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Abstract. A close relationship between the class of totally positive matrices and anti-
Monge matrices is used for suggesting a new direction for investigating totally positive
matrices. Some questions are posed and a partial answer in the case of Vandermonde-like
matrices is given.
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1. Introduction

Totally positive matrices will mean matrices all of whose square submatrices have

positive determinant. In this paper, we intend to investigate their relationship with

another class of special matrices.

In [4] and [3], the present author studied the so called anti-Monge matrices, i.e.

real, possibly rectangular matrices [aik], for which

(1.1) aij + akl > ail + akj ,

whenever i, j, k, l satisfy i < k and j < l.

It was shown there that if such matrix is square, it can always be equilibrated,

i.e., can be brought to the form that all row sums and all column sums are equal to
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zero, by adding to rows and to columns constant vectors (i.e., multiples of the row

or column vector of all ones).

A basic result in [4] about equilibrated anti-Monge matrices of the same order is

that they form a multiplicative semigroup.

We call anti-Monge matrices strict if there is always a strict inequality in (1.1).

2. Totally positive matrices and product-equilibration

It is easy to see that there is a close relationship between the class of strict anti-

Monge matrices and totally positive matrices. We use the Hadamard (entrywise)

logarithmic or exponential function. We shall use the abbreviation TP for totally

positive matrices andTP2 for 2-subtotally positive matrices (cf. [2] or [1]), i.e. positive

matrices, the determinants of all 2× 2 submatrices of which are also positive.

It is useful to introduce some notation. If A is a matrix, we denote by log◦ A,

similarly exp◦ A, or A◦k, the Hadamard logarithm and Hadamard exponential, or

the kth Hadamard power of A. The Hadamard product of two matrices A and B of

the same size is denoted by A ◦B.

Clearly, the Hadamard logarithm of a TP2-matrix X is a strict anti-Monge ma-

trix since all 2 × 2 submatrices of log◦ X are positive. Conversely, the Hadamard

exponential of a strict anti-Monge matrix is a TP2- matrix. In this relationship, equi-

librated anti-Monge matrices correspond to product-equilibrated TP-matrices defined

below. We first formulate a simple theorem the proof of which is analogous to that

of Lemma 2.3 in [3].

Theorem 2.1. If X is an n× n positive matrix, then there exist diagonal matri-

ces D1 and D2 with positive diagonal entries, such that the matrix

(2.1) X̃ = D1XD2

has products in all rows and in all columns equal to one.

Definition 2.2. We call a square positive matrix product-equilibrated if all row-

and all column-products are equal to one. We denote by Pn the class of n× n such

positive matrices.

Remark 2.3. The result of forming the product-equilibrated matrix X̃ from

the given positive matrix X as in Theorem 2.1 is unique although the diagonal

matrices D1 and D2 are not uniquely determined.

For completeness, we present a simple procedure for finding the diagonal ma-

trices D1 and D2 in (2.1). Let X = [xij ] ∈ Pn. Denote by µ the positive
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square root of the geometric mean of all entries in X and define, for i, j =

1, 2, . . . , n, the numbers yi =
n∏

k=1

xik, zj =
n∏

k=1

xkj . Then the diagonal matrices

D1 = diag(µy
−1/n
1 , µy

−1/n
2 , . . . , µy

−1/n
n ), D2 = diag(µz

−1/n
1 , µz

−1/n
2 , . . . , µz

−1/n
n )

satisfy (2.1).

Lemma 2.4. The Hadamard (entrywise) product of matrices in Pn is also in Pn.

The same holds for Hadamard division. The class Pn contains a distinguished ma-

trix Jn of all ones.

Let us add two observations about matrices in Pn:

Lemma 2.5. Let X ∈ Pn. If Y is the Hadamard inverse matrix of X , then Y is

also in Pn.

Lemma 2.6. If A ∈ Pn, then AJn > nJn as well as JnA > nJn.

P r o o f. Follows from the A-G inequality in the rows and columns. �

Observe that the product-equilibrated matrices in TP2 also belong to TP2. The

theorem in Introduction about the multiplicative semigroup of equilibrated anti-

Monge matrices corresponds then to the following:

Theorem 2.7. Let X1 and X2 be product-equilibrated TP2-matrices of the same

order. Then there exists a unique TP2-matrix X3 of the same order, such that for

the Hadamard logarithms,

log◦ X3 = (log◦ X1)(log
◦ X2).

The matrix X3 is then also product-equilibrated.

The following question then arises:

Question 1. Is it true that if in Theorem 2.7 both the matrices X1 and X2 are

product-equilibrated TP-matrices, then the matrix X3 is also a TP-matrix (in that

case also product-equilibrated)?

3. e-multiplication

Let X1, X2 be positive matrices of the same order. Form the matrix X3 as the

Hadamard exponential function of the matrix obtained by the usual multiplication
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of the Hadamard logarithms (log◦ X1)(log
◦ X2):

X3 = exp◦((log◦ X1)(log
◦ X2)).

We shall call the operation in the class of square positive matrices of a fixed order

which assigns to matrices X1 and X2, in this order, the matrix X3 as described,

operation of e-multiplication. The result will be called the e-product, denoted by

X1 � X2.

It is clear that e-multiplication is associative but apparently in general not com-

mutative. For us, the following is important:

Lemma 3.1. The operation of e-multiplication preserves positivity of matrices

as well as the product-equilibration property.

P r o o f. Let X1, X2 be positive matrices of the same order. The matrices

log◦ X1 and log◦ X2 are then real matrices which can be multiplied and the matrix

X1 � X2 = exp◦((log◦ X1)(log
◦ X2)) is positive.

If both X1 and X2 are product-equilibrated, then both log◦ X1 and log◦ X2 are

real equilibrated matrices. This means, if e is the column vector of all ones, that

(log◦ X1)e = 0, (log◦ X2)e = 0, eT log◦ X1 = 0, eT log◦ X1 = 0, which implies that

the same is true for their product (log◦ X1)(log
◦ X2). Thus X1 � X2 which is the

Hadamard exponential of (log◦ X1)(log
◦ X2) is product-equilibrated. �

Using the notation of Pn, Lemma 3.1 can be formulated as the following implica-

tion: X1 ∈ Pn and X2 ∈ Pn implies X1 � X2 ∈ Pn.

The transpose matrix AT to an equilibrated anti-Monge matrix A is also an equi-

librated anti-Monge matrix and the symmetric mean (A+AT)/2 as well. This prop-

erty can be transformed to the class Pn as follows:

If X ∈ Pn, then X
T is also in Pn. Their e-product is the Hadamard exponential of

a positive semidefinite matrix which is also positive semidefinite. Thus the positive

semidefinite square root of X � XT is in Pn as well and can be viewed as the

corresponding e-symmetric mean.

It is well known that square n × n TP-matrices form a class closed with respect

to multiplication. By Lemma 3.1, the same is true for e-multiplication of square

product-equilibrated TP-matrices.

It is not the purpose of this note to build the theory of e-multiplication of matrices

in Pn. It would be good to have answers to several further open questions.

Question 2. Is the e-symmetric mean of a TP-matrix in Pn also in TP?

Question 3. Is it true that there exists a general e-power of a TP matrix with

exponent greater than one? If so, is it TP?
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Question 4. If we define, in addition, the e-sum of two positive matrices X1

and X2 as the matrix C for which C = exp◦(log◦ X1 + log◦ X2), i.e., C = X1 ◦X2,

we obtain a maybe interesting non-commutative e-algebra over the set of positive

matrices. What are its properties?

4. Vandermonde-like matrices

To find an example for considering partial answers to Questions in Section 2 and 3,

let us investigate the case of Vandermonde-like matrices, i.e., matrices of the form

X = [xn−k
i ], i, k = 1, 2, . . . , n, where x1 > x2 > . . . > xn > 0, and their multiples by

diagonal matrices with positive diagonal entries from both sides. Such matrix is well

known [1] to be a TP-matrix. Suppose that in the matrix X the product x1x2 . . . xn

equals one; then the column-products are all one, and if we multiply X by the

diagonal matrix D = diag(x
(−1/2)(n−1)
1 , x

(−1/2)(n−1)
2 , . . . , x

(−1/2)(n−1)
n ) from the left,

the resulting matrix X̃ will also be a TP-matrix, this time even product-equilibrated

since the row-products are one as well.

Definition 4.1. Denote by TP0 the class of n×nmatrices formed as matrices X̃.

If x1 > x2 > . . . > xn satisfying x1x2 . . . xn = 1 are the numbers generating such X̃,

we denote X̃ = V [x1, x2, . . . , xn]. We call this class TP0 the class of Vandermonde-

like product-equilibrated matrices.

Thus matrices in TP0 are exactly matrices of the form V [x1, x2, . . . , xn].

It is easy to see:

Theorem 4.2. The class TP0 of Vandermonde-like product-equilibrated matrices

is closed with respect to forming Hadamard products as well as Hadamard powers

with real exponent greater than zero.

We are able to show:

Theorem 4.3. The operation of e-multiplication preserves the class TP0.

P r o o f. Suppose X = V [x1, x2, . . . , xn] and Y = V [y1, y2, . . . , yn] belong

to TP0. The matrix log◦ X is easily computed as the product Dxev
T, where

Dx = diag(log x1, log x2, . . . , log xn), e is the column vector of all ones and vT =

[(n− 1)/2, (n− 3)/2, . . . ,−(n− 3)/2,−(n− 1)/2]. Similarly, log Y = Dyev
T with

Dy = diag(log y1, log y2, . . . , log yn) and the same vectors e and vT. The e-product

Z of X and Y is thus

Z = exp◦((log◦ X)(log◦ Y )) = exp◦((Dxev
T)(Dyev

T)) = exp◦((vTDye)Dxev
T)

= exp◦((vTDye) log
◦ X) = X◦w,
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where w = (vTDye). Since w > 0, Z ∈ TP0 by Theorem 4.2. In addition, the

Hadamard powers are also equilibrated. �

Remark 4.4. In this case, e-multiplication is even commutative.

Corollary 4.5. In the class of TP0-matrices, e-multiplication is the usual

Hadamard multiplication.

Theorems 4.2 and 4.3, together with Remark 4.4, raise many questions.

Question 5. If we denote by T̃Pn the class of n×n product-equilibrated TP-ma-

trices, is T̃Pn also closed with respect to e-multiplication? Is this multiplication even

commutative?

One can easily answer the last question negatively. Indeed, the class TPT
0 of trans-

pose matrices to product-equilibrated Vandermonde-like matrices has, of course,

properties analogous to TP0. For n > 2, there are examples for which the e-

multiplication having one matrix in TP0 and the other in TPT
0 does not commute.

Observe that all diagonal entries of matrices in TP0 are greater than or equal to

one. This is no longer true for matrices in T̃Pn for n > 3. This shows that the example

of Vandermonde-like product-equilibrated matrices is very special. Apparently, the

answer to Question 1 is negative and one has to enlarge the class of product-equi-

librated TP-matrices by constructing some envelope for which this question has an

affirmative answer.

There are other simple classes of TP-matrices which deserve an investigation sim-

ilar to that we did for the Vandermonde-like matrices, e.g. TP Cauchy matrices.

These are matrices of the form [1/(xi + yk)], where the numbers x1, x2, . . . , xn and

y1, y2, . . . , yn, in the case of order n, satisfy 0 < x1 < x2 < . . . < xn, 0 < y1 <

y2 < . . . < yn.

One could ask many questions about TP-matrices, such as about commutativity,

other canonical forms, etc.
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