 and r2, then one of the following cases occurs:

(i) G acts flag-transitively on S, and for each λ ∈ L, the group Gλ induces a rank 3

group on λ.

(ii) k − 1 | gcd(r1, r2). If |G| is odd then G is line-transitive on S. If |G| is even

then Gλ induces a 2-transitive group on λ for each λ ∈ L, and G has precisely

two orbits on L.

P r o o f. Let (α, λ) be a flag, let ∆1 and ∆2 be the two nontrivial orbits of Gα

on P of length r1 and r2, respectively. Write λ = {α} ∪ (∆1 ∩ λ) ∪ (∆2 ∩ λ).

(i) First assume that ∆1∩λ 6= ∅ and ∆2∩λ 6= ∅. Then every line in L(α) meets ∆1

and ∆2. Therefore, Gα is transitive on L(α) and it follows that G is flag-transitive.

Furthermore, Gλ is transitive on λ, with ∆1 ∩λ and ∆2 ∩λ being the two nontrivial

orbits of (Gλ)α on λ. That is, Gλ induces a rank 3 group on λ.

(ii) For the rest we may assume that there is one suborbit which does not meet λ.

Without loss of generality we assume that ∆1 ∩ λ = ∅, so either ∆1 ∩ λ′ = ∅ or

∆2 ∩λ′ = ∅ for any other line λ′ ∈ L(α). Let Li(α) = {λ : λ∩∆i 6= ∅, λ ∈ L(α)} for

i = 1, 2. It is obvious that the pencil L(α) is the union of L1(α) and L2(α). Write

λ1 = {α}∪(∆1∩λ1) and λ2 = {α}∪(∆2∩λ2). Then by Lemma 2.6, k−1 = |∆i∩λi| | ri
for i = 1, 2.

If |G| is odd, then G is 2-homogeneous. Therefore G is transitive on lines, for it is

transitive on unordered pairs of points.

Now assume |G| is even. The orbits of G are self-paired, hence for every ordered

pair of distinct points (β, γ) ∈ P ×P , we have (β, γ)g = (γ, β) for some g ∈ G. Thus

Gλ is transitive on λ. Let (β1, γ1), (β2, γ2) be two ordered pairs of distinct points

of λ. Then there exist two elements g1, g2 ∈ Gλ such that

(β1, γ1)
g1 = (α, γg1

1 ), (β2, γ2)
g2 = (α, γg2

2 ).

Hence {γg1
1 , γg2

2 } ⊆ ∆1 ∩ λ ⊆ ∆1 and thus γ
g1g
1 = γg2

2 for some g ∈ Gα. Therefore

(β1, γ1)
g1gg

−1

2 = (β2, γ2) and we conclude that Gλ induces a 2-transitive group on λ.

To complete the proof, it remains to show that G has precisely two orbits on L.

To see this, let λ1 ∈ L1(α) and λ2 ∈ L2(α). If there is an element g ∈ G such that

λg
1 = λ2, then we have two points β ∈ λ1, γ ∈ λ2 such that (α, β)

g = (γ, α), which

implies that (α, β) and (α, γ) are in the same orbit of G. Therefore, β and γ are in

the same orbit of Gα on P \ {α}, a contradiction. Thus λ1 and λ2 are in different

orbits of G on L. Moreover, G is point-transitive and Gα is transitive on L1(α) and

L2(α), respectively, so G has precisely two orbits on L. �
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The following lemma gives the classification of 2-(v, 3, 1) designs admitting a line-

transitive automorphism group (see [7], Theorem 3.2).

Lemma 2.8. Let S = (P ,L) be a 2-(v, 3, 1) design admitting a line-transitive

automorphism group G, then one of the following conclusions holds:

(i) G is 2-transitive on P .

(ii) |G| is odd, G 6 AΓL(1, pm) contains the translation subgroup, where p is

a prime, m is a natural number and one of the following conditions holds:

(a) p = 3, m is odd, S is an affine geometry AG(m, 3) and G has rank 3 on P .

(b) pm ≡ 7 (mod 12) and S is a Netto design.

(c) pm ≡ 7 (mod 12) and G has rank 7 on P .

3. Proofs of the main results

Now we assume that S is a nontrivial finite regular linear space and G 6 Aut(S)

is extremely primitive on points. Let (α, λ) be a flag and let ∆ be an orbit of Gα on

P \ {α} that meets λ. Then we have |λ ∩∆| = 1 or |∆| by Lemma 2.6.

P r o o f of Theorem 1.1. First we suppose that rank(G) = 2. Then Gα acts

primitively on P \ {α}, thus G is 2-primitive and k = 2 or k = v. This implies that

S is trivial.

Now suppose that rank(G) = 3, and ∆1, ∆2 are the two orbits of Gα on P \ {α}

of length r1, r2, respectively. Let (α, λ) be a flag.

If G is not flag-transitive, then we have two distinct lines λ1, λ2 ∈ L(α) such that

∆i ∩ λi = ∅ for i = 1, 2 by Lemma 2.6. Then

k = 1 + |∆2 ∩ λ1| = 1 + |∆1 ∩ λ2|.

Thus

|∆2| = |∆2 ∩ λ1| = |∆1 ∩ λ2| = |∆1| = k − 1,

otherwise, k = 2. Therefore,

|∆1| = |∆2| =
v − 1

2
= k − 1.

This implies that r = (v − 1)/(k − 1) = 2, which is impossible. Therefore, G is

flag-transitive.

Since G is flag-transitive, ∆i ∩λ 6= ∅ for i = 1 and 2. In view of equation (2.1), we

obtain

k ∈ {1 + 1 + 1, 1 + r1 + 1, 1 + 1 + r2, 1 + r1 + r2}.
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If k = 1 + r1 + 1, that is, |λ ∩∆1| = r1 and |λ ∩∆2| = 1, then |λGα | = 1 = r2 and

thus k = v, a contradiction. Similarly, we get k = v if k ∈ {1 + 1 + r2, 1 + r1 + r2}.

So k = 1 + 1 + 1 = 3, and then G 6 AΓL(1, pm) according to Lemma 2.8, where p

is a prime and m is a natural number.

Let β ∈ λ, then Gαβ 6 Gαλ 6 Gα. Since r 6= 1, we have Gαλ 6= Gα. Thus

Gαβ = Gαλ is maximal in Gα since G is extremely primitive. This implies that

(S, G) is locally primitive, and then r = (v − 1)/(k − 1) = (pm − 1)/2 is prime

by [8], Theorem 4. It follows that p is an odd prime and we have the factorization

pm − 1

2
=

p− 1

2
(pm−1 + pm−2 + . . .+ p+ 1).

Since pm−1 + . . . + p + 1 > 1, we have (p− 1)/2 = 1 and thus p = 3. Since 3m 6≡ 7

(mod 12), Lemma 2.8 implies that S is the affine space AG(m, 3) with m odd. �

P r o o f of Theorem 1.2. We will prove Theorem 1.2 in two cases: (1) Soc(G) is

a sporadic or an alternating group; (2) Soc(G) is a finite classical simple group.

Lemma 3.1. Let S = (P ,L) be a nontrivial finite regular linear space and assume

that G 6 Aut(S) is extremely primitive on points. Then Soc(G) is neither a sporadic

group nor an alternating group.

P r o o f. Suppose that Soc(G) = G0 is a sporadic group or an alternating group.

Let H = Gα be the stabilizer of a point α ∈ P . Then (G0, H) is one of the cases

listed in Table 1. According to Theorem 1.1, we know that the only possible cases

are the ones numbered 1 and 17 in the table.

First consider Case 1 in Table 1, so G0 = A2m and H = NG((Sm ≀ S2) ∩G). Here

P is the set of all partitions of {1, 2, . . . , 2m} into two parts of size m, where m is

odd, so v =
(

2m
m

)

/2 and the nontrivial subdegrees are
(

m
i

)2
for 1 6 i 6 (m− 1)/2.

By Theorem 1.1, we have m > 5. Let α ∈ P and let ∆ be the orbit of Gα on P of

length
(

m
(m−1)/2

)2
. Choose one point β ∈ ∆ and let λ be the unique line through α

and β, so |λ∩∆| = 1 or |∆| by Lemma 2.6. If |λ∩∆| = |∆|, then k > 1+
(

m
(m−1)/2

)2
.

We have

v − 1 =

(m−1)/2
∑

i=1

(

m

i

)2

<
m− 1

2
(k − 1) < k(k − 1),

a contradiction (see Lemma 2.4). Thus |λ∩∆| = 1, and there must be another orbit

∆1 of Gα meeting λ since k > 2. Since |∆| = |∆|/|λ ∩∆| = |∆1|/|λ ∩∆1| we have
(

m
(m−1)/2

)2
| |∆1|, which is impossible. Therefore, Case 1 in Table 1 is ruled out.

Finally, let us turn to Case 17 in Table 1, where G = Co2 and H = McL. Here

v = 47104 and the subdegrees are 1, 275, 2025, 7128, 15400 and 22275. Let α ∈ P
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and let ∆ be the orbit of Gα on P of length 22275. Choose one point β ∈ ∆ and

let λ be the unique line through α and β, so |λ ∩∆| = 1 or |∆| by Lemma 2.6. If

|λ ∩ ∆| = |∆|, then k > 1 + 22275, hence v − 1 < k(k − 1), a contradiction. Thus

|λ ∩∆| = 1, and there must be another nontrivial orbit ∆1 of Gα that meets λ with

|∆| = |∆|/|λ ∩∆| = |∆1|/|λ ∩∆1|. So 22275 | |∆1|, which is impossible. Therefore,

Case 17 in Table 1 is also ruled out. �

Lemma 3.2. Let S = (P ,L) be a nontrivial finite regular linear space and suppose

G 6 Aut(S) is extremely primitive on points. If Soc(G) is a finite classical simple

group, then G = PSL(2, q) and S has parameters

(b, v, k, r) =
( t2q(q − 1)(q + 1)

q − 2 + 2t
,
q(q − 1)

2
,
q − 2

2t
+ 1, t(q + 1)

)

,

where q = 22
n

, t is an odd positive integer and G acting on P is permutationally

isomorphic to G acting on the cosets of a dihedral subgroup D2(q+1). Moreover,

either t = 1 and S is a Witt-Bose-Shrikhande space, or t > 73 and n > 4.

P r o o f. Suppose Soc(G) = G0 is a simple classical group and let H be the

stabilizer of a point. Then (G0, H) is one of the cases listed in Table 2.

Cases 1, 2 and 4–7 are ruled out by Theorem 1.1. Therefore, it remains to consider

Case 3 in Table 2.

Here G = PSL(2, q), Gα = D2(q+1) is a dihedral subgroup and q + 1 is a Fermat

prime, so q = 22
n

for a positive integer n. In view of Proposition 5.3 of [4], rank(G) =

q/2 and all the nontrivial subdegrees are q + 1. Let (α, λ) be a flag and let ∆ be

a nontrivial orbit of Gα meeting λ. Then |λ ∩ ∆| = 1 or q + 1 by Lemma 2.6. If

|λ∩∆| = q+1, then k > 1+q+1, which contradicts Lemma 2.4 since v = q(q−1)/2.

Thus |λ ∩∆| = 1, and it follows that the orbit of Gα on λ is of length q + 1. If Gα

has t orbits on L(α), then t = r/(q + 1), which implies that k = (q − 2)/(2t) + 1.

From the equality bk = vr we get

q(q − 1)

2
t(q + 1) = b

(q − 2

2t
+ 1

)

,

thus b = t2q(q − 1)(q + 1)/(q − 2 + 2t). In particular, if t = 1 then G is flag-transitive

and it follows from [3] that S is the Witt-Bose-Shrikhande space with parameters

(v, b, k, r) = (q(q − 1)/2, q2 − 1, q/2, q + 1).

From now on, we suppose that t > 1. Let τ be an involution in G. Then there are

two points α, β ∈ P such that 〈τ〉 6 Gαβ . Recall that the length of nontrivial orbits

of Gα through β is q + 1, and hence |Gαβ | = |Gα|/|βGα | = 2(q + 1)/(q + 1) = 2.

Thus Gαβ = 〈τ〉. Let Pτ = FixP(τ) and

Lτ = {λ ∩ FixP(τ) : λ ∈ L, |λ ∩ FixP(τ)| > 2}.
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Then Sτ = (Pτ ,Lτ ) is an induced linear space with v0 points. Both G and Gα
∼=

Zq+1 : Z2 have unique conjugacy classes of involutions and it is easy to see that

|NG(〈τ〉)| = q (see [12]) and |NGα
(〈τ〉)| = 2. Therefore by [17], Lemma 2.1, we have

v0 = |NG(〈τ〉) : NGα
(〈τ〉)| =

q

2
.

Let λ be the line through α and γ, where γ ∈ Pτ . Note that Gαγ = 〈τ〉 6 Gλ. If

β0 is another point in λ, then β
〈τ〉
0 ⊆ β

〈τ〉
0 ∩ λ. Since |βGα

0 ∩ λ| = 1, it follows that

|β
〈τ〉
0 ∩ λ| = 1. Thus β0 ⊆ FixP(τ). This implies that the induced linear space is

regular with line size k0 = k.

Let σ ∈ G be the element interchanging α and β, and let f be the number of

lines in Sτ fixed by σ. Since 〈τ〉σ = Gσ
αγ = Gαγ = 〈τ〉, we have σ ∈ NG(〈τ〉) ∼= Z2n

2

and then σ is an involution. If FixPτ
(σ) 6= ∅, then there are at least two points

β1, β2 ∈ FixP (τ) fixed by σ. This implies that |Gβ1β2
| > 2, a contradiction. So

|FixPτ
(σ)| = 0. Hence k is even and

f ×
k

2
=

v0
2
,

therefore k | q/2. Let k = 2s. Then s | 2n − 1 since k − 1 | q/2 − 1. Note that

2 < k < 22
n−1, 1 < s < 2n − 1 is odd and n > 4. Since k = (q − 2)/(2t) + 1, it

follows that 2st = 22
n−1+(t−1). Hence 2s | t−1. Let t−1 = 2st0. Substituting this

in 2st = 22
n−1 +(t− 1) we get 2st = 22

n−1+2st0. Thus t = 22
n−1−s + t0 = 2st0 +1.

This implies that 2s | t0 − 1 since 2s 6 2n − 1. If t0 = 1, then t− 1 = 2s = 22
n−1−s,

which is impossible. Thus t0 − 1 > 2s, and then t > 2s(2s + 1) + 1 > 73 since

s > 3. �
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