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Abstract. We consider a convexity notion for complex spaces X with respect to a holo-
morphic line bundle L over X. This definition has been introduced by Grauert and, when L
is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas,
we prove the counterpart of the classical Remmert’s reduction result for holomorphically
convex spaces. In the same vein, we show that if H0(X,L) separates each point of X, then
X can be realized as a Riemann domain over the complex projective space Pn, where n is
the complex dimension of X and L is the pull-back of O(1).
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1. Introduction

Let X be a complex space and L a holomorphic line bundle overX with projection

map π : L −→ X . Following Grauert [5], page 380, we say that X is L-convex if

each compact set K in X admits a compact neighborhood K⋆, such that for every

point x ∈ X \K⋆ the following property holds true:

For every vector v ∈ Lx := π−1(x) and every open neighborhood U of the zero

section of L, there is a global holomorphic section σ ∈ Γ(X,L) such that σ(x) = v

and σ(K) ⊂ U .

Obviously, standard holomorphic convexity is regained as L-convexity when L is

holomorphically trivial.

Now, a well-known result due to Remmert [8] (see also the work of Cartan [4], Ex-

ample 1, page 9) asserts that every holomorphically convex space X admits a proper

reduction onto a Stein space Y , namely, there is a proper surjective holomorphic

map π : X −→ Y onto a Stein space Y such that π⋆(OX) = OY ; a fortiori π has

connected fibers.
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On the other hand, if we have enough holomorphic functions onX , such that every

point of X is separated by O(X), a so called K-complete space or holomorphically

spreadable space, then X is a branched Riemann domain over Cn, that is, there is

a holomorphic map ϕ : X −→ Cn with discrete fibers, where n = dim(X).

The goal of this paper is to prove, in analogy with the usual results on holomor-

phic convexity and spreadability, the following theorems (definitions are given in

sections Section 2 and Section 3).

Theorem 1.1. Let X be a complex space which is L-convex with respect to

a globally generated holomorphic line bundle L over X .

Then there is a complex space X0, a proper holomorphic map π : X −→ X0 with

connected fibres onto a complex space X0, and a holomorphic line bundle L0 on X

such that:

⊲ X0 is L0-convex,

⊲ every point of X0 is separated by Γ(X0, L0), and

⊲ the canonically induced map Γ(X0, L0) −→ Γ(X,L) is bijective; a fortiori

L = π⋆(L0).

The counter part to Grauert’s Theorem [6], Satz 12, page 253, asserting that every

K-complete space of dimension n is a Riemann domain over Cn, reads as follows.

Theorem 1.2. Let X be a complex space of dimension n and let L be a holo-

morphic line bundle over X such that each point of X is separated by Γ(X,L).

Then there is a discrete holomorphic map π : X −→ Pn such that L = π⋆(O(1));

hence, if X has pure dimension, then it becomes a Riemann domain over Pn.

We conclude this section with an example due to Grauert [5], pages 379–382, that

motivates the study of convexity with respect to holomorphic line bundles, namely,

there is a 2-dimensional complex manifold F and a nonempty open subset Ω ⊂ F

with the following properties:

⊲ The set Ω is weakly 1-complete, that is, there is a C∞-smooth proper plurisubhar-

monic function ϕ : Ω −→ [0,∞);

⊲ every holomorphic function on Ω is constant;

⊲ the set Ω is a domain of meromorphy in F , that is, there is a meromorphic function

on Ω which cannot be extended meromorphically across any boundary point of Ω.

This is done as follows: Take a compact Riemann surface S of genus greater than or

equal to 1 and a topologically trivial holomomorphic line bundle F over S such that

no positive tensor power of F is analytically trivial. As such, we endow F with a flat

hermitian metric ‖·‖ (see the article of Ueda [11]) and set Ω := {v ∈ F ; ‖v‖ < ̺}

for ̺ > 0, and ϕ(v) = 1/(̺− ‖v‖) (for ̺ = ∞, we put Ω = F and ϕ(v) = ‖v‖).
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Compactify each fiber of F with the point at infinity to obtain a ruled surface M

over S, that is, a P1-bundle over S. Since M is projectively algebraic, there is

a positive divisor A on M . Let G be its associated holomorphic line bundle. In

order to check Theorem 1.2, Grauert proved that Ω is Gk-convex for some positive

integer k, sufficiently large.

Throughout this paper, all complex spaces are reduced and with countable

topology. For definitions see Section 2 and Section 4.

2. Grauert’s convexity

Let X be a complex space and let π : L −→ X be a holomorphic line bundle

over X . The notion of convexity with respect to holomorphic line bundles appeared

for the first time in a paper by Grauert [5].

Definition 2.1. We say that X is L-convex if each compact set K in X admits

a compact neighborhood K⋆ such that for every point x ∈ X \ K⋆ the following

property holds:

For every vector v ∈ Lx := π−1(x) and every open neighborhood U of the zero

section of L, there is a global holomorphic section σ ∈ Γ(X,L) such that σ(x) = v

and σ(K) ⊂ U .

Remark 2.1. If L is analytically trivial, then X is holomorphically convex pre-

cisely when X is L-convex.

A (singular) hermitian metric h on L is given in any trivialization θ : L|Ω −→ Ω×C

by

‖v‖h = |t|eϕ(x), x ∈ Ω, t ∈ C, v = θ−1(x, t),

where ϕ ∈ L1
loc(Ω) is called the weight function with respect to the trivialization θ.

Observe that, in general, given ε > 0, the set {v ∈ L ; ‖v‖h < ε} is open if the

weight functions are upper semi-continuous. In this case the condition in Defini-

tion 2.1 becomes:

Let x ∈ X \ K⋆. Then, for any vector v ∈ Lx and ε > 0, there exists a global

holomorphic section σ of L over X such that σ(x) = v and ‖σ(y)‖h < ε for all

y ∈ K.

Now, coming back to L-convexity, because one always can endow L with a con-

tinuous (even C∞) hermitian metric h, Grauert’s definition is characterized by the

following lemma.
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Lemma 2.1. The space X is L-convex if, and only if, for every compact set

K ⊂ X its hull K̃ with respect to Γ(X,L) is relatively compact in X , where

K̃ :=
{
x ∈ X ; ∃Cx > 0 ∀σ ∈ Γ(X,L) ‖σ(x)‖h 6 Cx max

z∈K
‖σ(z)‖h

}
.

Observe that the hull K̃ contains K and does not depend on h; moreover, K̃ need

not be closed in X .

If L is trivial, that is L = X × C, then K̃ equals the ordinary holomorphically

convex hull K̂, where

K̂ :=
{
x ∈ X ; ∀ f ∈ O(X), |f(x)| 6 max

y∈K
|f(y)|

}
.

(To see this, note that as O(X) is a C-algebra, taking powers fn with n ∈ N and

then extracting the n-th root, it follows that, in Lemma 2.1, we may choose Cx = 1.)

This motivates the following definition.

Definition 2.2. We say that X is (L, h)-convex if for every compact subset K

of X its hull K̂h is compact in X , where

K̂h := {x ∈ X ; ∀σ ∈ Γ(X,L) ‖σ(x)‖h 6 max
y∈K

‖σ(y)‖}.

Remark. Note that if X is L-convex, then for any choice of a continuous hermi-

tian metric h on L, X becomes (L, h)-convex. The converse does not hold (see the

subsequent Example 2.3).

Lemma 2.2. Let X be a Stein space. Then X is L-convex with respect to any

holomorphic line bundle L over X .

P r o o f. By standard arguments one checks readily that if T ⊂ X is a holomor-

phically convex subset of X and x0 ∈ X , then T ∪ {x0} is holomorphically convex.

Now, to check the L-convexity of X , we let K be a compact subset of X . Let

x ∈ X \ K̂ and let U be an open neighborhood of the zero section of L. Let v ∈ Lx,

v 6= 0. Since K̂ ∪ {x} is holomorphically convex, the restriction map

H0(X,L) −→ H0(K̂ ∪ {x}, L)

has dense range. Let σ1 ∈ Γ(X,L) be such that σ1(K̂) ⊂ U/2 and |σ1(x)/v− 1| < 1
2 .

This implies |λ| < 2, where λ := v/σ1(x), and then σ := λσ1 is such that σ(K̂) ⊂ U

and σ(x) = v. �
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Remark. The conclusion remains valid for 1-convex spaces instead of Stein

spaces. (A complex space is called 1-convex if it is a proper modification of a Stein

space in a finite number of points.)

Example 2.1. Let ϕ : X −→ [0,∞) be an upper semi-continuous function, where

X is a complex space without nonconstant holomorphic functions.

Let L = X×C, ‖v‖h := |t|eϕ(x), where v = (x, t) ∈ L. Then, for a compact subset

K of X , one has

K̂h =
{
x ∈ X ; ϕ(x) 6 sup

z∈K

ϕ(z)
}
.

Thus, if ϕ is continuous, then X is (L, h)-convex if, and only if, ϕ is proper.

Example 2.2. Here we recall the intermediate q-holomorphic convexity de-

fined by Barlet and Silva [3]. Suppose that there are global holomorphic sec-

tions s0, s1, . . . , sq in L without common zeros. They induce a holomorphic map

π : X −→ Pq and on L = π⋆(O(1)), the pull-back of the standard Fubini-Study

metric on Pq induces a hermitian metric h⋆ on L; alternatively this can be obtained

by setting

‖v‖h⋆
=

|v|

‖s(x)‖
, if v ∈ Lx,

where

‖s(x)‖2 =

q∑

j=0

|sj(x)|.

Notice that the weight functions of h⋆ are constant along the fibers of π.

The authors call X q-holomorphically convex if X is (L, h⋆)-convex. If this is the

case, the fibers of π are holomorphically convex.

Example 2.3. Let Z be a projective manifold of dimension greater than or

equal to 2 and consider a very ample line bundle over Z, denoted by F . Let A be

a nonempty analytic subset of Z of codimension greater than or equal to 2. We put

X := Z \A and L := F |X . Then X fails to be L-convex; however we may endow L

with a smooth hermitian metric h such that X becomes (L, h)-convex.

Indeed, consider finitely many global holomorphic sections, say s0, . . . , sq in

Γ(Z, F ), whose common zero set is A. Put on L the smooth hermitian metric

induced by s0, . . . , sq as above. With respect to this hermitian metric, X becomes

(L, h)-convex. (As a matter of fact, for this to hold, A may be any proper analytic

subset of Z.)

To show that X is not L-convex, one applies Lemma 2.3 from below, because

Γ(X,L) ≃ Γ(Z, F ) and the latter has finite dimension over C. Alternatively, we
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may use the pseudoconcavity1 of X , which implies that Γ(X,L) has finite dimension

over C.

Lemma 2.3. Let X be an irreducible complex space and assume that L is a holo-

morphic line bundle over X such that the complex vector space Γ(X,L) has finite

dimension. Then X is L-convex if, and only if, X is compact.

P r o o f. Let K be a subset of X with nonempty interior and let {σ1, . . . , σm} be

a basis of Γ(X,L) over C. Let ‖·‖ be a continuous hermitian metric on L. Let Λ be

the compact subset of Cm made of λ = (λ1, . . . , λm) with |λ1|+ . . .+ |λm| = 1. We

readily see that

µ := inf
λ∈Λ

max
y∈K

‖λ1σ1(y) + . . .+ λmσm(y)‖

is strictly positive.

For x ∈ X , we put C = max
λ∈Λ

‖λ1σ1(x) + . . .+ λmσm(x)‖ so that we obtain K̃ = X ,

which shows that X is compact. �

Corollary 2.1. Let X be a pseudoconcave irreducible complex space. Then X is

L convex with respect to some holomorphic line bundle L over X if, and only if, X

is compact.

P r o o f. Since the sheaf of germs of holomorphic sections in L is locally free,

coherent and torsion free, from [1], the complex vector space Γ(X,L) has finite

dimension and the proof follows by Lemma 2.3. �

Definiton 2.3. Let H be a nonempty subset of Γ(X,L). We say that

1. the point a of X is separated by H if there are σ0, . . . , σN ∈ H and an open

neighborhood U of a such that σ0, σ1, . . . , σN does not vanish simultaneously

on U and the induced holomorphic map χ : U −→ PN is discrete at a;

2. the family H gives local coordinates at a ∈ X if there are finitely many elements

σ0, . . . , σN and U as above such that χ is an immersion at a.

The above conditions can be rewritten by saying that (after shrinking U around a

and permuting coordinates, if necessary) σ0 does not vanish on U and the holomor-

phic map

U ∋ x 7→
(σ1
σ0

(x), . . . ,
σN
σ0

(x)
)
∈ C

n

1A complex space X is said to be pseudoconcave in the sense of Andreotti (see [1]) if X
contains a relatively compact open subset Ω which meets every irreducible component of
X and such that each point x0 ∈ ∂Ω admits a neighborhood system of open sets {Uν}ν

such that, for all ν, x0 is an interior point of Ûν ∩ Ω (the holomorphically convex hull of
Uν ∩ Ω in Uν with respect of O(Uν)).
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contains the point a, which is isolated in its fiber, and that

σi
σ0

−
σi
σ0

(a), i = 1, 2, . . . , N,

generate the space ma/m
2
a over C, where ma is the maximal ideal of OX,a.

It is worth mentioning that, for L = X×C so that H ⊂ O(X), we obtain holomor-

phic spreadability (or K-completeness) with respect to a subfamily H of holomorphic

functions on X . (This extends the standard terminology for H = O(X); in this case

we require that for each point x0 ∈ X , there are finitely many f1, . . . , fk ∈ H such

that x0 lies isolated in the fibre f
−1(f(x0)), where f = (f1, . . . , fk) : X −→ Ck (here

k may depend on x0.)

Further, a holomorphic line bundle L is called globally generated if, for every point

x0 of X , there is a section σ ∈ Γ(X,L) such that σ(x0) 6= 0.

Observe that, in this case, given a discrete subset Λ of X , the subset SΛ of sections

s ∈ Γ(X,L) such that s(x) 6= 0 for all x ∈ Λ is dense in Γ(X,L) (with respect

to the topology given by uniform convergence on compact subsets of X). This is

a consequence of Baire’s theorem if we note: i) Γ(X,L) is a Fréchet space and ii) for

a point a ∈ X , the subset of Γ(X,L) consisting of those sections vanishing at a is

closed and has empty interior. (The following observation settles ii) above, namely,

for a Fréchet subspace F ′ of another Fréchet space F , if F ′ has nonempty interior,

then F ′ = F .)

In particular, we deduce easily that, if X has finite dimension, then there are

finitely many sections σ0, σ1, . . . , σk ∈ Γ(X,L) without common zeros; hence they

induce a holomorphic map τ : X −→ Pk; besides, one has L = τ⋆(O(1)). (This can

be achieved in a standard way by induction on the complex dimension of X , and is

therefore omitted.)

Then, by a proper choice of Λ, we can show that there are “many” global holo-

morphic sections σ in L whose zero sets Z(σ) are rare analytic sets. (For this it

is enough to choose Λ to contain at least a point from every positive dimensional

irreducible component of X .)

This discussion and the one in [6] improves upon the result due to Grauert [6],

Satz 12, page 253.

Theorem 2.1. Let X be a complex space of dimension n and let H ⊂ O(X) be

a family of holomorphic functions such that X is holomorphically spreadable with

respect to H. If H is closed in O(X), then there is a discrete map π : X −→ Cn

whose components belong to H.
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3. Proof of Theorem 1.1

Let X be a complex space and let L be a holomorphic line bundle over X . We

define an equivalence relation R on X as the analytic subset of the product space

X ×X consisting of all couples (x, y) ∈ X ×X such that, for every two holomorphic

sections σ and τ of L over X ,

∣∣∣∣
σ(x) σ(y)

τ(x) τ(y)

∣∣∣∣ = 0.

For x ∈ X , we let R(x) = {y ∈ X ; (x, y) ∈ R}, that is, R(x) is the fiber of R

over x.

For a subset T of X we denote by R(T ) the saturated envelope of T , that is,

R(T ) = {y ∈ X ; (x, y) ∈ R for some x ∈ T } .

Lemma 3.1. If L is globally generated, then R(x) equals the intersection of the

zero sets of those holomorphic sections of L which vanish at x.

P r o o f. First, let y ∈ R(x) and consider σ ∈ Γ(X,L) such that σ(x) = 0. Let

τ ∈ Γ(X,L) with τ(x) 6= 0. From (x, y) ∈ R, it follows that τ(x)σ(x) = 0, hence

σ(y) = 0.

For the reverse inclusion, let σ1, σ2 ∈ Γ(X,L) and let τ be as above. There are

λ1, λ2 ∈ C such that σi − λiτ vanish at x for i = 1, 2; hence they vanish at y, too.

This immediately shows that

∣∣∣∣
σ(x) σ(y)

τ(x) τ(y)

∣∣∣∣ = 0,

and the proof is completed. �

The analytic equivalence relation R is said to be proper if, for every compact

subset K of X , the saturated set R(K) is compact. In that case, we may consider

the quotient of X by the induced equivalence analytic relation given by the connected

components of R(x), as x runs throughout X .

Lemma 3.2. If X is L-convex, then R is a proper analytic equivalence relation.

P r o o f. Indeed, let K ⊂ X be a compact set. Clearly R(K) is closed. We will

show that R(K) ⊂ K̃. Assume, in order to reach a contradiction, that this is not

true; hence there is y ∈ X \ K̃ and some x ∈ K such that y ∈ R(x).

In order to proceed, observe that there is τ ∈ Γ(X,L) with τ(x) 6= 0. (Otherwise,

assume that τ(x) = 0 for every τ ∈ Γ(X,L). Then let v ∈ Ly, v 6= 0, and put
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Ω = L \ {v}. By the hypothesis, there is a section θ ∈ Γ(X,L) such that θ(y) = v.

But, as y ∈ R(x) and since θ(x) = 0 by assumption, it follows that θ(y) = 0, whence

v = 0, which is a contradiction! In particular, this shows that the base locus of L is

compact.)

Fix a continuous hermitian metric h on L. Let Ω = {v ∈ L ; ‖v‖h < 1} and take

w ∈ Ly such that ‖w‖h > max{1, ‖τ(y)‖h/‖τ(x)‖h}. Then there is a holomorphic

section σ ∈ Γ(X,L) such that σ(y) = w and ‖σ(z)‖h < 1 for z ∈ K, in particular

‖σ(x)‖h < 1.

Let λ ∈ C such that σ(x) = λτ(x). Thus σ − λτ vanishes at x, hence it van-

ishes at y, too. Therefore σ(y) = λτ(y). Thus ‖w‖h = |λ|‖τ(y)‖h, but |λ| =

‖σ(x)‖h/‖τ(x)‖h, so that we obtain ‖w‖h 6 ‖τ(y)‖h/‖τ(x)‖h, which contradicts the

above choice of w. �

Remark 3.1. The conclusion of Lemma 3.2 remains true if we use (L, h)-convexity

instead of L-convexity.

E n d o f p r o o f of Theorem 1.1. Thanks to Lemma 3.2, the relation R0 defined

by the connected components of R(x), x ∈ X , is a proper analytic equivalence

relation on X . We shall see that the Hausdorff topological space X0 := X/R0 is, in

fact, a complex space and the canonical map ̺ : X −→ X0, which is proper and has

connected fibres, becomes holomorphic. This follows by [4] if we note the following

description of R. Because L is globally generated, we can cover X by open sets of

the form Uλ := X \ Z(λ) for λ ∈ Γ(X,L) with λ 6= 0.

Now, fix λ as above and set, for practical purposes, U = Uλ. We see that R is

given on U by global holomorphic functions, namely,

R∩ (U × U) = {(x, y) ∈ U × U ; f(x) = f(y) for any ϕ ∈ O♯(U)},

where O♯(U) ⊂ O(U) is formed by taking quotients of σ|U over λ|U , and for every

compact set K ⊂ U , R0(K) ⊂ U .

By a well-known result due to Cartan [4], Main theorem, page 7, it follows

that U/R0 are complex spaces and there are canonical holomorphic mappings

̺U : U −→ U/R0. Moreover, ̺U is proper with connected fibers. These data

can be glued together to a complex space X0 := X/R0 and a holomorphic map

̺ : X −→ X0. (See also the article of Kaup [7], where the case of open equivalence

analytic relation is treated.)

Also, the 1-cocycle defining L descends to a 1-cocycle on X0, thus defining a holo-

morphic line bundle L0 over X0, such that L = ̺⋆(L0) and the naturally induced

map ˜̺: Γ(X0, L0) −→ Γ(X,L) is bijective. This gives readily that each point of X0

is separated by Γ(X0, L0) and X0 is L0-convex. �
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4. Global generation and points separation

This section contains the proof of Theorem 1.2. Recall that a complex space X is

said to be a Riemann domain over another complex space Y if: i) X is connected

and ii) there is a holomorphic map π : X −→ Y which is open and has discrete fibers.

(In the case X is irreducible and Y is locally irreducible and of the same dimension,

the openness condition is superfluous. As a matter of fact, the classical setting is for

domains over Cn or Pn.)

We split the proof into two parts (see the subsequent Proposition 4.1 and Propo-

sition 4.2.): first we produce a discrete holomorphic mapping from X into a complex

projective space of dimension k > n and secondly, we decrease, if necessary, the

dimension of the target space down to n.

Proposition 4.1. Let X be a complex space of dimension n and let L be a holo-

morphic line bundle over X , such that each point of X is separated by Γ(X,L).

Then there are finitely many global holomorphic sections σ0, σ1, . . . , σk in L

which exhibit a holomorphic map π : X −→ Pk with discrete fibers. In particular,

L = π⋆(O(1)).

P r o o f. First, we need the following result.

Claim 1. Let Z be a Stein space and let A ⊂ Z be a closed analytic subset. Then,

for every coherent analytic sheaf F on Z, the restriction mapping

H0(X,F) −→ H0(X \A,F)

has closed image.

Indeed, thanks to Bănică and Stănăşilă [2], Corollaire 6.8, page 101, we know

that H1
A(Z,F) is, with respect to the canonical topology, a Fréchet-Schwartz space.

Then, from the long exact cohomology sequence with supports in A, we retain the

exact portion

H0(Z,F) −→ H0(Z \A,F) −→ H1
A(Z,F),

from which the desired conclusion follows.

Now, since L is globally generated, there are finitely many globally defined holo-

morphic sections σ0, σ1, . . . , σN in L without common zeros and such that each zero

set Z(σj) is a rare analytic set in X .

Let σ be one of the sections σ0, σ1, . . . , σN . Put A = Z(σ) and U = X \ A.

Define Q(U) as the subset of holomorphic functions on U which are obtained taking

quotients of restrictions of sections of Γ(X,L) to U over σ|U .

Claim 2. The set Q(U) is closed in O(U).
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To check this, let {(sν/σ)|U}ν be a sequence in Q(U) that converges uniformly

on compact subsets of U to a holomorphic function f ∈ O(U). Let U = {Ui}i be

a trivializing covering of X by open (Stein) subsets. Let {ξij}ij be the defining

cocycle of L. Therefore, sν is given on Ui by {s
(i)
ν }ν ⊂ O(Ui) such that s

(i)
ν = ξijs

(i)
ν ;

similarly σ is given by σ(i) ∈ O(Ui). Because the sequence {(s
(i)
ν /σ)|Ui\A}ν converges

to f |Ui\A, it follows from Claim 1 that there are holomorphic functions s
(i) ∈ O(Ui)

such that f = s(i)σ(i) on Ui \A.

It follows that s(i) = ξijs
(j) on Ui ∩ Uj \ A. Since A is rare and X reduced, the

above equality holds true on Ui ∩ Uj . Thus {s(i)}i patch to a section s ∈ Γ(X,L)

and, consequently, f ∈ Q(U).

Finally, the proof of Proposition 4.1 will be concluded thanks to Theorem 2.1 and

the above claim. �

Here we give the second key step in the proof of Theorem 1.2.

Proposition 4.2. Let X be a complex space of dimension n and let L be a holo-

morphic line bundle on X . Let σ0, σ1, . . . , σm be globally defined holomorphic sec-

tions of L, which give a discrete holomorphic mapping into some Pk, with k > n.

Then, for any ε > 0 and any matrix A = (aij) of type (n + 1) × (k + 1), there

is a matrix B = (bij) of the same type and rank n + 1 such that |bij − aij | < ε

for all i, j, and sections
k∑

j=0

bijσj , 0 6 i 6 n, give a discrete holomorphic mapping

into Pn.

Before getting involved with the proof, let us mention a few words about the

Hausdorff measure (see Shiffman [9]).

Let A be a subset of a metric space X . Let δ(A) denote the diameter of A, and let

δ0(A) :=

{
1 if A 6= ∅,

0 if A = ∅,

and

δp(A) = (δ(A))p for p > 0.

For p > 0 and ε > 0 define

hpε(A) := inf

{ ∞∑

n=1

δp(An) ; A ⊂
∞⋃

n=1

An and δ(An) < ε

}
,

hp(A) = lim
ε→0

Hp
ε (A) = sup

ε>0
Hp

ε (A).
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We refer to hp as the Hausdorff p-measure. For any A ⊂ X , h0(A) equals the

number of points of A. These set functions are regular metric outer measures, and

hence the Borel sets are hp-measurable.

If A is hp-σ-finite, then hr(A) = 0 whenever r > p. If M is an n-dimensional

Riemannian manifold, then M is hn-σ-finite, the compact subsets of M have finite

Hausdorff n-measure, and hence, the open sets have nonzero Hausdorff n-measure.

(For a nonnegative integer k, the usual notion of k-volume in a Riemannian manifold

differs from hk by a universal multiplicative constant ck, which is the volume of the

ball centered at the origin and of radius 1/2.) It follows that k-dimensional analytic

sets have zero Hausdorff (2k + 1)-measure, since a k-dimensional analytic set is an

at most countable union of manifolds of real dimension at most 2k.

We shall also need a few things concerning the rank of a holomorphic map (see

Siu [10]).

Let π : X −→ Y be a holomorphic map between reduced complex spaces. Let

X0 be the manifold points of X . By using local embeddings of Y into a suitable

Euclidean complex space, we define rank(π) by

rank(π) = sup
x∈X0

rankJx(π),

where Jx(π) is the complex jacobian matrix of the corresponding holomorphic map

ι ◦ π ◦ ψ at 0; here ψ maps biholomorphically an open neighborhood of 0 ∈ Cp onto

a neighborhood of x and ι is a closed holomomorphic embedding of a neighborhood

of π(x) into some open subset of Cq. It can be seen that this definition does not

depend on the particular choices.

Alternatively, we can give a rank definition à la Remmert as follows. First assume

that X is irreducible and set

̺(π) = dim(X)−min
x∈X

dimx π
−1(π(x)).

In general, if {Xi}i are the irreducible components of X , we put

̺(π) := sup
i

̺(π|Xi
).

It can be shown that the two definitions agree, that is, rank(π) = ̺(π). The next

result is standard.

Lemma 4.1. Let π : X −→ Y be a holomorphic map between reduced complex

spaces of rank q. Then the image of π, π(X), is an at most countable union of locally

analytic subsets of Y of dimension less than or equal to q.
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We shall also recall a few simple facts from linear algebra. For p, q ∈ N, denote,

as usual, by M(p, q), the complex vector space of type p × q matrices. Let St(p, q)

be the subset of M(p, q) consisting of the matrices of rank min{p, q}. It is an open

subset of M(p, q) and is called the Stieffel manifold of type (p, q).

For A = (aij)ij ∈ M(p, q) put ‖A‖ = max
i,j

|aij |. Observe that if A ∈ M(p, q) and

B ∈M(q, r), then ‖AB‖ 6 q‖A‖‖B‖.

Then, using block decomposition, one shows that, for p 6 n 6 m, the natural map

M(p, n)×M(n,m) −→M(p,m)

induced by matrix multiplication is surjective.

For A ∈ St(k, k+1) the kernel of the induced linear map from Ck+1 into Ck, which

is surjective, is a complex line; therefore it defines a point ξA ∈ Pk. Consequently,

we obtain a holomorphic map

Φ: St(k, k + 1) −→ P
k,

which is, in fact, a Gl(k)-principal bundle over Pk. Furthermore, multiplication by A

induces also a canonical projection map

ϕA : P
k \ {ξA} −→ P

k−1,

which is a C⋆-principal bundle over Pk−1.

Now, if Σ ⊂ Pk is an at most countable union of locally analytic subsets Σi of P
k

(that is, each Σi is closed analytic in some open subset Ωi of P
k) of dimension less

than or equal to n, with n < k, then the subset A1 of matrices A ∈ St(k, k + 1) for

which ξA ∈ Σ, has σ-finite Hausdorff 2p-measure, where p := k2 + n. In particular,

A1 has zero Hausdorff (2k2 + 2k − 1)-measure.

Lemma 4.2. The set A2 of matrices A ∈ St(k, k + 1) for which ξA 6∈ Σ and ϕA

is not discrete on Σ has σ-finite Hausdorff 2q-measure, where q = k2 + k − 1. In

particular, A2 has zero Hausdorff (2k2 + 2k − 1)-measure.

P r o o f. Thanks to the fact that each fiber ϕ−1
A (ϕA(x)) with x ∈ Σ is one dimen-

sional, A2 consists of the matrices A ∈ St(k, k + 1) \ A1 such that there is x0 ∈ Σ

and a nonempty open neighborhood W of x0 such that ϕ
−1
A (ϕA(x0)) ∩W ⊂ Σ∩W .

Therefore, the proof is a straightforward consequence of the following lemma (see

also the paper of Grauert [6], pages 249–250). �

Lemma 4.3. Let Ω be a nonempty domain (open and connected) of Cn and let

Σ be a proper analytic subset of Ω. Then the subset Λ of Ω made of all z ∈ Ω for

which there is a point z0 ∈ Σ and ε > 0 (which might depend on z0), such that

z0 + tz ∈ Σ for all t ∈ C, |t| < ε, has zero Hausdorff (2n− 1)-measure.
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P r o o f. We show that Λ is the image of an analytic subset of Ω × Σ through

a holomorphic map of rank less than n. Consider, for this, the subset T of the

product space Ω × Σ consisting of couples (z, a), for which there is ε(a) > 0 such

that a+ tz lies in Σ for all t ∈ C with |t| < ε(a).

We claim that T is an analytic subset of Ω×Σ and, if we denote by π the restriction

to T of the first projection map from Ω× Σ onto Ω, then rank(π) 6 n− 1.

Clearly Λ = π(T ). Hence, it suffices to test the claim from above. While the

analyticity part is more or less standard (so, it is left to the interested reader), let

us focus on the rank(π) part.

Let ζ0 = (z0, a0) be a manifold point of T , where rankζ0(π) = n; thus, in an open

neighborhood U of ζ0 in Ω× Σ, one has rankζ(π) = n for ζ ∈ U ∩ T .

Hence, after shrinking U about ζ0 if necessary, π|U∩T admits a local holomorphic

inverse θ, which is defined on an open neighborhood V of z0 in Ω onto U ∩ T . But,

θ has the form θ(z) = (z, γ(z)), z ∈ V , with γ : V −→ Σ holomomorphic. Now, let

V ⋆ be a nonempty open neighborhood of z0, whose closure M is compact. Then, by

compactness argument, there is ε > 0 such that for all z ∈M and t ∈ C with |t| < ε,

one has (z, z + tγ(z)) ∈ U .

On the one hand, for each z ∈ M there is ε(z) > 0 such that z + tγ(z) ∈ Σ for

t ∈ C with |t| < ε(z). The Identity theorem for irreducible analytic sets then implies

that z + tγ(z) ∈ Σ for z ∈ V ⋆ and t ∈ C with |t| < ε. On the other hand, there is

t0 ∈ C with |t0| < ε and such that the jacobian matrix of V ⋆ ∋ z 7→ z+ t0γ(z) ∈ Ω is

not zero, so that, for this t0, the corresponding map is open showing that Σ contains

a nonempty open subset of Ω, which contradicts the hypothesis. �

Remark 4.1. Note that A1 ∪ A2 has zero Hausdorff (2k2 + 2k − 1)-measure. In

particular, its complement in St(k, k + 1) will be dense.

E n d o f p r o o f of Proposition 4.2. We do this by induction. Since the case

k = n is obvious, let us assume that the statement holds true for dimensions k′,

n 6 k′ < k.

In order to complete the induction step, let us observe the following. Let A ∈

M(n + 1, k + 1) and let ε > 0. There are B′ ∈ M(n + 1, k) and C′ ∈ M(k, k + 1)

such that A = B′C′ (see the discussion after Lemma 4.2).

Now, let C ∈ St(k, k + 1) be such that Cσ : X −→ Pk−1 is well-defined, discrete

and ‖C − C′‖ < δ (δ will be chosen later in the proof). Here and afterwards, by

Cσ we mean the canonical map into Pk−1 induced by sections
k∑

j=0

cijσj , 0 6 i < k,

where C = (cij)ij .
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Then, select B ∈ St(n + 1, k) such that B(Cσ) : X −→ Pn is well-defined and

discrete, ‖B−B′‖ < δ. The choices of C and B are possible by Remark 4.1 and the

induction step, respectively.

It follows that ‖BC − A‖ 6 k(‖B − B′‖‖C‖) + ‖B′‖‖C − C′‖, which in turn is

6 kδ(δ + ‖B′‖ + ‖C′‖) and this can be made less than ε by choosing δ > 0 small

enough, whence the proof of the proposition. �

E n d o f p r o o f of Theorem 1.2. This is obvious from propositions Proposi-

tion 4.1 and Proposition 4.2. �

In the circle of ideas discussed up to now, in closing this section, we mention, for

the sake of completeness, the following proposition.

Proposition 4.3. Let X be a complex space of dimension n and let L be a holo-

morphic line bundle over X such that each point of X is separated by Γ(X,L).

Then there exists a dense Zariski open subset in X on which Γ(X,L) gives local

coordinates.

P r o o f of Proposition 4.3, beginning. We show that the subset A of X of

all points at which Γ(X,L) does not give local coordinates is closed and analytic;

moreover, as Γ(X,L) locally separates points in X , A is rare (that is, A has empty

interior).

For this, we need the following lemma.

Lemma 4.4. Let f : Y −→ Z be a holomorphic map of complex spaces. Then

the subset Σf of Y defined by

Σf = {y ∈ Y ; f is not an immersion at y}

is analytic. Moreover, if for every irreducible component Yi of Y there exists a point

yi ∈ Yi which is isolated in f
−1
i (fi(yi)), where fi : Yi −→ Z is the restriction of f

to Yi, then Σf is rare. In particular, this holds if f has discrete fibers.

P r o o f. To see that Σf is analytic we proceed as follows. The holomorphic map

f induces a sheaf morphisms

df : f⋆(Ω1
Z) −→ Ω1

Y

of OY -modules
2. Let Ω1

Y |Z be the cokernel of df . This is a coherent analytic sheaf

on Y . The important fact is that f is an immersion at a point y ∈ Y if and only if

2 For a complex space W , we let Ω1W be the sheaf of germs of holomorphic 1-forms on W ,
which is a coherent analytic sheaf on W .
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the stalk at y of Ω1
Y |Z vanishes; in other words

Σf = Supp(Ω1
Y |Z),

whence the analyticity of Σf .

For the “moreover” part, it is sufficient to treat the case when Y is irreducible.

Because Σf is analytic, the assertion follows if we find a nonempty open set U of Y

such that U ∩ Σf is rare. To show that it exists, let a ∈ Y be an isolated point in

f−1(f(a)). Then there are open neighborhoods U and V of a and f(a), respectively,

such that f(U) ⊂ V and the induced map f |U : U −→ V is a branched covering.

Since U ∩ Σf = Σf |U , the lemma follows. �

P r o o f of Proposition 4.3, concluded. First, notice that A is a closed subset

of X . In order to show that A is analytic, let σ0 ∈ Γ(X,L), σ0 6= 0. Let Y =

X \ Z(σ0). Consider O♯(Y ), the set of those holomorphic functions on Y that are

quotients of σ|Y over σ0|Y . Let Σ
⋆ denote the intersection of Σf , performed over

all holomorphic maps f : Y −→ Cm with m ∈ N, whose components are in O♯(Y ).

Since each Σf is analytic due to Lemma 4.4, Σ
⋆ is also analytic.

The proof will be concluded if we check that A ∩ Y = Σ⋆, because X admits an

open covering by such sets Y and A is closed. To verify the above equality, observe

that the inclusion “⊃” is obvious; as for “⊂”, one uses the straightforward fact that,

if a holomorphic map g : Y −→ Cm gives local coordinates at a point x0 ∈ Y , then

for any h ∈ O⋆(Y ), the map from Y into Cm+1, given by

x 7→
( 1

h(x)
, h(x)g1(x), . . . , h(x)gm(x)

)
,

gives also local coordinates at x0.

Finally, the fact that A is a rare analytic set is an immediate consequence of

Definition 2.3 and Lemma 4.4. �
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