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GLOBALLY UNIFORMLY ULTIMATELY BOUNDED
OBSERVER DESIGN FOR A CLASS OF NONLINEAR
SYSTEMS WITH SAMPLED AND DELAYED
MEASUREMENTS

Daoyuan Zhang, Yanjun Shen and Xiaohua Xia

In this paper, we consider two kinds of sampled-data observer design for a class of nonlin-
ear systems. The system output is sampled and transmitted under two kinds of truncations.
Firstly, we present definitions of the truncations and the globally uniformly ultimately bounded
observer, respectively. Then, two kinds of observers are proposed by using the delayed measure-
ments with these two truncations, respectively. The observers are hybrid in essence. For the
first kind of observers, by constructing a Lyapunov–Krasovskii functional, sufficient conditions
of globally uniformly ultimately bounded of the estimation errors are derived, and the maxi-
mum allowable sampling period and the maximum delay are also given. For the second ones,
sufficient conditions are also given to ensure that the estimation errors are globally uniformly
ultimately bounded. Finally, an example is provided to illustrate the design methods.

Keywords: nonlinear systems, continuous observers, sampled output, delayed measure-
ments

Classification: 93C10, 93C57

1. INTRODUCTION

The problem of observer design for nonlinear systems has attracted more and more atten-
tion in the past years. The research interest comes from many engineering applications
in practice. There are lots of results about observer design, for instance, an observer
was constructed for a class of nonlinear systems under a global lipschitz condition and
applied for a biological system [7]. Based on a high-gain observer, the author studied
the output feedback stabilization for a class of lower triangular systems [13]. A class
of high gain observers were also proposed for nonlinear systems by using a gain update
law which is dependent on the system output in [4]. In [9, 10, 14, 15], the authors
have studied the finite-time observers design for nonlinear systems with lower triangular
form. However, the whole above results are studied based on continuous time analysis.
In practice, more and more systems are controlled by digital computers. The system
output, usually sampled by sampler at discrete time instants and transmitted over a
shared band-limited digital communication network, is only available with a time delay.
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Therefore, the research on sampled-data system is becoming a very hot topic. There
exist two main methods to deal with these problems:

i) a discrete observer design based on a consistent approximation of the exact discretized
model [5];

ii) a hybrid observer design based on a mixed continuous-time and discrete-time de-
sign [1, 2, 3, 6, 8, 12, 16, 17, 18].

For instance, a hybrid observer design method was presented in [6]. Then, by using a
continuous design coupled with a sampled output predictor, a sampled-data observer
was proposed in [8]. Similar results have been studied in [1, 12]. Moreover, by taking
transmission delay into consideration, a high gain observer design was proposed for a
class of nonlinear systems [16]. It is noted that the results of [16] can be easily ex-
tended to the case of sampled measurements. In [2], two kinds of different structure of
continuous-discrete observers were proposed for a class of state affine systems. In addi-
tion, the sampled-data observer design for a wide classes of nonlinear systems has been
studied via using a small gain approach [3]. Note that the observer designs in both [2]
and [3] include a predictor part and a correction part. In [18], a global exponential
sampled-data observer design has been considered for a class of nonlinear systems. The
sampled measurements were directly used to update the observer.

It should be noted that, for a sampled-data system, the output data are sampled by
data collector and transmitted through the output channels. Therefore, the values of
sampled data from data collector may not be the real values of original data. However,
in the papers [1, 2, 3, 6, 8, 12, 16, 17, 18], the values of sampled data are directly used
for observers design, which may not be true for sampled-data systems. For this reason,
we should specify the maximum byte of the sampled data and how the original data are
truncated.

In this paper, we consider observers design for a class of nonlinear system with sam-
pled and delayed measurements. The output of the system is sampled and transmitted
through a network under two kinds of truncations. Firstly, we present definitions of the
truncations and the globally uniformly ultimately bounded observer, respectively. Then,
two kinds of observers are designed by using the delayed measurements with these two
truncation, respectively. The observers are hybrid in essence. For the first observer,
by constructing a Lyapunov–Krasovskii functional, sufficient conditions of globally uni-
formly ultimately bounded of the estimation errors are derived, and the maximum al-
lowable sampling period and the maximum delay are also given. For the second one,
sufficient conditions are also given to ensure that the estimation errors are globally
uniformly ultimately bounded. The major contributions of this paper include: i) Two
kinds of protocol functions are introduced, which represent the truncations of sampled
data; ii) Two kinds of sampled-data observers design are studied for a class of nonlinear
systems with sampled and delayed measurements.

This paper is organized as follows. In Section 2, we present our main results: two
kinds of sampled-data observers are designed for a class nonlinear systems with two
kinds of truncations. In Section 3, an example is used to illustrate the validity of the
proposed design methods. Finally, the paper is concluded in Section 4.

Throughout this paper, let Rn denote n-dimension real space and X> represent the
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transposed matrix of X. For any x ∈ Rn, let ‖x‖ = (x>x)1/2. For a continuous function
f : R → R and t ∈ R, let lims→t− f(s) = lims→t,s<t f(s). λmin(P ) denotes the smallest
eigenvalue of the symmetric matrix P ∈ Rn×n.

2. SAMPLED-DATA OBSERVER DESIGN FOR NONLINEAR SYSTEM

In this section, the problem of sampled-data observer design for a class of lower triangular
nonlinear systems is firstly introduced. Then, two kinds of sampled-data observers are
designed and sufficient conditions are given to guarantee the observation errors are
globally uniformly ultimately bounded.

Consider the following system

ẋ1(t) = x2(t) + f1(x1(t)),
ẋ2(t) = x3(t) + f2(x1(t), x2(t)),

...
ẋn−1(t) = xn(t) + fn−1(x1(t), x2(t), . . . , xn−1(t)),
ẋn(t) = fn(x1(t), x2(t), . . . , xn(t)) + u(t),
ỹ(t) = x1(t), t ∈ [tk, tk+1), k ≥ 0,
y(tk) = h(ỹ(tk)),

(1)

where the state x(t) ∈ Rn, the input u(t) ∈ R, and fi(·) (i = 1, . . . , n) satisfy the
following globally Lipschitz condition

| fi(x1, x2, . . . , xi)− fi(x̂1, x̂2, . . . , x̂i) |≤ l(| x1 − x̂1 | + | x2 − x̂2 | + · · ·+ | xi − x̂i |),
(2)

where l is a positive constant. The function h : R → R is continuous. Note that
since fi(·) satisfy the global Lipschitz condition (2), all solutions of system (1) exist and
are complete (i. e. defined on [0,+∞)). We assume that the output ỹ(t) is sampled
at instants tk and is available for the observer at instants tk + τk, where {tk} denotes
a strictly increasing sequence satisfying limk→∞ tk = ∞, and τk ≥ 0 represents the
transmission delay. The sampling interval T = tk+1 − tk is a positive constant. The
transmission delays τk are unknown, but have an upper bound τ̄ and a lower bound
τ , that is, max{τk} ≤ τ̄ and min{τk} ≥ τ > 0 for all k = 0, 1, . . . ,∞. We also make
the assumption: τ̄ < T , that is, the output of the system (1) sampled at instants tk
is available for the observer before the next instants tk+1. In addition, h(·) denotes a
truncation of the sampled data, whose definition is given as follows.

Definition 2.1. The function h(·) is said to be a truncation at the sampled instant tk
or a static truncation, if the following inequality

|h(x1(tk))− x1(tk)| ≤ c1, (3)

holds, where c1 is an absolute error limit. The function h(·) is said to be a uniform
truncation on [tk, tk+1], if the following inequality

|h(x1(tk))− x1(t)| ≤ c2, ∀t ∈ [tk, tk+1], k ≥ 0, (4)

holds, where c2 > 0 is a constant.
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Remark 2.2. For the system (1), let f(x, u) = [x2(t)+f1(x1(t)), x3(t)+f2(x1(t), x2(t)),
. . . , fn(x1(t), . . . , xn(t)) +u(t)]>. If T = tk+1 − tk is controlled, and f(x, u) is globally
bounded, that is, there exists a constant b1 > 0 such that

|f(x, u)>f(x, u)| ≤ b21, (5)

then, the static truncation implies the uniform truncation. In fact, from (1), we have

|x1(tk)− x1(t)| ≤ b1|t− tk|,∀t ∈ [tk, tk+1].

Thus,

|h(x1(tk))− x1(t)| ≤ |h(x1(tk))− x1(tk)|+ |x1(tk)− x1(t)| ≤ c1 + b1T.

Let c2 = c1 + b1T , then the inequality (4) is satisfied.

Remark 2.3. For system (1), the truncation function h(·), which indicates the existence
of the error between the sampled data and the real data, is often classified as systematic
error. Systematic error, which is an error in measurement arising from a defect, such
as the mis-calibration of a meter or some physical effect not taken into account in
the measurement, can be checked and corrected in principle. One point of this paper
shows the effects of measuring accuracy to sampled data. It should be noticed that
systematic error is distinguished from noise ( also called random error or statistical
uncertainty). Moreover, if both systematic error and noise are taken into account, the
effect of truncation function h(·) to sampled data might be ambiguous. Therefore, noise
measurement is not taken into consideration in this paper.

We also present the definitions of uniformly ultimately bounded observer and globally
uniformly ultimately bounded observer, respectively.

Definition 2.4. Consider the following system:

ż(t) = g(z(t), h(ỹ(tk)), z(tk), u(t)),
z(tk + τk) = limt→(tk+τk)− z(t), t ∈ [tk + τk, tk+1 + τk+1), k ≥ 0,
z(t) = z0, t ∈ [t0, t0 + τ0],

(6)

where z0, z(t) ∈ Rn, g : Rn × R × Rn × R → Rn is continuous. With loss of confusion,
denote the solutions of (1) and (6) with respect to the corresponding input functions
and the initial conditions x0 and z0 as x(t) and z(t), respectively. Let e0 = x0 − z0.

i) If there exists a constant b2 > 0 and a constant T ′(e0, b2) such that

|x(t)− z(t)| < b2, ∀t > t0 + T ′(e0, b2), (7)

then, the system (6) is said to be an uniformly ultimately bounded observer for
the system (1).

ii) If for any e0 ∈ Rn, there exists a constant b2 > 0 and a constant T ′(e0, b2) such
that (7) holds, then, the system (6) is said to be a globally uniformly ultimately
bounded observer for the system (1).
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The following lemma is useful for our main results.

Lemma 2.5. (Liu et al. [11]) For any positive definite matrix M ∈ Rn×n, scalar σ > 0,
vector function w : [0, σ] → Rn such that the integrations concerned are well defined,
the following inequality holds:(∫ σ

0

w(s) ds
)>

M

∫ σ

0

w(s) ds ≤ σ ·
∫ σ

0

w(s)>Mw(s) ds.

Now, we design two kinds of observers for the system (1). The first one with the
truncation (3) is given as follows:

˙̂x1(t) = x̂2(t) + k1(y(tk)− x̂1(tk)) + f1(x̂1(t)),
˙̂x2(t) = x̂3(t) + k2(y(tk)− x̂1(tk)) + f2(x̂1(t), x̂2(t)),

...
˙̂xn−1(t) = x̂n(t) + kn−1(y(tk)− x̂1(tk)) + fn−1(x̂1(t), x̂2(t), . . . , x̂n−1(t)),
˙̂xn(t) = u(t) + kn(y(tk)− x̂1(tk)) + fn(x̂1(t), x̂2(t), . . . , x̂n(t)),
x̂i(tk + τk) = limt→(tk+τk)− x̂i(t), t ∈ [tk + τk, tk + T + τk+1), k ≥ 0,

(8)
where x̂(t) = x̂0 for t ∈ [t0, t0 +τ0], the gains are given by (k1, k2, . . . , kn)> = S−1(θ)C>,
and S(θ) is the unique solution of the matrix equation

−θS(θ)−A>S(θ)− S(θ)A+ C>C = 0, (9)

Ai,j = δi,j−1, 1 ≤ i, j ≤ n, and C = (1, 0, . . . , 0).

As the result of (9), S(θ) has the following property.

Lemma 2.6. (Gauthier et al. [7]) The matrix S(θ) verifies the following property:

S(θ) = S>(θ) ≥ δ0I, (10)

S(θ)i,j = S(1)i,j
1

θi+j−1
, (11)

for any θ > 0 (1 ≤ i, j ≤ n), where δ0 > 0 is a scalar.

Since y(tk)− x̂1(tk) is a constant on [tk + τk, tk + T + τk+1) for k ≥ 0 and fi(·) (i =
1, . . . , n) are continuous and satisfy the condition (2), then, limt→(tk+T+τk+1)− x̂i(t) =
limt→(tk+T+τk+1)+ x̂i(t) = x̂i(tk+T+τk+1) (i = 1, . . . , n). Therefore, x̂i(t) (i = 1, . . . , n)
are continuous on [t0,∞).

Remark 2.7. It should be noted that the evolution process y(tk) − x̂1(tk) is only up-
dated at instants tk + τk. Therefore, the dynamics of observer (8) is hybrid in essence.

Remark 2.8. Even though τk and τk+1 are unknown, we can update y(tk) − x̂1(tk)
automatically whenever sampled and delayed measurements arrive. In [2], the sampled
measurement is used for observer design at instants tk + τk and e1(tk) is updated at
instants tk+τ̄ . Therefore, there exists a time delay τ̄−τk after the sampled measurements
can be available.
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Remark 2.9. A sampled-data observer for system (1) has been investigated in [18]. The
values of the sampled measurements are considered to be the true values and used for
the sampled-data observer design. In this paper, the truncation function h is introduced
to denote the distinction between the sampled data and the real data. When c1 = 0, the
system (1) is essentially reduced to the one considered in [18]. However, based on the
truncated data, the results in [18] can not be obtained again, because the estimations we
got are for the truncated data, not the real one. There is nothing to do to improve the
precision of estimated data from [18]. In additions, from the view of this paper, we can
intuitively see the influence of the absolute error limit c1 on the bound of errors. That
is, the errors between real data and estimated data based on the truncated data can
be controlled by changing c1. Moreover, the less c1, the less errors. However, it should
be noted that the value of the parameter c1 depends on the transmission network and
measuring devices. In general, it is given as a certain known constant.

Remark 2.10. In [13], the nonlinear functions fi(·) are assumed to admit an incremen-
tal rate depending on the measured output y(t), i. e.,

fi(x1, x2, . . . , xi)− fi(x̂1, x̂2, . . . , x̂i) |≤ l(y)(| x1 − x̂1 | + | x2 − x̂2 | + · · ·+ | xi − x̂i |).

It is interesting to research sampled-data observer design under such a case. A time-
variant gain may be needed to guarantee that the observation errors are convergent. We
will discuss this issue elsewhere.

From (1) – (8), for k ≥ 0, we obtain the observation error:

ė1(t) = e2(t)− k1(y(tk)− x̂1(tk)) + f̃1,

ė2(t) = e3(t)− k2(y(tk)− x̂1(tk)) + f̃2,
...

ėn−1(t) = en(t)− kn−1(y(tk)− x̂1(tk)) + f̃n−1,

ėn(t) = −kn(y(tk)− x̂1(tk)) + f̃n, t ∈ [tk + τk, tk + T + τk+1),

(12)

where ei(t) = xi(t) − x̂i(t), f̃i = fi(x1(t), x2(t), . . . , xi(t)) −fi(x̂1(t), x̂2(t), . . . , x̂i(t)),
1 ≤ i ≤ n. Further, (12) can be rewritten as follows:

ė1(t) = e2(t)− k1e1(t) + k1(x1(tk)− h(x1(tk))) + k1(e1(t)− e1(tk)) + f̃1,

ė2(t) = e3(t)− k2e1(t) + k2(x1(tk)− h(x1(tk))) + k2(e1(t)− e1(tk)) + f̃2,
...

ėn−1(t) = en(t)− kn−1e1(t) + kn−1(x1(tk)− h(x1(tk))) + kn−1(e1(t)− e1(tk)) + f̃n−1,

ėn(t) = −kne1(t) + kn(x1(tk)− h(x1(tk))) + kn(e1(t)− e1(tk)) + f̃n,

t ∈ [tk + τk, tk + T + τk+1).
(13)

Now, we give one of our main results.

Theorem 2.11. Consider the system (1) with the condition (2) and the truncation (3).
The output y(t) is assumed to be sampled at instants tk and is available for the observer
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at instants tk + τk. If there exists θ ≥ max{1, c24} such that

T ≤ c4 + 2
2c4

T1, τ̄ ≤
(
c4 − 2
c4 + 2

)
T (14)

and
3θ/4−

√
θ − 2nl

√
c3S − 1 > 0, (15)

hold, then, the system (8) is a globally uniformly ultimately bounded observer for the
system (1), where T1 = min{ 3θ/4−

√
θ−2nl

√
c3S−1

c3θ
, 1

24c3(l+1)2+
√
θ+1

, 1
48c3k2

1

√
θ
},

S = supi,j |S(1)i,j |, c3 = 1
λmin(S(1)) , and c4 > 2 is a constant.

P r o o f . From (3), it is easy to obtain that

|y(tk)− x̂1(tk)| ≤ |x1(tk)− x̂1(tk)|+ |y(tk)− x1(tk)| = |e1(tk)|+ c1. (16)

Consider the following Lyapunov–Krasovskii functional

V(t) = V1(t) + V2(t), (17)

where
V1(t) = e(t)>S(θ)e(t), (18)

and

V2(t) =
∫ t

t−T−τ̄

∫ t

ρ

[e1(s)2 + e2(s)2 + · · ·+ en(s)2] dsdρ, t ∈ [tk0 ,∞), (19)

and e(t) = [e1(t), . . . , en(t)]>, k0 = min{k : T + τ̄ ≤ tk}.
The derivative of V1(t) along the system (13) is given as follows:

d
dt
V1(t)|(13) = ė(t)>S(θ)e(t) + e(t)>S(θ)ė(t) ≤ −θe(t)>S(θ)e(t)

+2(x1(tk)− h(x1(tk)))e1(t) + 2e1(t)(e1(t)− e1(tk)) + 2F>S(θ)e(t),

t ∈ [tk + τk, tk + T + τk+1), k ≥ k0,

where F = (f̃1, f̃2, . . . , f̃n)>.
Note that

2(x1(tk)− h(x1(tk)))e1(t) ≤ 8
S(1)1,1

(x1(tk)− h(x1(tk)))2 + S(1)1,1
8 e1(t)2

≤ 8c3c21 + 1
8θe

T (t)S(θ)e(t),

and
2e1(t)(e1(t)− e1(tk)) ≤ 1

8θe
T (t)S(θ)e(t) + 8c3(e1(t)− e1(tk))2.

Then,

d
dt
V1(t)|(13) ≤ −

3θ
4
e>(t)S(θ)e(t) + 8c3(e1(t)− e1(tk))2 + 2F>S(θ)e(t) + 8c3c21,
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t ∈ [tk + τk, tk + T + τk+1), k ≥ k0. (20)

By Lemma 2.5, we have

| e1(t)− e1(tk) |2 =
∣∣∣∣∫ t

tk

ė1(s) ds
∣∣∣∣2 ≤ (t− tk)

∫ t

tk

| ė1(s) |2 ds ≤ (t− tk)
∫ t

tk

[e2(s)

−k1(y(tk)− x̂1(tk)) + f̃1]2 ds ≤ 3(l + 1)2(t− tk)
∫ t

tk

[e1(s)2 + e2(s)2

+
k2

1

(l + 1)2
(|e1(tk)|+ c1)2] ds, t ∈ [tk + τk, tk + T + τk+1), k ≥ k0. (21)

It follows from Lemma 2.6 that

F>S(θ)F ≤ l2
∑
i,j

|S(1)i,j | · ||ēi|| · ||ēj ||
1

θi+j−1
≤ l2Sθ

∑
i,j

||ēi||
θi
||ēj ||
θj

,

where ||ēi|| = (e2
1 + e2

2 + · · ·+ e2
i )

1
2 . Let ξi = ei

θi , we have

||ξ̄i|| = (ξ2
1 + ξ2

2 + · · ·+ ξ2
i )

1
2 ,

and
||ξ|| = (ξ2

1 + ξ2
2 + · · ·+ ξ2

n)
1
2 .

Then,
||ēi||
θi
≤ ||ξ̄i|| ≤ ||ξ||, F>S(θ)F ≤ l2Sθn2||ξ||2.

Note that
θ||ξ||2 ≤ θc3ξ>S(1)ξ ≤ θc3

1
θ
e(t)>S(θ)e(t),

and
2F>S(θ)e(t) ≤ 2

√
e(t)>S(θ)e(t)

√
F>S(θ)F .

Thus,
2F>S(θ)e(t) ≤ 2nl

√
c3Se(t)>S(θ)e(t).

If follows from (20) and (21) that

d
dt
V1(t)|(13) ≤ −

(
3θ
4
− 2nl

√
c3S

)
e(t)>S(θ)e(t)+24c3(l+1)2(t−tk)

∫ t

tk

[e1(s)2+e2(s)2] ds

+8c3c21 + 48c3(t− tk)2k2
1(e1(tk)2 + c21), t ∈ [tk + τk, tk + T + τk+1), k ≥ k0.

Note that when t ∈ [tk + τk, tk + T + τk+1), we have t− tk − τk ≤ T + τk+1 − τk. That
is, t− T − τk+1 < tk. Then,

d
dt
V1(t)|(13) ≤ −(

3θ
4
− 2nl

√
c3S)e(t)>S(θ)e(t)



Globally uniformly ultimately bounded observer design 449

+24c3(l + 1)2(t− tk)
∫ t

t−T−τk+1

[e1(s)2 + e2(s)2] ds + 8c3c21

+ 48c3(t− tk)2k2
1(e1(tk)2 + c21), t ∈ [tk + τk, tk + T + τk+1), k ≥ k0. (22)

From (19), we have

d
dt
V2(t) = (T + τ̄)e(t)>e(t)−

∫ t

t−T−τ̄
e(s)>e(s) ds. (23)

Therefore, from (22) and (23), the derivative of V (t) defined in (17) along the system (13)
is given as follows

d
dt
V (t)|(13) ≤ −

(
3θ
4
− 2nl

√
c3S

)
e>(t)S(θ)e(t)

+24c3(l + 1)2(t− tk)
∫ t

t−T−τk+1

[e1(s)2 + e2(s)2] ds −
∫ t

t−T−τ̄
[e(s)>e(s)] ds

+(T + τ̄)e(t)>e(t) + 48c3k2
1(T + τ̄)2e1(tk)2 + 56c3c21

≤ −
(

3θ
4
− 2nl

√
c3S − c3θ(T + τ̄)

)
e>(t)S(θ)e(t)

+[24c3(l + 1)2(t− tk)− 1]
∫ t

t−T−τ̄
[e(s)>e(s)] ds+ 48c3k2

1(T + τ̄)2e1(tk)2

+ 56c3c21, t ∈ [tk + τk, tk + T + τk+1), k ≥ k0. (24)

Note that

V2(t) ≤ (T + τ̄)
∫ t

t−T−τ̄
[e(s)>e(s)] ds, t ∈ [tk + τk, tk + T + τk+1), k ≥ k0. (25)

(24) and (25) imply

d
dtV (t)|(13) ≤ −( 3θ

4 − 2nl
√
c3S − c3θ(T + τ̄))e(t)>S(θ)e(t)

+ 24c3(l+1)2(T+τ̄)−1
T+τ̄ V2(t) + 48c3k2

1(T + τ̄)2e1(tk)2 + 56c3c21

≤ −( 3θ
4 − 2nl

√
c3S − c3θ(T + τ̄))V1(t) + 24c3(l+1)2(T+τ̄)−1

T+τ̄ V2(t)

+48θc3k2
1(T + τ̄)2V1(tk)2 + 56c3c21, t ∈ [tk + τk, tk + T + τk+1), k ≥ k0.

(26)

Let V1(c1) = {e(t) : V (e(t)) ≤ 56c3c21}. Note that T + τ̄ satisfies (14). When
e(t) ∈ Rn/V1(c1), we have

d
dt
V (t)|(13) ≤ −

√
θV (t) + (T + τ̄)

√
θV (tk), t ∈ [tk + τk, tk + T + τk+1), k ≥ k0.

From the above differential inequality, we obtain

V (t) ≤ e−
√
θ(t−tk−τk)V (tk + τk) + (T + τ̄)V (tk)− (T + τ̄)e−

√
θ(t−tk−τk)V (tk),

t ∈ [tk + τk, tk + T + τk+1), k ≥ k0.
(27)
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Let t = tk + T + τk+1 and t = tk + T , respectively, from (27), we have

V (tk + T + τk+1) ≤ e−
√
θ(T+τk+1−τk)V (tk + τk)

+(T + τ̄)V (tk)− (T + τ̄)e−
√
θ(T+τk+1−τk)V (tk),

(28)

and,

V (tk + T ) ≤ e−
√
θ(T−τk)V (tk + τk) + (T + τ̄)V (tk)− (T + τ̄)e−

√
θ(T−τk)V (tk). (29)

From (14), it follows that

2(T + τ̄) ≤ c4(T − τ̄) <
√
θ(T − τ̄).

Further, there exists 0 < ρ < 1 such that

2(T + τ̄) < ρ <
√
θ(T − τ̄) < e

√
θ(T−τ̄) − 1.

Thus,

e−
√
θ(T−τ̄)(1 + ρ) < 1,

2(T + τ̄)
ρ

< 1. (30)

Then, it follows from (28) and (29) that

V (tk + T + τk+1) + ρV (tk + T ) ≤ e−
√
θT (e−

√
θ(τk+1−τk) + ρe

√
θτk)V (tk + τk)

+(T + τ̄)(1 + ρ− e−
√
θ(T+τk+1−τk) − ρe−

√
θ(T−τk))V (tk)

≤ e−
√
θ(T−τk)(e−

√
θτk+1 + ρ)V (tk + τk) + 2(T + τ̄)V (tk)

≤ e−
√
θ(T−τ̄)(1 + ρ)V (tk + τk) + 2(T+τ̄)

ρ ρV (tk).

(31)

Let η = max{e−
√
θ(T−τ̄)(1 + ρ), 2(T+τ̄)

ρ }, from (30), we have 0 < η < 1. Then, from
(31), it follows that

V (tk+1 + τk+1) + ρV (tk + T ) = V (tk + T + τk+1) + ρV (tk + T )
≤ η[V (tk + τk) + ρV (tk)], k ≥ k0.

(32)

Applying iteratively (32), for k ≥ k0, we have

V (tk + τk) + ρV (tk) ≤ ηk−k0 [V (tk0 + τk0) + ρV (tk0)],
t ∈ [tk + τk, tk + T + τk+1), k ≥ k0.

(33)

It follows from (27) and (33) that

V (t) ≤ V (tk + τk) + ρV (tk) ≤ ηk−k0 [V (tk0 + τk0)
+ρV (tk0)], t ∈ [tk + τk, tk + T + τk+1), k ≥ k0.

For any t > tk0 + τk0 , there exists k ≥ k0 such that t ∈ [tk + τk, tk + T + τk+1). Note
that t−tk0−τ̄

T − 1 ≤ k. Then,

V (e(t)) ≤ e tT ln ηη
−tk0

−τ̄
T −k0−1[V (e(tk0 + τk0)) + ρV (e(tk0))], k ≥ k0. (34)

Let η1 = η
−tk0

−τ̄
T −k0−1[V (e(tk0 + τk0)) +ρV (e(tk0))] and T ′ = [ln 224c3c21− ln η1]T/ ln η,

when t > T ′, V (e(t)) < 224c3c21, or e(t) ∈ V1(2c1). That is, the error system (13) is
globally uniformly ultimately bounded. �



Globally uniformly ultimately bounded observer design 451

Remark 2.12. If the initial conditions e(0) /∈ V1(2c1), there exists a finite time T ′ in
which the state observation errors reach the boundary V1(2c1) and stay in it for all
time thereafter. On the other hand, if the initial conditions e(0) ∈ V1(2c1), the state
observation errors will be uniformly bounded and they cannot escape from V1(2c1). If
the absolute error limit c1 = 0, then, the system (13) is globally exponentially stable.

Remark 2.13. In [7], a case of an academic bioreactor is considered, where x′1(t) and
x′2(t) denote the concentrations of microorganisms and substrate, respectively. After a
state transformation, the standard equations for the bioreactor can be rewritten as the
form of (1): ẋ1(t) = x2(t)− ux1(t),

ẋ2(t) = [x3
2(t) + (x1(t)− x2(t))2(0.1u− x2(t))]/x2

1(t)− x2(t)u,
y(t) = x1(t),

(35)

where the input u is a positive constant. By using a data collector, we can obtain
the system output y(t) which is a truncated data, not the real one. Thus, based on
the observer (8), only the truncated data of x1(t) and x2(t) can be estimated. As we
all know, the values of the concentrations microorganisms and substrate have a strong
influence on each other. Therefore, how to improve the precision of the concentrations
makes sense. From the process of Theorem 2.11, more accurate data of x1(t) and x2(t)
can be obtained with a smaller c1, that is, we should improve the precision of data
collector.

For the system (1), the second kind of observer design is proposed as follows.

˙̂x1(t) = x̂2(t) + k1(y(tk)− x̂1(t)) + f1(x̂1(t)),
˙̂x2(t) = x̂3(t) + k2(y(tk)− x̂1(t)) + f2(x̂1(t), x̂2(t)),

...
˙̂xn−1(t) = x̂n(t) + kn−1(y(tk)− x̂1(t)) + fn−1(x̂1(t), x̂2(t), . . . , x̂n−1(t)),
˙̂xn(t) = u(t) + kn(y(tk)− x̂1(t)) + fn(x̂1(t), x̂2(t), . . . , x̂n(t)),

t ∈ [tk + τk, tk + T + τk+1), k ≥ 0,

(36)

where x̂(t) = x̂0 for t ∈ [t0, t0 +τ0], the gains are given by (k1, k2, . . . , kn)> = S−1(θ)C>,
where S(θ) is the unique solution of the matrix equation (9). Compared to the first kind
of the observer, the main difference is that x̂1(t) instead of x̂1(tk) is used to update the
observer.

From (1) – (36), for k ≥ 0, we obtain the observation error:

ė1(t) = e2(t)− k1(y(tk)− x̂1(t)) + f̃1,

ė2(t) = e3(t)− k2(y(tk)− x̂1(t)) + f̃2,
...

ėn−1(t) = en(t)− kn−1(y(tk)− x̂1(t)) + f̃n−1,

ėn(t) = −kn(y(tk)− x̂1(t)) + f̃n, t ∈ [tk + τk, tk + T + τk+1),

(37)
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where ei(t) = xi(t) − x̂i(t), f̃i = fi(x1(t), x2(t), . . . , xi(t)) −fi(x̂1(t), x̂2(t), . . . , x̂i(t)),
1 ≤ i ≤ n. Further, (37) can be rewritten as follows:

ė1(t) = e2(t)− k1e1(t) + k1(x1(t)− h(x1(tk))) + f̃1,

ė2(t) = e3(t)− k2e1(t) + k2(x1(t)− h(x1(tk))) + f̃2,
...

ėn−1(t) = en(t)− kn−1e1(t) + kn−1(x1(t)− h(x1(tk))) + f̃n−1,

ėn(t) = −kne1(t) + kn(x1(t)− h(x1(tk))) + f̃n,
t ∈ [tk + τk, tk + T + τk+1).

(38)

The other main results are given as follows.

Theorem 2.14. Consider the system (1) with the condition (2) and the truncation (4).
For any T > 0, if τ̄ < T , then, the system (36) is a globally uniformly ultimately
bounded observer for the system (1).

P r o o f . Consider the following Lyapunov function

V (t) = e(t)>S(θ)e(t). (39)

We obtain the derivative of V (t) along the system (38):

d
dt
V (t)|(38) = ė(t)>S(θ)e(t) + e(t)>S(θ)ė(t) ≤ −θe(t)>S(θ)e(t)

+2(x1(t)− h(x1(tk)))e1(t) + 2F>S(θ)e(t), t ∈ [tk + τk, tk + T + τk+1).

If t ∈ [tk + τk, tk+1], we have

|x1(t)− h(x1(tk))| ≤ c2.

If t ∈ [tk+1, tk+1 + τk+1], we have

|x1(t)− h(x1(tk))| ≤ |x1(t)− h(x1(tk+1)) + h(x1(tk+1))− x1(tk+1) + x1(tk+1)− h(x1(tk))|
≤ |x1(t)− h(x1(tk+1)) + |h(x1(tk+1))− x1(tk+1)|+ |x1(tk+1)− h(x1(tk))| ≤ 3c2.

Note that

2(x1(t)−h(x1(tk)))e1(t) ≤ 4c3(x1(t)−h(x1(tk)))2+
1

4c3
e1(t)2 ≤ 36c3c22+

1
4
θeT (t)S(θ)e(t),

where c3 = 1/λmin(S(1)). Then,

d
dt
V (t)|(38) ≤ −

3θ
4
e>(t)S(θ)e(t) + 2F>S(θ)e(t) + 36c3c22, t ∈ [tk + τk, tk + T + τk+1).

From Lemma 2.6, it follows that

2F>S(θ)e(t) ≤ 2nl
√
c3Se(t)>S(θ)e(t).
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Thus,

d
dt
V (t)|(38) ≤ −

(
3θ
4
− 2nl

√
c3S

)
e(t)>S(θ)e(t) + 36c3c22, t ∈ [tk + τk, tk + T + τk+1).

Let V2(c2) = {e(t) : V (e(t)) ≤ 36c3c22}. When e(t) ∈ Rn/V2(c2), θ can be chosen such
that −(3/4θ − 2nl

√
c3S) < − 1

2θ, therefore,

d
dt
V (t)|(38) ≤ −(

3θ
4
− 2nl

√
c3S)V (t) < −1

2
θV (t).

Let η2 = V (t0 +τ0)/(72c3c22) and T ′ = (ln η2
2)/θ+t0 +τ0, when t > T ′, V (e(t)) < 72c3c22,

or e(t) ∈ V2(2c2). That is, the system (38) is globally uniformly ultimately bounded. By
using the same method as Theorem 1, the system (36) is a globally uniformly ultimately
bounded observer for the system (1). �

Remark 2.15. From the proof of Theorem 2.11, we can see that the sampling period
T and the maximum delay τ̄ are dependent on the Lipschitz constant l, the matrix S(θ)
and θ. The boundary of the observation errors depends on c1. For Theorem 2.14, the
sampling period T > 0 can be selected arbitrarily, and the maximum delay τ̄ just needs
to satisfy τ̄ < T . However, the bound c2 in (4) is usually dependent on T . For example,
in Remark 2.2, c2 = c1 + b1T , which has an effect on the boundary of the observation
errors. The larger value of T , the larger boundary of the observation errors.

We also have the following corollary.

Corollary 2.16. Consider the system (1) with the condition (2). If there exist b1 > 0,
c1 > 0 and c2 > c1 such that (5) and (3) hold, then, the system (36) is a globally
uniformly ultimately bounded observer for the sampled-data system (1).

P r o o f . Using the same method as Theorem 2.14, we can obtain the result. �

3. EXAMPLE AND SIMULATION

Example 3.1. In this section, we use the following example to show the effectiveness of
our high gain observer design for nonlinear system (1) with the truncation (3) and (4), ẋ1(t) = x2(t)− l sin(x1(t)),

ẋ2(t) = −l(x1(t) + cos(x2(t))) + u(t),
y(t) = x1(t).

(40)

The trajectories of the states x1(t) and x2(t) (x(0) = (0.7, 0.3), u(t) = 2 sin(t)) are
shown in Figure 1 with l = 3 and l = 0.01, respectively.The matrix S(θ) is given as
follows:

S(θ) =
(

1
θ − 1

θ2

− 1
θ2

2
θ3

)
, S−1(θ) =

(
2θ θ2

θ2 θ3

)
.
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Fig. 1. (a) Trajectories of states xi(t) (i = 1, 2) with l = 3; (b)

Trajectories of states xi(t) (i = 1, 2) with l = 0.01.
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Fig. 2. (a) Trajectories of the states xi(t) and the estimates x̂i(t)

with l = 3; (b) Trajectories of the states xi(t) and the estimates x̂i(t)

with l = 0.01.

Construct the following observer:
˙̂x1(t) = x̂2(t)− l sin(x̂1(t)) + k1(h(y(tk))− x̂1(tk)),
˙̂x2(t) = u(t)− l(x̂1(t) + cos(x̂2(t))) + k2(h(y(tk))− x̂1(tk)),

t ∈ [tk + τk, tk + T + τk+1), k ≥ 0.

In the following simulation, we set u(t) = 2 sin(t) and the initial conditions of the whole
system are (x1(0), x2(0)) = (0.7, 0.3) and (x̂1(0), x̂2(0)) = (0.2, 0.5), S = 2, c3 = 2.618,
(k1, k2) = (2θ, θ2). We choose c4 =

√
6, θ = 6 and the absolute error limit is given

as c1 = 10−4. For simplicity, the following algorithm is used to truncate the sampled
data, h(x) = [104x]/104, where [x] denotes the integer part of x. It is easy to check that
|h(x)− x| < 10−4. By using (14), we can obtain the sampling period T = 2 · 10−5s and
the delay τk satisfies 0 ≤ τk ≤ 2 ·10−6s, the simulation results are also shown in Figure 2
and Figure 3. When c1 = 0 and c1 = 10−3, the errors trajectories are shown in Figure 4
and Figure 5 with l = 3 and l = 0.01, respectively.
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Fig. 3. (a) Trajectories of the errors ei(t) (i = 1, 2) with l = 3; (b)

Trajectories of the errors ei(t) (i = 1, 2) with l = 0.01.
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Fig. 4. (a) Trajectories of the errors ei(t) (i = 1, 2) with l = 3 and

c1 = 0; (b) Trajectories of the errors ei(t) with l = 3 and c1 = 10−3.

Note that the states x1(t) and x2(t) are globally bounded. Then, from Remark 2.2,
the static truncation h(·) is also a uniform truncation. Thus, the following observer can
be constructed:

˙̂x1(t) = x̂2(t)− l sin(x̂1(t)) + k1(h(y(tk))− x̂1(t)),
˙̂x2(t) = u(t)− l(x̂1(t) + cos(x̂2(t))) + k2(h(y(tk))− x̂1(t)),

t ∈ [tk + τk, tk + T + τk+1), k ≥ 0.

By taking the same values of the sampling period and the bound of time delay as the
first observer, the simulation results are shown in Figure 6 and Figure 7.

Example 3.2. Now, we give the following observer design for the bioreactor system (35):
˙̂x1(t) = x̂2(t)− ux̂1(t) + k1(h(y(tk))− x̂1(tk)),
˙̂x2(t) = [x̂3

2(t) + (x̂1(t)− x̂2(t))2(0.1u− x̂2(t))]/x̂2
1(t)− x̂2(t)u+ k2(h(y(tk))− x̂1(tk)),

t ∈ [tk + τk, tk + T + τk+1), k ≥ 0,
(41)
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Fig. 5. (a) Trajectories of the errors ei(t) (i = 1, 2) with l = 0.01 and

c1 = 0; (b) Trajectories of the errors ei(t) with l = 0.01 and

c1 = 10−3.
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Fig. 6. (a) Trajectories of the errors ei(t) (i = 1, 2) with l = 3; (b)

Trajectories of the errors ei(t) with l = 0.01.

where the control input u = 0.08 is a constant. The initial conditions of the system (35)
and (41) are (x1(0), x2(0)) = (0.03, 0.018) and (x̂1(0), x̂2(0)) = (0.05, 0.029), and the
gain θ = 3 and the absolute error limit is given as c1 = 10−4, T = 2 · 10−4s and the
delay τk satisfies 0 ≤ τk ≤ 2 · 10−5s, the simulation results are also shown in Figure 8
and Figure 9.

Also, we noticed that the states xi(t) are globally bounded. Then, the second observer
design with a static truncation h(·) is given as follows:

˙̂x1(t) = x̂2(t)− ux̂1(t) + k1(h(y(tk))− x̂1(t)),
˙̂x2(t) = [x̂3

2(t) + (x̂1(t)− x̂2(t))2(0.1u− x̂2(t))]/x̂2
1(t)− x̂2(t)u+ k2(h(y(tk))− x̂1(t)),

t ∈ [tk + τk, tk + T + τk+1), k ≥ 0,
(42)

then, the trajectories of the errors ei(t), the states xi(t) and the estimations x̂i (i = 1, 2)
are shown in Figure 10.
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Fig. 7. (a) Trajectories of the errors ei(t) (i = 1, 2) with l = 3; (b)

Trajectories of the errors ei(t) (i = 1, 2) with l = 0.01.
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Fig. 8. (a) Trajectories of the errors ei(t) (i = 1, 2); (b) Trajectories

of the states xi(t) and the estimations x̂i (i = 1, 2).

4. CONCLUSIONS

In this paper, we considered two kinds of sampled-data observer design for a class of
nonlinear systems. The system output was sampled and transmitted under two kinds
of truncations. Firstly, we proposed definitions of the truncations and the globally
uniformly ultimately bounded observer, respectively. Then, two kinds of observers were
proposed by using the delayed measurements with these two truncations, respectively.
The observers were hybrid in essence. For the first kind of observers, by constructing
a Lyapunov–Krasovskii functional, sufficient conditions of globally uniformly ultimately
bounded of the estimation errors were derived, and the maximum allowable sampling
period and the maximum delay were also given. For the second ones, sufficient conditions
were also given to ensure that the estimation errors were globally uniformly ultimately
bounded. Finally, an example was provided to illustrate the design methods.
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Fig. 9. (a) Trajectories of the errors ei(t) (i = 1, 2) with c1 = 0; (b)

Trajectories of the errors ei(t) (i = 1, 2) with c1 = 10−3.
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Fig. 10. (a) Trajectories of the errors ei(t) (i = 1, 2); (b) Trajectories

of the states xi(t) and the estimations x̂i (i = 1, 2).
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