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THE G-GRADED IDENTITIES

OF THE GRASSMANN ALGEBRA

Lucio Centrone

Abstract. Let G be a finite abelian group with identity element 1G and
L =

⊕
g∈G L

g be an infinite dimensional G-homogeneous vector space over a
field of characteristic 0. Let E = E(L) be the Grassmann algebra generated
by L. It follows that E is a G-graded algebra. Let |G| be odd, then we prove
that in order to describe any ideal of G-graded identities of E it is sufficient to
deal with G′-grading, where |G′| ≤ |G|, dimF L1G′ =∞ and dimF Lg

′
<∞

if g′ 6= 1G′ . In the same spirit of the case |G| odd, if |G| is even it is sufficient
to study only those G-gradings such that dimF Lg =∞, where o(g) = 2, and
all the other components are finite dimensional. We also compute graded
cocharacters and codimensions of E in the case dimL1G =∞ and dimLg <∞
if g 6= 1G.

1. Introduction

All algebras we refer to are to be considered associative and unitary over a field
of characteristic 0 unless explicitly written. Let F be a field and X = {x1, x2, . . .}
be a countable infinite set of variables and let F 〈X〉 be the free associative algebra
freely generated by X. If A is an F -algebra, we say that f(x1, . . . , xn) ∈ F 〈X〉 is
a polynomial identity of A if f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A. If A has a
non-trivial polynomial identity we say that A is a polynomial identity algebra or
PI-algebra and we denote by T (A) the set of all polynomial identities satisfied by A.
It is well known that T (A) is an ideal of F 〈X〉 invariant under all endomorphisms of
F 〈X〉, i.e., it is a T -ideal called the T -ideal of A. We say that the variety generated
by the algebra A is the class

V = V(A) = {B associative algebra | T (A) ⊆ T (B)} .
The Grassmann algebra E, generated by an infinite dimensional vector space

and its identities, plays an important role in the structure theory of Kemer on
varieties of associative algebras with polynomial identities [11, 10]. More precisely,
Kemer proved that any associative PI-algebra over a field F of characteristic zero
satisfies the same identities (is PI-equivalent) of the Grassmann envelope of a finite

2010 Mathematics Subject Classification: primary 16R10; secondary 16P90, 16S10, 16W50.
Key words and phrases: graded polynomial identities.
Partially supported by FAPESP grant 2013/06752-4 and 2015/08961-5.
Received August 18, 2015, revised June 2016. Editor J. Trlifaj.
DOI: 10.5817/AM2016-3-141

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2016-3-141


142 LUCIO CENTRONE

dimensional associative superalgebra, i.e., they have the same T -ideal. Moreover,
the matrix algebras Mn(F ), Mn(E) with entries in E and its subalgebras Mp,q(E)
(p+ q = n), generate the only non-trivial prime varieties.

Here [a, b] = ab − ba, and [a, b, c] = [[a, b], c] for every a, b, c ∈ F 〈X〉. In [13]
Latyshev proved that the T -ideal generated by the triple commutator [x1, x2, x3]
is Spechtian, i.e., every proper subvariety of the variety generated by [x1, x2, x3] is
finitely based. In [12] Krakowski and Regev proved that the polynomial [x1, x2, x3]
forms a basis of the polynomial identities of E. Moreover, they found the codimen-
sion sequence of E. Later, Olsson and Regev determined the cocharacter sequence
of E (see [14]). In [4] Di Vincenzo gave a different proof of the result of Krakowski
and Regev and he also exhibited, for any k, finite bases of the identities of the
Grassmann algebra generated by a k-dimensional vector space.

In light of this it seems a natural and interesting problem to investigate more
closely the structure of the graded polynomial identities of the Grassmann algebra.
For example, the structure of the Z2-graded identities of E with respect to its
natural Z2-grading is well known, see for instance [9]. Recently, Di Vincenzo and da
Silva gave in [6] a complete description of the Z2-graded polynomial identities of E
with respect to any Z2-grading such that the generating space is Z2-homogeneous.
This work has been generalized by the author for any infinite field of characteristic
p > 2 (see [2]). In [1] Anisimov constructed an algorithm to compute the exact
value of the graded codimension of E for any Zp-grading of E, where p is a prime
number.

In this paper we consider a finite abelian group G with identity element 1G
and an infinite dimensional G-homogeneous vector space L over the field F which
generates the infinite dimensional Grassmann algebra E = E(L). The latter inherits
the structure of a G-graded algebra, hence we are allowed to study its G-graded
identities. Let |G| be odd, then we prove that in order to describe any ideal of
G-graded identities of E it is sufficient to deal with a G′-grading, where |G′| ≤ |G|,
dimF L

1G′ = ∞ and dimF L
g′ < ∞ if g′ 6= 1G′ . In the same spirit of the case

|G| odd, if |G| is even it is sufficient to study only those G-gradings such that
dimF L

g =∞ and o(g) = 2, where o(g) stands for the order of the group element g.
Finally we give a complete description of TG(E), where G = Z2 × Z2,Z4 in some
particular cases. We also compute graded cocharacters and codimensions of E in
the case dimL1G =∞ and dimLg <∞ if g 6= 1G.

2. Free algebras, graded PI-algebras

We introduce the key tools for the study of graded polynomial identities. We
start off with the following definition.

Definition 2.1. Let G be a group and A be an algebra over a field F . We say
that the algebra A is G-graded if A =

⊕
g∈GA

g and for all g, h ∈ G, one has
AgAh ⊆ Agh.

It is easy to note that if a is any element of A it can be uniquely written
as a finite sum a =

∑
g∈G ag, where ag ∈ Ag. We shall call the subspaces Ag
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the G-homogeneous components of A. Accordingly, an element a ∈ A is called
G-homogeneous if exists g ∈ G such that a ∈ Ag. If B ⊆ A is a subspace of A, B is
G-graded if and only if B =

⊕
g∈G(B ∩Ag). Analogously one can define G-graded

algebras, subalgebras, ideals, etc.
Let {Xg | g ∈ G} be a family of disjoint countable sets of indeterminates. Set

X =
⋃
g∈GX

g and denote by F 〈X | G〉 the free associative algebra freely generated
by X. An indeterminate x ∈ X is said to be of homogeneous G-degree g, written
‖x‖ = g, if x ∈ Xg. We always write xg if x ∈ Xg. The homogeneous G-degree of a
monomial m = xi1xi2 . . . xik is defined to be ‖m‖ = ‖xi1‖·‖xi2‖·· · ··‖xik‖. For every
g ∈ G, denote by F 〈X | G〉g the subspace of F 〈X | G〉 spanned by all monomials
having homogeneous G-degree g. Notice that F 〈X | G〉gF 〈X | G〉g′ ⊆ F 〈X | G〉gg′

for all g, g′ ∈ G. Thus
F 〈X | G〉 =

⊕
g∈G

F 〈X | G〉g

is a G-graded algebra. The elements of the G-graded algebra F 〈X | G〉 are called
G-graded polynomials or, simply, graded polynomials.

Definition 2.2. If A is a G-graded algebra, a G-graded polynomial

f(x1, . . . , xn)

is said to be a graded polynomial identity of A if

f(a1, a2, . . . , an) = 0

for all a1, a2, . . . , an ∈
⋃
g∈GA

g such that ak ∈ A‖xk‖, k = 1, . . . , n. We shall write
f ≡ 0 in order to say that f is a graded polynomial identity for A.

Given an algebra A graded by a group G, we define

TG(A) := {f ∈ F 〈X | G〉 | f ≡ 0 on A} ,

the set of G-graded polynomial identities of A.

Definition 2.3. An ideal I of F 〈X | G〉 is said to be a TG-ideal if it is invariant
under all F -endomorphisms ϕ : F 〈X | G〉 → F 〈X | G〉 such that ϕ (F 〈X | G〉g) ⊆
F 〈X | G〉g for all g ∈ G.

Hence TG(A) is a TG-ideal of F 〈X | G〉. On the other hand, it is easy to check
that all TG-ideals of F 〈X | G〉 are of this type. We shall denote by 〈S〉TG the
TG-ideal generated by the set S, i.e., the smallest TG-ideal containing S. In this
case we say S is a basis for 〈S〉TG or the elements of 〈S〉TG follow from those of S.

From now on all the groups are assumed to be finite abelian. The theory of
G-graded PI-algebras passes through the representation theory of the symmetric
group. More precisely we study the following spaces.

Definition 2.4. Let

PGn = span 〈xg1
σ(1)x

g2
σ(2) . . . x

gn
σ(n) | gi ∈ G, σ ∈ Sn〉 ,

then the elements in PGn are called multilinear polynomials of degree n of F 〈X | G〉.
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It turns out that PGn is a left Sn-module under the natural left action of the
symmetric group Sn. As a consequence the factor module PGn (A) := PGn /(PGn ∩
TG(A)) is an Sn-module, too. We observe that PGn (A) affords a representation of the
symmetric group Sn which naturally carries on a character of Sn (or Sn-character).
Let us denote the Sn-character of PGn (A) by χGn (A), and by cGn (A) its dimension
over F . We say that(

χGn (A)
)
n∈N is the G-graded cocharacter sequence of A(

cGn (A)
)
n∈N is the G-graded codimension sequence of A .

Now, for lg1 , . . . , lgr ∈ N let us consider the blended components of the mul-
tilinear polynomials in the indeterminates labeled as follows: xg1

1 , . . . , x
g1
lg1

, then
xg2
lg1 +1, . . . , x

g2
lg1 +lg2

and so on. We denote this linear space by PGlg1 ,...,lgr
. Of course,

this is a left Slg1
× · · · × Slgr -module. We shall denote by χGlg1 ,...,lgr

(A) the cha-
racter of the module PGlg1 ,...,lgr

(A)/(PGlg1 ,...,lgr
(A) ∩ TG(A)) and by cGlg1 ,...,lgr

(A) its
dimension.

Since the ground field F is infinite, a standard Vandermonde-argument yields
that a polynomial f is a G-graded polynomial identity for A if and only if its
homogeneous components (with respect to the ordinary N-grading), are identities
as well. Moreover, since char(F ) = 0, the well known multilinearization process
shows that the TG-ideal of a G-graded algebra A is determined by its multilinear
polynomials, i.e. by the various PGlg1 ,...,lgr

(A). We remark that, given the cocharacter
χGlg1 ,...,lgr

(A), the graded cocharacter χGn (A) is known as well. More precisely, the
following is due to Di Vincenzo (see [5, Theorem 2]).

Proposition 2.5. Let A be a G-graded algebra with graded cocharacter sequences
χGlg1 ,...,lgr

(A). Then

χGn (A) =
∑

(lg1 , . . . , lgr )
lg1 + · · ·+ lgr = n

χGlg1 ,...,lgr
(A)↑Sn ,

where χGlg1 ,...,lgr
(A)↑Sn stands for the induced Sn-character of the Slg1

× · · · ×
Slgr -module PGlg1 ,...,lgr

(A).
Moreover

cGn (A) =
∑

(lg1 , . . . , lgr )
lg1 + · · ·+ lgr = n

(
n

lg1 , . . . , lgr

)
cGlg1 ,...,lgr

(A) .

Let us consider the free algebra F 〈Y ∪Z〉 (where Y is the set of all indeterminates
of G-degree 1G and Z is the set of all the remaining indeterminates). The Y -proper
polynomials (see [7, Section 2]) are the elements of the unitary F -subalgebra B of
F 〈X〉 generated by the elements of Z and by all non-trivial commutators. More
precisely, a polynomial f ∈ F 〈Y ∪ Z〉 is Y -proper if all the y ∈ Y occurring in f
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appear in commutators only. Notice that if f ∈ F 〈Z〉, then f is Y -proper. It is well
known (see, for instance, Lemma 1 Section 2 in [7]) that all the graded polynomial
identities of a superalgebra A follow from the Y -proper ones. This means that the
set TZ2(A) ∩B generates the whole TZ2(A) as a TZ2 -ideal. Similarly, for any finite
abelian group G, all the G-graded polynomial identities of a G-graded algebra A
follow from the Y -proper ones. This means that the set TG(A) ∩B generates the
whole TG(A) as a TG-ideal. Let us define B(A) := B/(TG(A) ∩B). We shall refer
to B(A) as Y -proper relatively-free algebra of A.

We shall denote by ΓGn the set of multilinear Y -proper polynomials of PGn . It is
not difficult to see that ΓGn is a left Sn-submodule of PGn and the same holds for
ΓGn ∩ TG(A). Hence the factor module

ΓGn (A) := ΓGn
/(

ΓGn ∩ TG(A)
)

is an Sn-submodule of PGn (A). We denote the Sn-character of the factor module
ΓGn /(ΓGn ∩ TG(A)) by ξGn (A), and by γGn (A) its dimension over F . We say:(

ξGn (A)
)
n∈N is the G-graded proper cocharacter sequence of A;(

γGn (A)
)
n∈N is the G-graded proper codimension sequence of A .

We shall denote by ΓGm1,...,mr the set of multilinear Y -proper polynomials of
PGm1,...,mr . We observe that ΓGm1,...,mr is a left Sm1 × · · · × Smr -submodule of
PGm1,...,mr and the same holds for ΓGm1,...,mr ∩ TG(A). Hence the factor module

ΓGm1,...,mr (A) := ΓGm1,...,mr

/(
ΓGm1,...,mr ∩ TG(A)

)
is an Sm1 × · · · × Smr -submodule of Pm1,...,mr(A)G. We denote the Sm1 × · · · ×
Smr -character of the factor module ΓGm1,...,mr/(Γ

G
m1,...,mr ∩TG(A)) by ξGm1,...,mr (A),

and by γm1,...,mr(A) its dimension over F . When we refer to A without any
ambiguity, we shall use γm1,...,mr instead of γm1,...,mr (A).

Let L be an infinite dimensional vector space over F , a field of characteristic
zero, then we indicate by E = E(L) the Grassmann algebra generated by L. Let
(G, ·) be a finite abelian group and suppose E is G-graded. In this section we want
to study the G-graded identities of E in the case when L is a G-homogeneous
space.

Let BL = {e1, e2, . . .} be a linear basis of L, where for any i ∈ N, ei is a
G-homogeneous element, so BE = {ei1ei2 . . . ein | n ∈ N, i1 < i2 < · · · < in} is a
basis of E as a vector space over F . Notice that the existence of a homogeneous
G-grading is equivalent to the existence of a map

‖ ‖ : BL → G .

We have that the G-degree of the element ei1ei2 . . . ein is
‖ei1ei2 . . . ein‖ = ‖ei1‖ ‖ei2‖ . . . ‖ein‖ .

In this case we say that the set
{ei1 , ei2 , . . . , ein}

is the support of ei1ei2 . . . ein and the non-negative integer n is its length.
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For our purposes we shall pass from a fixed G-grading of E to the grading
associated to the quotient group G/H, for some special subgroups H of G. More
generally, let A =

⊕
g∈GA

g be a G-graded algebra and let H < G, then for every
coset gH ∈ G/H, we define AgH =

⊕
f∈gH A

f . In particular, if T is a transversal
set for H in G, then

A =
⊕
t∈T

AtH .

We observe that for every g, g′ ∈ G AgHAg
′H ⊆ Agg′H , so A inherits a structure

of G/H-graded algebra and we shall call it quotient grading of A.

3. Graded identities of E

In what follows we shall denote by Z(A) the center of the algebra A. Recall
that in the case E is the infinite dimensional Grassmann algebra, then Z(E) = E0,
where E0 is the Z2-component of degree 0 in the canonical Z2-grading of E. In
what follows we shall use the following notation: if H is a normal subgroup of G
and no confusion occurs, we shall denote by g the coset gH.

In order to investigate the relations between the graded identities of E with
respect to G-gradings and to its quotient G/H-gradings, it is reasonable to consider
the following homomorphism between free graded algebras

π : F 〈X | G〉 → F 〈Y | G/H〉 ,

where Y is an infinite set of G/H-graded variables, such that for every g ∈ G and
for every i ∈ N, π(xgi ) = ygHi . For any G-graded algebra A and for any subgroup
H of G we have the next result.

Lemma 3.1. Let f(x1, . . . , xn) ∈ F 〈X | G〉 be a multilinear polynomial. If π(f) ∈
TG/H(A), then f ∈ TG(A).

Proof. Let ϕ : xi 7→ ai be a G-graded substitution, so ‖ai‖ = ‖xi‖ = gi ∈ G
for some gi ∈ G. Now we have that ai ∈ Agi and ai is homogeneous of degree
giH in the quotient grading. Then ϕ is a G/H-graded substitution too. Due to
the fact that π(f) = f(y1, . . . , yn) ∈ TG/H(A), we have 0 = f(a1, . . . , an) and
f ∈ TG(A). �

Under opportune hypothesis, it is possible to invert this result. Above all, we
give the following definition.

Definition 3.2. Let G be a finite abelian group and suppose E is G-graded. We
say that the subgroup H of G has the property P if for any h ∈ H, Eh has infinite
elements of even length with pairwise disjoint support.

The interest of this property is given by the following proposition.

Proposition 3.3. Let H < G having the property P and let f ∈ F 〈X | G〉 be a
multilinear polynomial. Then f ∈ TG(E) if and only if π(f) ∈ TG/H(E).
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Proof. We have to prove just the only if part. Let

f = f(xg1
1 , x

g1
2 , . . . , x

g1
lg1
, . . . , xgr∑r−1

i=1
lgi+1

, . . . , xgr∑r

i=1
lgi

) ∈ TG(E)

and let F = π(f). Let ϕ be any G/H-graded substitution, hence ϕ(ygHj ) =∑
h∈H a

gh
j , and by the multilinearity of f , we can consider only substitutions ϕ

such that ygHj 7→ aghj , for some h ∈ H and for any j. Now observe that if every
homogeneous component Eh has infinite elements of even length, then for every j
and for every h ∈ H there exists bh−1

j of even length such that ‖bh−1

j ‖ = h−1. For
every h ∈ H, wgj = aghj b

h−1

j is a homogeneous element of degree g in the G-grading
of E. Let us consider a new substitution ψ such that xgj 7→ wgj . This is a G-graded
substitution. Now, since f ∈ TG(E), 0 = f(wg1

1 , . . . , w
gr
lgr

) =
∏
h∈H,j b

h−1

j · F (aghj )
because the bh−1

j ’s are in Z(E) and this implies F (aghj ) = 0. �

We consider now some subgroups of G having the property P.

Lemma 3.4. Let H = 〈g〉 for some g ∈ G. If Lg is infinite dimensional and
|H| = n is odd, then H has the property P.

Proof. Let {v1, v2, . . .} be a linear basis of Lg and let h = gt for some t ∈ N.
Notice that

‖vi1 . . . vil‖ = gl ,

hence vi1 · · · vil ∈ Eh if and only if gl = gt that is if and only if l ≡ t mod n. Now,
if t is even, then the elements of Eh, v1 . . . vt, vt+1 . . . v2t, . . . , vkt+1 . . . v(k+1)t, . . .
have pairwise disjoint supports of even length. Similarly, if t is odd, an infinite
subset of elements of Eh having pairwise disjoint supports is given by v1 . . . vt+n,
vt+n+1 . . . v2(t+n), . . . , vk(t+n)+1 . . . v(k+1)(t+n), . . . and we are done. �

Proposition 3.5. Let G be a finite abelian group and

H =
〈
g | dimF L

g =∞ and o(g) is odd
〉
.

Then H has the property P.

Proof. For any h ∈ H there exist distinct elements b1, . . . , bs ∈ H such that
h = bt11 . . . btss for some positive integers t1, . . . , ts. Then by Lemma 3.4 and its
proof, for every i = 1, . . . , s, Eb

ti
i has infinite elements

wi1, w
i
2, . . . , w

i
m, . . .

of even length with pairwise disjoint supports, moreover these elements belong to
the Grassmann algebra Ei generated by the subspace Lbi . We set

um = w1
mw

2
m . . . w

s
m ,

for m ≥ 1 and clearly {u1, u2, . . . , um, . . .} is the required subset of Eh. �

As a consequence of Propositions 3.5 and 3.3, we have the following.
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Theorem 3.6. Let G be a finite abelian group of odd order and let
H = 〈g | dimF L

g =∞〉 .
Then the following properties hold:

(1) for any multilinear polynomial f(x1, . . . , xn) ∈ F 〈X〉 one has
f ∈ TG(E) if and only if π(f) ∈ TG/H(E) .

(2) In the quotient grading of E, Lg is infinite dimensional if and only if
g = 1G/H .

If G is any finite abelian group, we have the following result.

Proposition 3.7. Let G be a finite abelian group and g ∈ G such that dimF L
g =

∞. Let H = 〈g〉 and |H| = n, an even number. Then K = 〈g2〉 has the property P.

Proof. Let {e1, e2, . . .} be a linear basis of Lg and let k = g2t ∈ K, then the
elements of Ek e1 . . . e2t, e2t+1 . . . e4t, . . . , es(2t)+1 . . . e(s+1)(2t), . . . have pairwise
disjoint supports of even length. �

Now let us consider the following subsets of G:
I = {g ∈ G | dimF L

g =∞} ,

I1 = {g ∈ I | o(g) is odd} ,

I2 = I − I1 and

I3 = {g2 | g ∈ I2} − I1 .

We have the following.

Theorem 3.8. Let G be a finite abelian group and let H = 〈g | g ∈ I1 ∪I3〉. Then
the following properties hold:

(1) for any multilinear polynomial f = f(x1, . . . , xn) ∈ F 〈X〉 one has
f ∈ TG(E) if and only if π(f) ∈ TG/H(E) .

(2) In the quotient grading of E, if Lg is infinite dimensional, then g2 = 1 ∈
G/H.

Proof. (1) Let h ∈ H, then there exist a1, . . . , ar ∈ I1, b1, . . . , bs ∈ I3 and positive
integers be such that h = am1

1 . . . amrr b
mr+1
1 . . . b

mr+s
s . Let ar+1, . . . , ar+s ∈ I2 such

that bi = a2
r+i, then dimF L

ai =∞ for any i = 1, . . . , r+s. Let us denote by Ei the
Grassmann algebra generated by the subspace La

mi
i . As in the proof of Proposition

3.5, for any i = 1, . . . , r + s, Ei contains infinitely many elements
wi1, w

i
2, . . . , w

i
m, . . .

of even length with pairwise disjoint supports. Moreover, for all m ≥ 1 we have that∥∥wim∥∥ = amii if i = 1, . . . , r and
∥∥wim∥∥ = bmii−r for i = r + 1, . . . , r + s. We consider

in Eh the elements um = w1
m . . . w

r+s
m , m ≥ 1; clearly the elements {um|m ≥ 1}

have pairwise disjoint supports and they have even length. Now H has the property
P and the assertion comes by Proposition 3.3.



GRADED IDENTITIES OF E 149

(2) Let g = gH ∈ G/H be such that Lg =
⊕

h∈H L
gh is infinite dimensional.

Since G is finite there exists g′ ∈ gH such that Lg′ is infinite dimensional. If o(g′)
is odd, then g′ ∈ H and so gH = g′H = 1G/H . If o(g′) is even, then g′2 ∈ H and
so (gH)2 = (g′H)2 = 1G/H . �

4. Graded codimensions and cocharacters of E

We shall study graded codimensions and graded cocharacters for E in the case
dimF L

1G is infinite and all the other homogeneous components of L have finite
dimension. We shall use the language of the representation theory of symmetric
groups (see the book [15] by Sagan for more details).

Theorem 4.1. Let G = {g1, . . . , gr} be a finite abelian group with g1 = 1G. Suppose
that Lg1 has infinite dimension. Let

lg1 , lg2 , . . . , lgr ∈ N

such that
lg1 + lg2 + · · ·+ lgr = m.

Then Plg1 ,...,lgr
⊆ TG(E) or for any f ∈ Plg1 ,lg2 ,...,lgr

one has

f
(
xg1

1 , . . . , x
g1
lg1
, . . . , xgr∑r−1

i=1
lgi+1

, . . . , xgr∑r

i=1
lgi

)
∈ TG(E)

if and only if f(x1, . . . , xm) ∈ T (E).

Proof. It is sufficient to prove that if Plg1 ,...,lgr
* TG(E), then any element of

Plg1 ,...,lgr
∩ TG(E) is an ordinary polynomial identity for E. Let us suppose

Plg1 ,...,lgr
* TG(E) ,

then there exists a graded monomial with a non-zero graded evaluation of elements
a1, . . . , am of the basis BL of E. Any other monomial of Plg1 ,...,lgr

is non-zero with
respect to the same evaluation. Since Lg1 is infinite dimensional, we can always
suppose a1, . . . , am are of even length multiplying them by some ei’s of degree
g1. Now let us consider the elements of the basis of Lg1 which are not involved
in the expression of the given elements a1, . . . , am, to say vi’s. Clearly, the latter
generate an infinite dimensional Grassmann algebra E′, hence T (E) = T (E′).
Let f = f

(
xg1

1 , . . . , x
g1
lg1
, . . . , xgr∑r−1

i=1
lgi+1

, . . . , xgr∑r

i=1
lgi

)
∈ TG(E) and let ϕ be any

substitution such that xi 7→ vi ∈ E′ for any i. Let us consider a new substitution ψ
such that xgji 7→ viai. This is a G-graded substitution on E. Now, since f ∈ TG(E),
0 = f(v1a1, . . . , vmam) = a1 · · · amf(v1, . . . , vm) because the ai’s are in Z(E) and
this implies f(v1, . . . , vm) = 0 because the supports of v1, . . . , vm are distinct from
those of a1, . . . , am and a1 . . . am 6= 0 by hypothesis, then f ∈ T (E′) = T (E) and
we are done. �

Theorem 4.2. Let G = {g1, . . . , gr} be a finite abelian group with g1 = 1G.
Let L be a G-homogeneous vector space over L such that dimF L

g1 = ∞ and
dimF L

gi = ki <∞, if i 6= 1. If E = E(L) is the Grassmann algebra generated by
L, then TG(E) is generated as a TG-ideal by the following polynomials:
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(1) [u1, u2, u3] for any choice of the G-degree of the variables u1, u2, u3,
(2) monomials of P0,t2,...,tr such that

∑r
i=2 ti = 1 +

∑r
i=2 ki,

(3) monomials of P0,t2,...,tr such that
∑r
i=2 ti < 1 +

∑r
i=2 ki

and P0,t2,...,tr ⊆ TG(E).

Proof. In light of Theorem 4.1, we have that TG(E) is generated by the polynomials
from (1) of the claim and by all monomials of Pl1,...,lr such that Pl1,...,lr ⊆ TG(E).
Notice that a graded monomial w is surely a graded polynomial identity when
the sum of the numbers of its indeterminates of G-degree different from g1 is
strictly greater than

∑r
i=2 ki. Moreover, for any l1, . . . , lr ∈ N, any monomial

in Pl1,...,lr is in the TG-ideal generated by the monomials in P0,l2,...,lr . Now we
have just to observe that the monomials in P0,l2,...,lr follow from the monomials
in P0,l2−1,...,lr , . . . , P0,l2,...,li−1,...,lr for li ≥ 1 due to the Young rule. Hence if
l2, . . . , lr ∈ N are such that l2 + · · · + lr > 1 +

∑r
i=2 ki, then P0,l2,...,lr is in the

TG-ideal generated by the monomials of P0,t2,...,tr such that t2+· · ·+tr = 1+
∑r
i=2 ki

and the claim follows. �

We have the following corollary which proof repeats verbatim the one of Propo-
sition 5 of [6].

Corollary 4.3. Let G = {g1, . . . , gr} be a finite abelian group with g1 = 1G. If Lg1

has infinite dimension and lg1 , lg2 , . . . , lgr ∈ N are such that lg1 + lg2 + . . .+ lgr = m,
then

clg1 ,...,lgr
(E) = 0 or clg1 ,...,lgr

(E) = 2m−1

and in the latter case, Plg1 ,...,lgr
(E) and Pm(E) are isomorphic Slg1

× · · · ×
Slgr -modules.

If G is a finite abelian group and L is a vector space with basis BL = {e1, e2, . . .},
let

ϕ : BL → G

be any map. As we said before, ϕ induces a G-grading on E. Let us consider now
the set

S(ϕ) =
{

(lg1 , lg2 , . . . , lgr ) ∈ Nr | Plg1 ,lg2 ,...,lgr
⊆ TG(E)

}
.

We note that if L1G is the only homogeneous subspace of L such that dimF L
1G =

∞, then S(ϕ) 6= ∅.
S(ϕ) allows us to give the complete description of the sequence of the graded

cocharacters and codimensions of E. In fact, we have the following proposition.

Proposition 4.4. Let G = {g1, . . . , gr} be a finite abelian group and L be a
G-homogeneous vector space with linear basis {e1, e2, . . .}. Let ϕ : BL → G be a
map such that |ϕ−1(1G)| =∞ and consider E, the G-graded Grassmann algebra
obtained by ϕ. Then

χGlg1 ,...,lgr
(E) = 2|G|−1

lg1−1∑
a1=0

lg2−1∑
a2=0

. . .

lgr−1∑
ar=0

λa1 ⊗ λa2 ⊗ · · · ⊗ λar

if (lg1 , . . . , lgr ) /∈ S(ϕ), where λai is the hook partition of leg ai and arm lgi−ai+1.
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Moreover

cGn (E) = 2n−1
∑

(lg1 , . . . , lgr ) /∈ S(ϕ)
lg1 + . . .+ lgr = n

(
n

lg1 , . . . , lgr

)
.

Proof. By Corollary 4.3, the spaces Pn(E) and PGlg1 ,...,lgr
(E) are Slg1

× · · · ×
Slgr -isomorphic modules. Hence the result follows using the decomposition of
χn(E) =

∑n−1
i=0 (n − i, 1i) and the representation theory of symmetric groups.

More precisely, it follows by Branching Rule that when we restrict the irreducible
representation νi = (n − i, 1i) of Sn to its subgroup Slg1

× · · · × Slgr then its
Slg1
× · · · × Slgr -irreducible components are λa1 ⊗ λa2 ⊗ · · · ⊗ λar for some λai =

(lgi−ai, 1ai). By Frobenius Reciprocity Law the multiplicity of λa1⊗λa2⊗· · ·⊗λar
in the decomposition of νi equals the multiplicity of νi in the induced representation
(λa1 ⊗ λa2 ⊗ · · · ⊗ λar )

↑Sn . We argue only for r = 2 because the other cases are
treated similarly. By the Littlewood-Richardson Rule, if cia,b is the multiplicity of
νi in the induced representation (λa ⊗ λb)↑Sn , cia,b is the number of semistandard
tableau T such that T has shape νi/λa, content λb and the row word of T is a
reverse lattice permutation. Since νi and λa are both hook partitions, then the
skew shape νi/λa has at most two connected components. The first one is a row of
length n− i− (lg1 − a) = lg2 − (i− a), the second is a column of height i− a. By
the previous conditions on the semistandard tableau T , we obtain that the entries
in the column constitute a standard tableau T ′. If 1 does not appear in T ′ then
1 + b = lg2 − (i− a), on the other hand if one entry of T ′ is 1 then b = lg2 − (i− a).
Therefore cia,b is non-zero if and only if either i−a+ b = lg2 −1 or i−a+ b = lg2 , in
both cases one has cia,b = 1 since the semistandard tableau T is uniquely determined.
Then there exist exactly two hook partitions in the decomposition of (λa ⊗ λb)↑Sn .
Repeating this process, we have that the total multiplicity of the hook partitions
appearing in the decomposition of (λa1 ⊗ λa2 ⊗ · · · ⊗ λar )↑Sn is 2r−1 = 2|G|−1. Due
to the fact that all of these partitions are components of χn(E), we have that the
multiplicity of λa1 ⊗ λa2 ⊗ · · · ⊗ λar in χlg1 ,...,lgr

is exactly 2|G|−1.
Finally we have just to use Proposition 2.5, while Corollary 4.3 says that

cGlg1 ,...,lgr
(A) = cn(E) = 2n−1

and the assertion follows. �

In light of the previous results, we can give a new proof of an Anisimov’s result
(see [1]). Let p be a prime odd number and let G = Zp, then we have the following:

Proposition 4.5. If there exists k ∈ G, k 6= 0 such that dimF L
k =∞, then for

any m ∈ N,

cm(E) = pm2m−1.



152 LUCIO CENTRONE

If for any k ∈ Zp − {0} dimF L
k <∞, then for any m ∈ N,

cm(E) = 2m−1
∑

(m0, . . . ,mp−1) /∈ S(ϕ)∑p−1
i=0 mi = m

(
m

m0, . . . ,mp−1

)
.

Proof. If exists k ∈ Zp − {0} such that dimF L
k =∞, then 〈k〉 has the property

P. In particular, Zp has this property. The quotient grading on E is the trivial
one and in light of Proposition 3.3, every G-graded polynomial identity of E is an
ordinary polynomial identity of E. Then, for any m ∈ N, we have

cm(E) =
∑

m0+···+mp−1=m

(
m

m0, . . . ,mp−1

)
cm0,...,mp−1(E)

= 2m−1
∑

m0+···+mp−1=m

(
m

m0, . . . ,mp−1

)
= pm2m−1 .

If for any k ∈ Zp − {0} dimF L
k <∞, then dimF L

0 =∞. By Corollary 4.3 and
Proposition 4.4, for any m ∈ N, we have

cm(E) =
∑

(m0, . . . ,mp−1) /∈ S(ϕ)∑p−1
i=0 mi = m

(
m

m0, . . . ,mp−1

)
cm0,...,mp−1(E)

= 2m−1
∑

(m0, . . . ,mp−1) /∈ S(ϕ)∑p−1
i=0 mi = m

(
m

m0, . . . ,mp−1

)
.

and we are done. �

Notice that the case p = 2 has been completely solved in [3] and in [6].

5. Two examples of gradings by groups of order 4

5.1. Z4-grading on E. The group G = Z4 = {0, 1, 2, 3} is the first cyclic group
such that its order is not prime. In light of Theorem 3.8 we have that TG(E)
“behaves” as TZ2(E) in the quotient grading if dimF L

1 = ∞ or dimF L
3 = ∞.

Moreover, because of Theorem 4.1 the only cases to be studied are the ones for
which dimF L

2 =∞. We study a particular case of G-grading when dimF L
2 =∞.

Let L be a vector space with basis BL = {e1, e2, . . .} and let us consider the
following map:

ϕ : BL → G

such that ϕ(e1) = 1, ϕ(e2) = 3 and ϕ(ei) = 2 for any i 6= 1, 2. Then ϕ induces a
G-grading on E such that dimL2 =∞. In particular, it is easy to see that:
• E0 = span〈ek1et2ei1 . . . eis |s ≡ 0mod 2 and(k, t) ∈ {(1, 1), (0, 0)}〉;
• E1 = 〈ek1et2ei1 . . . eis |s ≡ 0 mod 2 and (k, t) = (1, 0)

or s ≡ 1 mod 2 and (k, t) = (0, 1)〉 ;
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• E2 = span〈ek1et2ei1 . . . eis |s ≡ 1 mod 2 and (k, t) ∈ {(1, 1), (0, 0)}〉;
• E3 = span〈ek1et2ei1 . . . eis |s ≡ 0 mod 2 and (k, t) = (0, 1)

or s ≡ 1 mod 2 and (k, t) = (1, 0)〉.
From the previous description of the G-graded homogeneous components of E

one easily has the following.
Proposition 5.1. The following monomials are G-graded polynomial identities of
E:

x1
1x

1
2x

1
3, x

3
1x

3
2x

3
3, x

1
1x

1
2x

3
3, x

1
1x

3
2x

1
3, x

3
1x

1
2x

1
3, x

1
1x

3
2x

3
3, x

3
1x

1
2x

3
3, x

3
1x

3
2x

1
3 .

Proof. We argue only for the monomial x1
1x

1
2x

1
3 because the other cases are treated

similarly. From the previous observations it follows that if we want to evaluate one
variable of G-homogeneous degree 1, we shall deal with a word which contains at
least one of the basis elements e1, e2. Now the proposition follows because any
evaluation of three variables of G-degree 1 repeats twice one between e1 or e2 and
we are done. �

We have not only monomial graded identities.
Proposition 5.2. The following polynomials are G-graded polynomial identities
of E:

x2
1x

2
2 + x2

2x
2
1, [x1

1, x
1
2], [x3

1, x
3
2], [x0

1, x
g
1] ,

for any g ∈ G.
Proof. The fact that x2

1x
2
2 +x2

2x
2
1 and [x0

1, x
g
1] are graded identities follows directly

from the description of E0, E2. For, the elements of E0 have even length so they
are in the center of E. On the other hand, the elements of E2 have odd length.

Let us argue for [x1
1, x

1
2]. If we evaluate the variable x1

1 with a G-degree 1 element
of E of odd length, we are dealing with a word containing e1. Hence the evaluation
of x1

2 lies in the center of E and the commutator vanishes, otherwise e1 appears
twice. We argue analogously for [x3

1, x
3
2] and we are done. �

We are now ready to compute TG(E). For this purpose, let
I1 =

〈
[u1, u2, u3], x2

1x
2
2 + x2

2x
2
1, [x1

1, x
1
2], [x3

1, x
3
2], x2

1x
2
2 + x2

2x
2
1,

[x0
1, x

g
1], x1

1x
1
2x

1
3, x

3
1x

3
2x

3
3, x

1
1x

1
2x

3
3, x

1
1x

3
2x

3
3
〉TG

,

for any g ∈ G. Observe that modulo I the identity [x1
1x

3
2, x

g
3] equals the polynomial

x1
1[x3

2, x
g] + x3

2[x1
1, x

g] that is
(1) x1

1[x3
2, x

g] ≡ −x3
2[x1

1, x
g] (mod I) .

Analogously we have
x1

1[x2
2, x

3
3] ≡ −x2

2[x1
1, x

3
3] (mod I) ,(2)

x3
1[x2

2, x
1
3] ≡ +x2

2[x1
1, x

3
3] (mod I) ,(3)

[x1
1, x

2
2]x3

3 ≡ −[x1
1, x

3
3]x2

2 (mod I) .(4)
Then we have the following.
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Theorem 5.3. I1 = TG(E).

Proof. The Propositions 5.1 and 5.2 give the inclusion I1 ⊆ TG(E). We shall use
the method of Y -proper polynomials. In light of Proposition 5.1, we have that the
only non-trivial subspaces of multilinear Y -proper polynomials are: Γ0,1,l,1, Γ0,1,l,0,
Γ0,0,l,1, Γ0,0,l,0, Γ0,2,l,0, and Γ0,0,l,2 for any l ∈ N. Let us argue only for Γ0,1,l,1
because the other cases are treated similarly. Let w be any non-zero element in
Γ0,1,l,1, then w can be written as a linear combination of the following polynomials

x1x2
1 . . . x

2
l x

3 ,

x2
1 . . . x

2
l [x1, x3] ,

x1x2
1 . . . x̂

2
i . . . x

2
l [x2

i , x
3] ,

x2
1 . . . x̂

2
i . . . x

2
l x

3[x1, x2
i ] .

The Equations (1) and (2) give us

x1x2
1 . . . x̂

2
i . . . x

2
l [x2

i , x
3] + αx2

1 . . . x
2
l [x1, x3] ≡ x2

1 . . . x̂
2
i . . . x

2
l x

3[x2
i , x

1] .

Analogously it can be shown x1x2
1 . . . x̂

2
i . . . x

2
l [x2

i , x
3] is a linear combination of

x2
1 . . . x

2
l [x1, x3] and x1x2

1 . . . x
2
l x

3. Finally, any non-trivial polynomial of Γ0,1,l,1 is
a linear combination of the following polynomials:

w1 = x1x2
1 . . . x

2
l x

3 ,

w2 = x2
1 . . . x

2
l [x1, x3] .

Now it suffices to show that w1, w2 are linearly independent modulo TG(E). Suppose
by contradiction they are linearly dependent, then there exist α1, α2 ∈ F such that∑2
i=1 αiwi ∈ TG(E). Let us consider the following substitution ϕ:

ϕ(x1) = e2e3 ,

ϕ(x3) = e1e4 ,

ϕ(x2
i ) = ei+4 for any i = 1, . . . , l .

Then

ϕ(w2) = 0

but

ϕ(w1) = e2e3e5 . . . el+4e1e4 6= 0 ,

a contradiction and the proof is complete. �

According to [6], it seems that f is a multilinear Z4-graded identity of E if and
only if γ(f) is a Z2-graded identity of E2∗ for some special function γ.
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5.2. Z2×Z2-gradings on E. Theorem 3.8 is useful in order to reduce the order of
the grading group if G has non-trivial squares. This is not the case of finite powers
of Z2. In this section we shall deal with some special cases of Z2 ×Z2-grading of E.

Let us suppose firstly that L is a G-homogeneous vector space over F such that
dimF L

(0,1) = dimF L
(1,0) = dimF L

(1,1) =∞ , dimF L
(0,0) <∞ ,

and let E = E(L) be the Grassmann algebra generated by L. Let B1 = {e1, e2, . . .}
be a basis of L(1,0), B2 = {e′1, e′2, . . .} be a basis of L(0,1) and B3 = {e′′1 , e′′2 , . . .} be
a basis of L(1,1) as vector spaces. Let us consider the map

ϕ : B1 ∪B2 ∪B3 : → G

associated to the G-grading over E. It is such that ϕ(ei) = (1, 0) for any i = 1, 2, . . . ,
ϕ(e′j) = (0, 1) for any j and ϕ(e′′s ) = (1, 1) for any s. We have the following.

Lemma 5.4. G has the property P.

Proof. The pairwise disjoint sets of elements {e2k+1e
′
2k+1 | k ≥ 0}, {e2ke

′′
2k |

k ≥ 1}, {e′2ke′′6k+1|k ≥ 1}, and {e′′6k+3e
′′
6k+5 | k ≥ 1} belong respectively to E(1,1),

E(0,1), E(1,0), E(0,0) and the proof is complete. �

In light of the Proposition 3.3, we have the following result.

Theorem 5.5. Let L be a G-homogeneous vector space over F such that
dimF L

(0,1) = dimF L
(1,0) = dimF L

(1,1) =∞ , dimF L
(0,0) <∞ ,

and let E = E(L) the Grassmann algebra generated by L. Let f be a multilinear
polynomial in F 〈X | G〉. Then f ∈ TG(E) if and only if π(f) ∈ T (E).

Proof. By Lemma 5.4G has the property P and we are done because of Proposition
3.3. �

Suppose now that L is a G-homogeneous vector space over F such that
dimF L

(0,1) = dimF L
(1,0) =∞ , dimF L

(0,0) <∞ , dimF L
(1,1) <∞

and let E = E(L) the Grassmann algebra generated by L. Let B1 = {e1, e2, . . .}
be a basis of L(1,0), B2 = {f1, f2, . . .} be a basis of L(0,1) as vector spaces. Let us
consider the map

ϕ : B1 ∪B2 : → G

associated to the G-grading over E. It is such that ϕ(ei) = (1, 0) for any i = 1, 2, . . . ,
ϕ(fj) = (0, 1) for any j. We have the analog of Lemma 5.4. Let H = 〈g〉, where
g = (1, 1). Notice that H ≡ Z2. Then we obtain the next result.

Lemma 5.6. H has the property P.

Theorem 5.7. Let L be a G-homogeneous vector space over F such that
dimF L

(0,1) = dimF L
(1,0) =∞ , dimF L

(0,0) <∞ , dimF L
(1,1) <∞

and let E = E(L) the Grassmann algebra gnerated by L. Let f be a multilinear
polynomial in F 〈X | G〉. Then f ∈ TG(E) if and only if π(f) ∈ TZ2(E), where in
the Z2-grading, the dimension of the G-homogeneous underlying vector space L0 is
finite.
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Proof. By Lemma 5.6, we have that H has the property P . In light of Proposition
3.3, we have that f ∈ TG(E) if and only if π(f) ∈ TG/H(E). It is easy to see that
G/H ∼= Z2. Now, by the definition of quotient grading, we have that the new
Z2-grading is such that

E0 = E(0,0) ⊕ E(1,1)

E1 = E(0,1) ⊕ E(1,0) .

By hypothesis we have that L0 is finite dimensional and we are done. �

We shall deal now with G-gradings such that there exists one and only one
g ∈ G g 6= (0, 0) such that dimF L

g =∞.
Let G = Z2 × Z2 and L a G-homogeneous vector space over F such that

dimF L
(0,1) =∞, and dimF L

(1,0) = k. Let E = E(L) be the Grassmann algebra
generated by L. Let B1 = {e1, e2, . . . , ek} be a basis of L(1,0) as a vector space and
let B2 = {f1, f2, . . .} be a basis of L(0,1) as a vector space. Let us consider the map:

ϕ : BL → G ,

associated to the G-grading of E. It is such that ϕ(ei) = (1, 0) for any i = 1, 2, . . . , k
and ϕ(fj) = (0, 1) for any j. It is easy to see that:
• E(0,0) = span〈ei1ei2 . . . eitfj1 . . . fis | s ≡ t ≡ 0 mod 2〉;
• E(0,1) = span〈ei1ei2 . . . eitfj1 . . . fis | s ≡ 1 mod 2 and t ≡ 0 mod 2〉;
• E(1,0) = span〈ei1ei2 . . . eitfj1 . . . fis | s ≡ 0 mod 2 and t ≡ 1 mod 2〉;
• E(1,1) = span〈ei1ei2 . . . eitfj1 . . . fis | s ≡ t ≡ 1 mod 2〉.
Let r, s ∈ N and w be a monomial in the variables of G-degree (1, 0) and (1, 1)

only. We say that w ∈ Wr,s if the number of variables appearing in w having
G-degree (1, 0) is exactly r and the number of variables appearing in w having
G-degree (1, 1) is s. From the previous description of the G-graded homogeneous
components of E one easily has the following:

Proposition 5.8. The following monomials are G-graded polynomial identities
of E: ⋃

r+s≥k+1
Wr,s .

Proof. In light of the fact that any element of G-degree (1, 0) and (1, 1) may
contain at least one element among {e1, . . . , ek}, we have that if ϕ is any graded
substitution of wr,s, one of the k basis elements repeats at least twice and the
Proposition follows. �

We have not only monomial graded identities.

Proposition 5.9. The following polynomials are G-graded polynomial identities
of E:

x
(0,1)
1 x

(0,1)
2 + x

(0,1)
2 x

(0,1)
1 , x

(0,1)
1 x

(1,0)
2 + x

(1,0)
2 x

(0,1)
1 , x

(1,0)
1 x

(1,0)
2 + x

(1,0)
2 x

(1,0)
1 ,

[x(0,0)
1 , xg2] , [x(1,1)

1 , xg2] , for any g ∈ G .

Proof. It follows directly from the description of the various Eg. �
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We are now ready to compute TG(E). For this purpose, let I2 the TG ideal
generated by

[u1, u2, u3],
⋃

r+s=k+1
Wr,s , x

(0,1)
1 x

(0,1)
2 + x

(0,1)
2 x

(0,1)
1 , x

(0,1)
1 x

(1,0)
2 + x

(1,0)
2 x

(0,1)
1 ,

x
(1,0)
1 x

(0,1)
2 + x

(1,0)
2 x

(1,0)
1 , [x(0,0)

1 , xg2] , [x(1,1)
1 , xg2] , for any g ∈ G .

We have the following:
Theorem 5.10. I2 = TG(E).
Proof. The Propositions 5.8 and 5.9 give the inclusion I2 ⊆ TG(E). We shall use
the method of Y -proper polynomials once again. The only non-trivial subspaces of
Y -proper polynomials are Γ0,t,r,s, such that r+s ≤ k. Due to the anticommutativity
of the variables of G-degree (0, 1), (1, 0) and the commutativity of the variables
of G-degree (1, 1), as in the previous proposition, we can write any polynomial in
Γ0,t,r,s as linear combination of polynomials

x
(0,1)
1 . . . x

(0,1)
t x

(1,0)
t+1 . . . x

(1,0)
t+r x

(1,1)
t+r+1 . . . x

(1,1)
t+r+s ,

such that r + s ≤ k which are clearly linearly independent modulo TG(E). The
conclusion follows as in the proof of Theorem 5.3. �

Again, according to [6], it seems that f is a multilinear Z2 × Z2-graded identity
of E if and only if γ(f) is a Z2-graded identity of E2∗ for some special function γ.

References
[1] Anisimov, N., Zp-codimension of Zp-identities of Grassmann algebra, Comm. Algebra 29

(9) (2001), 4211–4230.
[2] Centrone, L., Z2-graded identities of the Grassmann algebra in positive characteristic, Linear

Algebra Appl. 435 (12) (2011), 3297–3313.
[3] da Silva, V.R.T., Z2-codimensions of the Grassmann algebra, Comm. Algebra 37 (9) (2009),

3342–3359.
[4] Di Vincenzo, O.M., A note on the identities of the Grassmann algebras, Boll. Un. Mat. Ital.

A (7) 5 (3) (1991), 307–315.
[5] Di Vincenzo, O.M., Cocharacters of G-graded algebras, Comm. Algebra 24 (10) (1996),

3293–3310.
[6] Di Vincenzo, O.M., da Silva, V.R.T., On Z2-graded polynomial identities of the Grassmann

algebra, Linear Algebra Appl. 431 (2009), 56–72.
[7] Di Vincenzo, O.M., Drensky, V., Nardozza, V., Subvarieties of the varieties of superalgebras

generated by M1,1(E) or M2(K), Comm. Algebra 31 (1) (2003), 437–461.
[8] Drensky, V., Formanek, E., Polynomial identity rings, Birkhauser Verlag, Basel – Boston –

Berlin, 2000.
[9] Giambruno, A., Mischenko, S., Zaicev, M.V., Polynomial identities on superalgebras and

almost polynomial growth identities of Grassmann algebra, Comm. Algebra 29 (9) (2001),
3787–3800.

[10] Kemer, A.R., Varieties and Z2-graded algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984),
1042–1059, (Russian) Translation: Math. USSR, Izv. 25 (1985), 359–374.

[11] Kemer, A.R., Ideals of identities of associative algebras, Transl. Math. Monogr., vol. 87,
Amer. Math. Soc., Providence, RI, 1991.



158 LUCIO CENTRONE

[12] Krakovski, D., Regev, A., The polynomial identities of the Grassmann algebra, Trans. Amer.
Math. Soc. 181 (1973), 429–438.

[13] Latyshev, V.N., On the choice of basis in a T -ideal, Sibirs. Mat. Z. 4 (5) (1963), 1122–1126.
[14] Olsson, J.B., Regev, A., Colength sequence of some T -ideals, J. Algebra 38 (1976), 100–111.
[15] Sagan, B.E., The Symmetric Group: Representations, Combinatorial Algorithms, and Sym-

metric Functions, Graduate Texts in Mathematics, vol. 203, Springer Verlag, 2000.

IMECC, Universidade Estadual de Campinas,
Rua Sérgio Buarque de Holanda 651,
Campinas (SP), Brazil
E-mail: centrone@ime.unicamp.br

mailto:centrone@ime.unicamp.br

		webmaster@dml.cz
	2018-01-10T07:31:21+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




