Czechoslovak Mathematical Journal

Miroslav Fiedler

A new look at totally positive matrices

Czechoslovak Mathematical Journal, Vol. 66 (2016), No. 3, 597-602

Persistent URL: http://dml.cz/dmlcz/145859

Terms of use:

© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

A NEW LOOK AT TOTALLY POSITIVE MATRICES

\dagger Miroslav Fiedler, Praha

(Received May 25, 2015)

Abstract. A close relationship between the class of totally positive matrices and antiMonge matrices is used for suggesting a new direction for investigating totally positive matrices. Some questions are posed and a partial answer in the case of Vandermonde-like matrices is given.

Keywords: totally positive matrix; Monge matrix; semigroup; Vandermonde-like matrix MSC 2010: 15B57, 15B48

1. Introduction

Totally positive matrices will mean matrices all of whose square submatrices have positive determinant. In this paper, we intend to investigate their relationship with another class of special matrices.

In [4] and [3], the present author studied the so called anti-Monge matrices, i.e. real, possibly rectangular matrices $\left[a_{i k}\right]$, for which

$$
\begin{equation*}
a_{i j}+a_{k l} \geqslant a_{i l}+a_{k j} \tag{1.1}
\end{equation*}
$$

whenever i, j, k, l satisfy $i<k$ and $j<l$.
It was shown there that if such matrix is square, it can always be equilibrated, i.e., can be brought to the form that all row sums and all column sums are equal to

[^0]zero, by adding to rows and to columns constant vectors (i.e., multiples of the row or column vector of all ones).

A basic result in [4] about equilibrated anti-Monge matrices of the same order is that they form a multiplicative semigroup.

We call anti-Monge matrices strict if there is always a strict inequality in (1.1).

2. Totally positive matrices and product-EQuilibration

It is easy to see that there is a close relationship between the class of strict antiMonge matrices and totally positive matrices. We use the Hadamard (entrywise) logarithmic or exponential function. We shall use the abbreviation TP for totally positive matrices and TP_{2} for 2-subtotally positive matrices (cf. [2] or [1]), i.e. positive matrices, the determinants of all 2×2 submatrices of which are also positive.

It is useful to introduce some notation. If A is a matrix, we denote by $\log ^{\circ} A$, similarly $\exp ^{\circ} A$, or $A^{\circ k}$, the Hadamard logarithm and Hadamard exponential, or the k th Hadamard power of A. The Hadamard product of two matrices A and B of the same size is denoted by $A \circ B$.

Clearly, the Hadamard logarithm of a TP_{2}-matrix X is a strict anti-Monge matrix since all 2×2 submatrices of $\log ^{\circ} X$ are positive. Conversely, the Hadamard exponential of a strict anti-Monge matrix is a TP_{2} - matrix. In this relationship, equilibrated anti-Monge matrices correspond to product-equilibrated TP-matrices defined below. We first formulate a simple theorem the proof of which is analogous to that of Lemma 2.3 in [3].

Theorem 2.1. If X is an $n \times n$ positive matrix, then there exist diagonal matrices D_{1} and D_{2} with positive diagonal entries, such that the matrix

$$
\begin{equation*}
\widetilde{X}=D_{1} X D_{2} \tag{2.1}
\end{equation*}
$$

has products in all rows and in all columns equal to one.
Definition 2.2. We call a square positive matrix product-equilibrated if all rowand all column-products are equal to one. We denote by P_{n} the class of $n \times n$ such positive matrices.

Remark 2.3. The result of forming the product-equilibrated matrix \widetilde{X} from the given positive matrix X as in Theorem 2.1 is unique although the diagonal matrices D_{1} and D_{2} are not uniquely determined.

For completeness, we present a simple procedure for finding the diagonal matrices D_{1} and D_{2} in (2.1). Let $X=\left[x_{i j}\right] \in P_{n}$. Denote by μ the positive
square root of the geometric mean of all entries in X and define, for $i, j=$ $1,2, \ldots, n$, the numbers $y_{i}=\prod_{k=1}^{n} x_{i k}, z_{j}=\prod_{k=1}^{n} x_{k j}$. Then the diagonal matrices $D_{1}=\operatorname{diag}\left(\mu y_{1}^{-1 / n}, \mu y_{2}^{-1 / n}, \ldots, \mu y_{n}^{-1 / n}\right), D_{2}=\operatorname{diag}\left(\mu z_{1}^{-1 / n}, \mu z_{2}^{-1 / n}, \ldots, \mu z_{n}^{-1 / n}\right)$ satisfy (2.1).

Lemma 2.4. The Hadamard (entrywise) product of matrices in P_{n} is also in P_{n}. The same holds for Hadamard division. The class P_{n} contains a distinguished matrix J_{n} of all ones.

Let us add two observations about matrices in P_{n} :

Lemma 2.5. Let $X \in P_{n}$. If Y is the Hadamard inverse matrix of X, then Y is also in P_{n}.

Lemma 2.6. If $A \in P_{n}$, then $A J_{n} \geqslant n J_{n}$ as well as $J_{n} A \geqslant n J_{n}$.
Proof. Follows from the A-G inequality in the rows and columns.
Observe that the product-equilibrated matrices in TP_{2} also belong to TP_{2}. The theorem in Introduction about the multiplicative semigroup of equilibrated antiMonge matrices corresponds then to the following:

Theorem 2.7. Let X_{1} and X_{2} be product-equilibrated TP_{2}-matrices of the same order. Then there exists a unique TP_{2}-matrix X_{3} of the same order, such that for the Hadamard logarithms,

$$
\log ^{\circ} X_{3}=\left(\log ^{\circ} X_{1}\right)\left(\log ^{\circ} X_{2}\right)
$$

The matrix X_{3} is then also product-equilibrated.
The following question then arises:
Question 1. Is it true that if in Theorem 2.7 both the matrices X_{1} and X_{2} are product-equilibrated TP-matrices, then the matrix X_{3} is also a TP-matrix (in that case also product-equilibrated)?

3. e-MULTIPLICATION

Let X_{1}, X_{2} be positive matrices of the same order. Form the matrix X_{3} as the Hadamard exponential function of the matrix obtained by the usual multiplication
of the Hadamard \log arithms $\left(\log ^{\circ} X_{1}\right)\left(\log ^{\circ} X_{2}\right)$:

$$
X_{3}=\exp ^{\circ}\left(\left(\log ^{\circ} X_{1}\right)\left(\log ^{\circ} X_{2}\right)\right)
$$

We shall call the operation in the class of square positive matrices of a fixed order which assigns to matrices X_{1} and X_{2}, in this order, the matrix X_{3} as described, operation of e-multiplication. The result will be called the e-product, denoted by $X_{1} \square X_{2}$.

It is clear that e-multiplication is associative but apparently in general not commutative. For us, the following is important:

Lemma 3.1. The operation of e-multiplication preserves positivity of matrices as well as the product-equilibration property.

Proof. Let X_{1}, X_{2} be positive matrices of the same order. The matrices $\log ^{\circ} X_{1}$ and $\log ^{\circ} X_{2}$ are then real matrices which can be multiplied and the matrix $X_{1} \square X_{2}=\exp ^{\circ}\left(\left(\log ^{\circ} X_{1}\right)\left(\log ^{\circ} X_{2}\right)\right)$ is positive.

If both X_{1} and X_{2} are product-equilibrated, then both $\log ^{\circ} X_{1}$ and $\log ^{\circ} X_{2}$ are real equilibrated matrices. This means, if e is the column vector of all ones, that $\left(\log ^{\circ} X_{1}\right) \mathrm{e}=0,\left(\log ^{\circ} X_{2}\right) \mathrm{e}=0, \mathrm{e}^{\mathrm{T}} \log ^{\circ} X_{1}=0, \mathrm{e}^{\mathrm{T}} \log ^{\circ} X_{1}=0$, which implies that the same is true for their product $\left(\log ^{\circ} X_{1}\right)\left(\log ^{\circ} X_{2}\right)$. Thus $X_{1} \square X_{2}$ which is the Hadamard exponential of $\left(\log ^{\circ} X_{1}\right)\left(\log ^{\circ} X_{2}\right)$ is product-equilibrated.

Using the notation of P_{n}, Lemma 3.1 can be formulated as the following implication: $X_{1} \in P_{n}$ and $X_{2} \in P_{n}$ implies $X_{1} \square X_{2} \in P_{n}$.

The transpose matrix A^{T} to an equilibrated anti-Monge matrix A is also an equilibrated anti-Monge matrix and the symmetric mean $\left(A+A^{\mathrm{T}}\right) / 2$ as well. This property can be transformed to the class P_{n} as follows:

If $X \in P_{n}$, then X^{T} is also in P_{n}. Their e-product is the Hadamard exponential of a positive semidefinite matrix which is also positive semidefinite. Thus the positive semidefinite square root of $X \square X^{\mathrm{T}}$ is in P_{n} as well and can be viewed as the corresponding e-symmetric mean.

It is well known that square $n \times n$ TP-matrices form a class closed with respect to multiplication. By Lemma 3.1, the same is true for e-multiplication of square product-equilibrated TP-matrices.

It is not the purpose of this note to build the theory of e-multiplication of matrices in P_{n}. It would be good to have answers to several further open questions.

Question 2. Is the e-symmetric mean of a TP-matrix in P_{n} also in TP?
Question 3. Is it true that there exists a general e-power of a TP matrix with exponent greater than one? If so, is it TP?

Question 4. If we define, in addition, the e-sum of two positive matrices X_{1} and X_{2} as the matrix C for which $C=\exp ^{\circ}\left(\log ^{\circ} X_{1}+\log ^{\circ} X_{2}\right)$, i.e., $C=X_{1} \circ X_{2}$, we obtain a maybe interesting non-commutative e-algebra over the set of positive matrices. What are its properties?

4. Vandermonde-Like matrices

To find an example for considering partial answers to Questions in Section 2 and 3, let us investigate the case of Vandermonde-like matrices, i.e., matrices of the form $X=\left[x_{i}^{n-k}\right], i, k=1,2, \ldots, n$, where $x_{1}>x_{2}>\ldots>x_{n}>0$, and their multiples by diagonal matrices with positive diagonal entries from both sides. Such matrix is well known [1] to be a TP-matrix. Suppose that in the matrix X the product $x_{1} x_{2} \ldots x_{n}$ equals one; then the column-products are all one, and if we multiply X by the diagonal matrix $D=\operatorname{diag}\left(x_{1}^{(-1 / 2)(n-1)}, x_{2}^{(-1 / 2)(n-1)}, \ldots, x_{n}^{(-1 / 2)(n-1)}\right)$ from the left, the resulting matrix \widetilde{X} will also be a TP-matrix, this time even product-equilibrated since the row-products are one as well.

Definition 4.1. Denote by TP_{0} the class of $n \times n$ matrices formed as matrices \widetilde{X}. If $x_{1}>x_{2}>\ldots>x_{n}$ satisfying $x_{1} x_{2} \ldots x_{n}=1$ are the numbers generating such \tilde{X}, we denote $\widetilde{X}=V\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. We call this class TP_{0} the class of Vandermondelike product-equilibrated matrices.

Thus matrices in TP_{0} are exactly matrices of the form $V\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
It is easy to see:
Theorem 4.2. The class TP_{0} of Vandermonde-like product-equilibrated matrices is closed with respect to forming Hadamard products as well as Hadamard powers with real exponent greater than zero.

We are able to show:

Theorem 4.3. The operation of e-multiplication preserves the class TP_{0}.
Proof. Suppose $X=V\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $Y=V\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ belong to TP_{0}. The matrix $\log ^{\circ} X$ is easily computed as the product $D_{x} e v^{\mathrm{T}}$, where $D_{x}=\operatorname{diag}\left(\log x_{1}, \log x_{2}, \ldots, \log x_{n}\right), e$ is the column vector of all ones and $v^{\mathrm{T}}=$ $[(n-1) / 2,(n-3) / 2, \ldots,-(n-3) / 2,-(n-1) / 2]$. Similarly, $\log Y=D_{y} e v^{T}$ with $D_{y}=\operatorname{diag}\left(\log y_{1}, \log y_{2}, \ldots, \log y_{n}\right)$ and the same vectors e and v^{T}. The e-product Z of X and Y is thus

$$
\begin{aligned}
Z & =\exp ^{\circ}\left(\left(\log ^{\circ} X\right)\left(\log ^{\circ} Y\right)\right)=\exp ^{\circ}\left(\left(D_{x} e v^{\mathrm{T}}\right)\left(D_{y} e v^{\mathrm{T}}\right)\right)=\exp ^{\circ}\left(\left(v^{\mathrm{T}} D_{y} e\right) D_{x} e v^{\mathrm{T}}\right) \\
& =\exp ^{\circ}\left(\left(v^{\mathrm{T}} D_{y} e\right) \log ^{\circ} X\right)=X^{\circ w}
\end{aligned}
$$

where $w=\left(v^{\mathrm{T}} D_{y} e\right)$. Since $w>0, Z \in \mathrm{TP}_{0}$ by Theorem 4.2. In addition, the Hadamard powers are also equilibrated.

Remark 4.4. In this case, e-multiplication is even commutative.
Corollary 4.5. In the class of TP_{0}-matrices, e-multiplication is the usual Hadamard multiplication.

Theorems 4.2 and 4.3, together with Remark 4.4, raise many questions.
Question 5. If we denote by $\widetilde{\mathrm{TP}}_{n}$ the class of $n \times n$ product-equilibrated TP-matrices, is $\widetilde{\mathrm{TP}}_{n}$ also closed with respect to e-multiplication? Is this multiplication even commutative?

One can easily answer the last question negatively. Indeed, the class $\mathrm{TP}_{0}^{\mathrm{T}}$ of transpose matrices to product-equilibrated Vandermonde-like matrices has, of course, properties analogous to TP_{0}. For $n>2$, there are examples for which the emultiplication having one matrix in TP_{0} and the other in $\mathrm{TP}_{0}^{\mathrm{T}}$ does not commute.

Observe that all diagonal entries of matrices in TP_{0} are greater than or equal to one. This is no longer true for matrices in $\widetilde{\mathrm{TP}}_{n}$ for $n>3$. This shows that the example of Vandermonde-like product-equilibrated matrices is very special. Apparently, the answer to Question 1 is negative and one has to enlarge the class of product-equilibrated TP-matrices by constructing some envelope for which this question has an affirmative answer.

There are other simple classes of TP-matrices which deserve an investigation similar to that we did for the Vandermonde-like matrices, e.g. TP Cauchy matrices. These are matrices of the form $\left[1 /\left(x_{i}+y_{k}\right)\right]$, where the numbers $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$, in the case of order n, satisfy $0<x_{1}<x_{2}<\ldots<x_{n}, 0<y_{1}<$ $y_{2}<\ldots<y_{n}$.

One could ask many questions about TP-matrices, such as about commutativity, other canonical forms, etc.

References

[1] S. M. Fallat, C. R. Johnson: Totally Nonnegative Matrices. Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2011.
[2] M. Fiedler: Subtotally positive and Monge matrices. Linear Algebra Appl. 413 (2006), 177-188.
[3] M. Fiedler: Remarks on Monge matrices. Math. Bohem. 127 (2002), 27-32.
[4] M. Fiedler: Equilibrated anti-Monge matrices. Linear Algebra Appl. 335 (2001), 151-156.

Author's address: Miroslav Fiedler, Institute of Computer Science, The Czech Academy of Sciences, Pod vodárenskou věží 2, 18207 Praha 8, Czech Republic, and Institute of Mathematics, The Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic.

[^0]: Supported by Institutional Research Plan of The Czech Academy of Sciences RVO: 67985807,67985840 and by grant $14-07880 \mathrm{~S}$ of GA ČR.
 Remark from the Editors: This paper was accepted in early summer of 2015, and its galleys were approved by Miroslav Fiedler on October 26 that year, less than a month before his death. Obviously this special issue of CMJ is the right place for this paper. It still fills us with great sadness that its author will not already see it.

