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Abstract

We introduce the concept of a pseudo-Kleene algebra which is a non-
distributive modification of a Kleene algebra introduced by J. A. Kalman
[4]. Basic properties of pseudo-Kleene algebras are studied. For pseudo-
Kleene algebras with a fix-point there are determined subdirectly irre-
ducible members.
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Lattices with an antitone involution, i.e. satisfying De Morgan laws, were
introduced and treated already by G. Birkhoff [1]. He introduced also the con-
cept of an orthocomplemented lattice. The concept of a Kleene algebra as a
particular case of a lattice with an antitone involution was introduced by J. A.
Kalman under the name normal i-lattice in [4]. Several important results on
these algebras can be found in the paper by R. Cignoli [2]. There exists also an-
other notion of Kleene algebra treated, e.g., in [3], which is an abstract analogue
of certain algebras of binary relations, and therefore, it differs from algebras in-
vestigated here. Our aim is to generalize the concept of Kleene algebra also for
lattices which need not be distributive and to show that such algebras, called
pseudo-Kleene algebras, still have several important properties and a nice struc-
ture.
By a lattice with an antitone involution is meant an algebra A = (A;∨,∧,′ )

such that (A;∨,∧) is a lattice and ′ is a mapping of A into itself satisfying the
conditions

(x′)′ = x and x ≤ y ⇒ y′ ≤ x′.

Instead of (x′)′ we will write only x′′. The aforementioned conditions can
be expressed equivalently by the De Morgan laws

(x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′ and x′′ = x. (1)
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A distributive lattice with an antitone involution is called a Kleene algebra
if it, moreover, satisfies the identity

x ∧ x′ ≤ y ∨ y′. (2)

A lattice with an antitone involution which is bounded (0 is the least and 1
the greatest element) is called an orthocomplemented lattice if it satisfies

x ∧ x′ = 0 and x ∨ x′ = 1.

Of course, every orthocomplemented lattice satisfies the identity (2). How-
ever, an example of a Kleene algebra which is not orthocomplemented is visu-
alized in Fig. 1.

x x′

z

y

z′

y′

Fig. 1

Since every Kleene algebra is distributive, it satisfies the following identity

x ∧ (x′ ∨ y) = (x ∧ x′) ∨ (x ∧ y), (3)

which is equivalent to the identity

x ∨ (x′ ∧ y) = (x ∨ x′) ∧ (x ∨ y).

We can easily show that (3) does not imply that a given lattice with antitone
involution is distributive, see the following

Example 1 Consider the lattice L with an antitone involution depicted in
Fig. 2. Then clearly L satisfies the identities (1) and (3), but it is not distribu-
tive. Hence, it motivates us to introduce the following concept.
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a = a′ c = c′
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1 = 0′

Fig. 2

Definition 1 By a pseudo-Kleene algebra is meant a lattice with an antitone
involution satisfying (2) and (3).

To justify our concept, we give an example.

Example 2 The lattice with an antitone involution depicted in Fig. 3 is a
pseudo-Kleene algebra which is not a Kleene algebra.
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Fig. 3

Moreover, we can prove the following result.

Theorem 1 For a lattice with an antitone involution, the identities (2) and (3)
are independent.

Proof The lattice with antitone involution in Fig. 2 satisfies (1) and (3) but
not (2) because a ∧ a′ = a �≤ b = b ∨ b′. The lattice with antitone involution
visualized in Fig. 4 satisfies (1) and (2) but not (3) because

x ∨ (x′ ∧ y) = x ∨ 0 = x �= y = 1 ∧ y = (x ∨ x′) ∧ (x ∨ y).

�
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Let L = (L;∨,∧,′ ) be a lattice with an antitone involution. An element
d ∈ L is called a fix-point if d′ = d. The pseudo-Kleene algebra in Fig. 3 has a
fix-point d. It is easy to prove the following result.
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Fig. 4

Lemma 1 A pseudo-Kleene algebra has at most one fix-point.

Proof Assume b, c are fix-points of a pseudo-Kleene algebra. Using the identity
(2) we obtain

b = b ∧ b = b ∧ b′ ≤ c ∨ c′ = c ∨ c = c

and
c = c ∧ c = c ∧ c′ ≤ b ∨ b′ = b ∨ b = b

proving b = c. �

Let us introduce the following construction. Consider a lattice L = (L;∨,
∧, 1) with the greatest element 1. Take Ld = {x∗ | x ∈ L} and define an inverse
order on Ld, i.e. x∗ ≤ y∗ if and only if y ≤ x in L . Then L d = (Ld;∨,∧, 1∗)
is a lattice with the least element 1∗, the so-called dual of L . Let P = L ∪ Ld,
where 1 is identified with 1∗. In P we consider the same order as in L for
elements from L and the same order as in L d for elements from Ld. Moreover,
x ≤ y for each x ∈ L and each y ∈ Ld. Hence, (P ;∨,∧) is a lattice again. In P
we introduce the involution ′ as follows

x �−→ x∗ and x∗ �−→ x

for each x ∈ L. Then P = (P ;∨,∧,′ ) will be called the composition of L and
L d.
We are going to show that every lattice with greatest element can be em-

bedded into pseudo-Kleene algebra.

Theorem 2 Let L = (L;∨,∧, 1) be a lattice with the greatest element. Then
there exists a pseudo-Kleene algebra with a fix-point having a sublattice isomor-
phic to (L;∨,∧).
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Proof Let L = (L;∨,∧, 1) be a lattice with the greatest element 1. Consider
its dual L d and take P to be the composition of L and L d. Then it is
evident that 1 is the fix-point of the antitone involution ′ on P. It is clear that
P satisfies (1) and (2). All we need is to prove the identity (3).

(a) If x, y ∈ L then clearly x′ ∧ y ∈ L and x′ ∧ y = y thus x∨ (x′ ∧ y) = x∨ y.
Since x ∨ x′ ∈ Ld, we have x ∨ x′ ≥ x ∨ y and hence (x ∨ x′) ∧ (x ∨ y) =
x ∨ y = x ∨ (x′ ∧ y).

(b) Assume x ∈ L and y ∈ Ld. Then x′ ∈ Ld thus also x′ ∧ y ∈ Ld, i.e.
x ≤ x′ ∧ y giving x∨ (x′ ∧ y) = x′ ∧ y. However, x∨ x′ = x′ and x∨ y = y
whence (x ∨ x′) ∧ (x ∨ y) = x′ ∧ y = x ∨ (x′ ∧ y) .

The proof of the case x ∈ Ld, y ∈ L and of the case x, y ∈ Ld can be done
by dualization of the foregoing cases (b) and (a), respectively. �

It is a natural question how general the construction of composition of L
and L d described above is. The answer is in the following theorem.

Theorem 3 Let P be a pseudo-Kleene algebra with a fix-point c. Then P is
equal to the composition of (c] and [c) if and only if x, x′ are comparable for
each element x ∈ P .

Proof Assume that x, x′ are comparable for each x ∈ P . Since c is a fix-point,
we have c = c′. Without loss of generality assume x ≤ x′. Then

c = c ∧ c′ ≤ x ∨ x′ = x′

and hence also x ≤ c′ = c. Thus for each x ∈ P we have either x ∈ (c] or
x ∈ [c) proving that P is the composition of (c] and [c). Conversely, if P is
the composition of (c] and [c) then every x ∈ P belongs either to (c] or [c).
Assume e.g. x ∈ (c]. Then x ≤ c thus c = c′ ≤ x′ whence x ≤ x′. Thus x, x′

are comparable for each x ∈ P . �

The following example shows that the condition of comparability x, x′ does
not follow from (1), (2) and (3).

Example 3 Consider the pseudo-Kleene algebra P depicted in Fig. 5.
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Fig. 5
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Since it is a distributive lattice, it is in fact a Kleene algebra thus it satisfies
(1), (2) and (3). Its fix-point is c. However d and d′ are incomparable and one
can see that P is not the composition od (c] and [c).

The previous theorem also yields that if P is composed of L and its dual
then every congruence Θ ∈ ConL can be extended onto the whole P because
Θ induces a congruence of L d, thus the relation which is union of Θ and the
corresponding congruence on L d is a congruence Ψ on the whole P. Since the
congruence classes of every Ψ ∈ ConP are convex, also every congruence Ψ
on P can be decomposed in a congruence Θ1 = Ψ|L and Θ2 = Ψ|L d . This
immediately yields the following result.

Theorem 4 Let P be a pseudo-Kleene algebra with a fix-point c such that x,
x′ are comparable for each x ∈ P . Then P is subdirectly irreducible if and only
if its sublattice (c] is subdirectly irreducible.

This can be illustrated by the following example.

Example 4 Since the lattice N5 is subdirectly irreducible, the pseudo-Kleene
algebra from Example 2 (visualized in Fig. 3) is subdirectly irreducible. Since
the latticeM3 is subdirectly irreducible, the pseudo-Kleene algebraP depicted
in Fig. 6 is subdirectly irreducible. In fact, M3 is a simple lattice; thus also P
is simple.
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Fig. 6

Remark 1 Since the only subdirectly irreducible distributive lattice is the two-
element one, the only subdirectly irreducible Kleene algebra with a fix-point is
the three element chain 0 < c < 1, where 0′ = 1, 1′ = 0, and c = c′. This is the
result of [4].
An example of subdirectly irreducible pseudo-Kleene algebra which is not

distributive and has no fix-point is visualized in Fig. 7. This is in fact a simple
pseudo-Kleene algebra.
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Fig. 7

Using this example, we can extend the construction producing pseudo-Kleene
algebras without fix-points as the composition. Consider a lattice L with the
top element 1 and let [a, 1] be a filter of L . Denote by x∗ the elements of its
dualL d. Then [1∗, a∗] is an ideal ofL d. If this filter [a, 1] can be organized into
a pseudo-Kleene algebra by a suitable antitone involution, then L and L d can
be glued together by identifying [a, 1] with [1∗, a∗], and the resulting lattice with
an antitone involution is a pseudo-Kleene algebra. If a pseudo-Kleene algebra
P is produced in this way, it is easy to show that P is subdirectly irreducible
if and only if L is a subdirectly irreducible lattice. Hence, the pseudo-Kleene
algebra visualized in Fig. 6 is subdirectly irreducible.
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