
Czechoslovak Mathematical Journal

Yunkun Chen; Xinghua Shi; Yi Min Wei
Convergence of Rump’s method for computing the Moore-Penrose inverse

Czechoslovak Mathematical Journal, Vol. 66 (2016), No. 3, 859–879

Persistent URL: http://dml.cz/dmlcz/145876

Terms of use:
© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/145876
http://dml.cz


Czechoslovak Mathematical Journal, 66 (141) (2016), 859–879

CONVERGENCE OF RUMP’S METHOD FOR COMPUTING

THE MOORE-PENROSE INVERSE

Yunkun Chen, Xiamen, Xinghua Shi, Yimin Wei, Shanghai

(Received December 30, 2015)

In memory of Professor Miroslav Fiedler

Abstract. We extend Rump’s verified method (S.Oishi, K.Tanabe, T.Ogita, S.M.Rump
(2007)) for computing the inverse of extremely ill-conditioned square matrices to comput-
ing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full
column (row) rank. We establish the convergence of our numerical verified method for com-
puting the Moore-Penrose inverse. We also discuss the rank-deficient case and test some
ill-conditioned examples. We provide our Matlab codes for computing the Moore-Penrose
inverse.
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1. Introduction

The Moore-Penrose inverse is a useful tool in parallel sums with applications to

electrical networks [1], [3], computing polar decompositions [8], the Tikhonov regu-

larization and ill-posed problems [13], [18], [21], [31], [40], [41], [42], [43], the linear

programming [3], the linear statistics model [27], the linear least squares problems [7],

[10], [11], [12], [22], [37], [38], [39], [44] and the total least squares problems [45].

Now we provide preliminaries for the Moore-Penrose inverse and the singular value

decomposition (SVD).

The research has been supported by the National Natural Science Foundation of China
under grant 11271084.
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Definition 1.1 ([1], [27], [38]). Let A ∈ R
m×n. The Moore-Penrose inverse

X = A† ∈ R
n×m is uniquely determined by the four matrix equations,

AXA = A, XAX = X, (AX)T = AX, (XA)T = XA.

Lemma 1.2 ([2], [17] Singular value decomposition). Let A ∈ R
m×n be a matrix

with rank r. Then there exist orthogonal matrices U ∈ R
m×m and V ∈ R

n×n such

that

(1.1) A = U

[
Σ 0

0 0

]
V T, Σ = diag(σ1, σ2, . . . , σr),

where UTU = Im, V
TV = In and σ1 > σ2 > . . . > σr > 0 are called the singular

values of A. The Moore-Penrose inverse of A can be expressed by

A† = V

[
Σ−1 0

0 0

]
UT.

Lemma 1.3 ([1], [3]). If rank(A) = m (i.e., full row rank), then A† = AT(AAT)−1

and AA† = Im; if rank(A) = n (i.e., full column rank), then A† = (ATA)−1AT and

A†A = In, where In is the identity matrix of order n.

A number of numerical and symbolic algorithms, see [5], [6], [19], [20], [36] for

computing the Moore-Penrose inverse of the structured and block matrices have

been presented. Rump et al. develop the numerically verified methods for the matrix

inversion, see [24], [26], [29], [33], the matrix equations in [25], the linear least squares

problem and the under-determined linear system in [28]. The origin of Rump’s

method dates back to 1984. Rump did not publish it due to lack of analysis. The

report in [34] gives only some computational results. Rump analysed his original

algorithm in [29]. A modifed version was analysed by Oishi et al. in [26]. However,

there is a significant change of the original method, namely that a perturbation of

the size
√
u is introduced, rather than no perturbation or a perturbation of size u

as in the original paper [29], where u denotes the machine precision.

An outline of this paper is organized as follows. We present our numerically verified

method for computing the Moore-Penrose inverse in Section 2. The convergence of

the verified algorithm is proved in Section 3. We also discuss the rank-deficient case

in Section 4 and present some ill-conditioned examples in Section 5. We provide

our Matlab codes for computing the Moore-Penrose inverse and detailed proofs of

Theorems 3.1 and 3.2 in Appendix.
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2. Verified algorithm

First, we introduce an accurate dot product calculation algorithm, see [23]. Let

A ∈ F
m×n and B ∈ F

n×l, where F is the set of double precision floating point

numbers defined by IEEE 754 standard. Suppose that we have an accurate dot

product algorithm with Gi ∈ F
m×l (i = 1, 2, . . . , k) satisfying

(2.1)

∣∣∣∣
k∑

i=1

Gi −AB

∣∣∣∣ 6 C0u
k|AB|,

where u = 2−53 ≈ 1.1× 10−16 and C0 = O(1). We denote such an algorithm as

Gk = flk,k(AB) with Gk :=
k∑

i=1

Gi, Gi ∈ F
m×l.

If the product is executed in k-fold precision and stored in working precision in [26],

then we can write G = flk,1(A ·B).

Next we introduce the original algorithm for inverting arbitrarily ill-conditioned

matrices which was developed by Oishi, Tanabe, Ogita, and Rump in [26]. The main

idea of Rump’s algorithm for inverting an extremely ill-conditioned matrix is that

although inverting an arbitrarily ill-conditioned matrix in single or double precision

does not produce meaningless numbers, it contains a lot of information, which could

be used as preconditioners to compute the inversion of matrices. Here we apply

simplified notation introduced above instead of the version of [26], Algorithm 1.

Algorithm 2.1 ([26], Algorithm 1). Modified Rump’s method I for inverting

an extremely ill-conditioned matrix

S0 = A+∆A; % perturbation for A

X0 = inv(S0);R1 = X0

For k = 1, 2, . . . , until convergence

Sk = flk,1(A · Rk) % stored in working precision

S̃k = Sk +∆Sk % perturbation for Sk

Xk = inv(S̃k) % floating-point Inverse

Rk+1 = flk+1,k+1(Xk · Rk) % stored in k + 1-fold precision

end

Here ‘inv(B)’ is a built-in function in Matlab for inversion of B, (∆Sk)ij =

rij
√
u(|Sk|)ij for an (i, j)-element of ∆Sk. Here we write κ∞(A) = ‖A‖∞‖A−1‖∞

for the ∞-norm. If κ∞(Sk) > u−1, then we choose rij as pseudo-random numbers

distributed uniformly in [−1, 1]; otherwise, we select rij = 0. We store the result in
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the cell of matrices Rk+1. The algorithm converges if ‖RkXk − I‖∞ 6 ε. In [26],

the authors present the proof that if the algorithm is convergent, then Rk converges

to the inversion of the matrix A, under some reasonable assumptions.

Now we aim to compute the Moore-Penrose inversion of a full row rank extremely

ill-conditioned matrix. Suppose that the matrix R is the approximation of A†; it

is obvious that even if ‖AR− I‖∞ 6 ε, we could not guarantee that ‖R−A†‖∞ is
small enough. We need some more assumptions and obtain a new convergence result.

Theorem 2.2. Let ‖A(A +∆A)† − Im‖ < 1 and A ∈ R
m×n with rank(A) = m.

Suppose that for the range space, R[(∆A)T] ⊆ R(AT) is satisfied. Then for any

consistent norm ‖·‖ we have

(2.2)
‖(A+∆A)†‖

1 + ‖A(A+∆A)† − Im‖ 6 ‖A†‖ 6
‖(A+∆A)†‖

1− ‖A(A+∆A)† − Im‖ .

P r o o f. Denote (A + ∆A)† = R it is easy to see that AR is nonsingular due to

rank(A+∆A) = m, hence

‖(AR)−1‖ = ‖[Im − (Im −AR)]−1‖ 6
1

1− ‖Im −AR‖ .

Furthermore,

‖R(AR)−1‖ 6 ‖R‖ ‖(AR)−1‖ 6
‖R‖

1− ‖AR− Im‖ .

The key step is proving R(AR)−1 = A†. R
[
(∆A)T

]
⊆ R(AT) is equivalent to

∆A = MA for an m × m matrix M . Hence R = [(Im + M)A]†. The assumption

‖AR − Im‖ < 1 ensures A, R and Im +M to have full rank. Then R(AR)−1 = A†

is directly verified.

It follows from R = A†AR that

‖R‖ 6 ‖A†‖ ‖AR‖ = ‖A†‖ ‖AR− Im + Im‖ 6 ‖A†‖(1 + ‖AR− Im‖).

The proof is complete. �

Analogously, we can obtain similar results for the full column rank.

Corollary 2.3. Let ‖(A + ∆A)†A − In‖ < 1 and A ∈ R
m×n with rank(A) = n.

Assume that R(∆A) ⊆ R(A), then

‖(A+∆A)†‖
1 + ‖(A+∆A)†A− In‖

6 ‖A†‖ 6
‖(A+∆A)†‖

1− ‖(A+∆A)†A− In‖
.
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Now we present a verified algorithm to compute the Moore-Penrose inversion of

a full row rank extremely ill-conditioned matrix such that the computational inverse

R of A by Matlab does not satisfy ‖I−RA‖ < 1. In other words, in double precision

the condition is larger that 1e+16, in fact, much larger. We need k-fold precision by

Oishi, Tanabe, Ogita, and Rump, see [26].

Algorithm 2.4. Modified Rump’s method I for the Moore-Penrose inversion of

an extremely ill-conditioned matrix

X0 = AT, R1 = X0;

For k = 1, 2, . . . , until convergence

Sk = flk,1(A · Rk) % stored in working precision

S̃k = Sk +∆Sk % perturbation for Sk

Xk = inv(S̃k) % floating-point Inverse

Rk+1 = flk+1,k+1(Rk ·Xk) % stored in k-fold precision

end

The choice of (∆Sk)ij is the same as in Algorithm 2.1. Moreover, the assumption

∆A = MA makes clear that our choice R1 = AT is good.

3. Convergence of verified algorithm

In this section we shall prove the convergence of Algorithm 2.5. Suppose that the

dimensions of the problem m and n, satisfy m
√
u ≪ 1 and n

√
u ≪ 1. In this paper,

we assume that Ci, i = 0, 1, 2, . . ., denote numbers of O(1) satisfying Ciu ≪ 1 and

Ci
√
u ≪ 1. cm is a number of O(m) satisfying cmu ≪ 1 and cm

√
u ≪ 1.

Denote Sk := ARk; now Sk is anm×m nonsingular square matrix. We can obtain

the following convergence theorems which are similar to [26].

Theorem 3.1. Suppose that κ∞(Sk) > u−1, and some reasonable assumptions

(which listed in Appendix) are satisfied. Then κ∞(Sk+1) 6 O(m)
√
uκ∞(Sk)+O(1).

Since O(m)
√
u ≪ 1, κ∞(Sk) decreases as O((m

√
u)k)κ∞(A) and finally κ∞(Sk)

becomes O(1), if k is sufficiently large. With some other assumptions (which are

listed in Appendix), we can obtain the following theorem.

Theorem 3.2. If κ∞(Sk) = O(1), then we can deduce that

‖I − Sk+1‖∞ = C10

√
u+ ε′ ≪ 1,

where ε′ ≪ 1.
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We can denote by Rk the Moore-Penrose inverse of the matrix A + ∆Ak, as we

know that if k is large enough, then we have

(3.1) ‖I −A(A +∆Ak)‖∞ ≪ 1, tends to 0.

Due to Theorem 2.2 and equation (3.1), we can claim that if k is large enough,

then the result Rk+1 of Algorithm 2.4 converges to the Moore-Penrose inverse A
†.

4. Rank-deficient case

In this section, we discuss how to utilize Rump’s method to compute the Moore-

Penrose inverse for the rank-deficient matrix by the rank-revealing decomposition [4],

[9], [14].

Definition 4.1 ([9], [14]). Suppose that A ∈ R
m×n and rank(A) = r <

min{m,n}. The rank-revealing decomposition of A is A = XDY , where X ∈ R
m×r,

D = diag(d1, d2, . . . , dr), Y ∈ R
r×n. X and Y are of full column and row rank

matrices, respectively.

It is easy to verify that

A† = Y †D−1X†.

We first compute the Moore-Penrose inverse of full column (row) rank matrices X

and Y , then we can obtain A†.

Lemma 4.2 ([4], [9]). Let A = XDY be the rank-revealing decomposition of A,

X̂, D̂ = diag(d̂1, d̂2, . . . , d̂r) and let Ŷ be the factors computed by a certain algorithm.

These factors satisfy

‖X̂ −X‖
‖X‖ 6 p(m,n)u,

‖Ŷ − Y ‖
‖Y ‖ 6 p(m,n)u,(4.1)

and
|d̂i − di|

|di|
6 p(m,n)u, i = 1, 2, . . . , n,

where p(m,n) is a modestly growing function ofm and n, i.e., a function bounded by

a low degree polynomial in m and n, such that max{κ2(X), κ2(Y )}p(m,n)u < 1/2,

where the condition numbers are κ2(X) = ‖X‖2‖X†‖2 and κ2(Y ) = ‖Y ‖2‖Y †‖2.

Theorem 4.3. Suppose that A ∈ R
m×n, m 6 n, and rank(A) = r < m. Let A =

XDY be the rank-revealing decomposition of A. Let X̂, D̂ = diag(d̂1, d̂2, . . . , d̂r) and
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Ŷ be the computed factors which satisfy (4.1). Then we compute Â† = Ŷ †D̂−1X̂†.

Dropping the second order terms, it follows that

‖Â† −A†‖2 6 [2κ2(X) + 2κ2(Y ) + κ2(D)]
κ2(X)κ2(Y )κ2(D)

‖X‖2‖Y ‖2‖D‖2
p(m,n)u.

P r o o f. Let X̂ = X+∆X , D̂ = D+∆D, Ŷ = Y +∆Y . It follows from [12] that

dropping the second order terms we obtain,

X̂† = X† −X†(∆X)X† + (XTX)−1(∆X)T(Im −XX†),(4.2)

Ŷ † = Y † − Y †(∆Y )Y † + (In − Y †Y )(∆Y )T(Y Y T)−1,(4.3)

D̂−1 = D−1 −D−1(∆D)D−1.(4.4)

Next, applying (4.3) and (4.4), we can estimate the approximation ‖Â† − A†‖2.
Dropping the second and higher order terms, we obtain

Â† −A† = − Y †D−1[X†(∆X)X† − (XTX)−1(∆X)T(Im −XX†)]

− [Y †(∆Y )Y † − (In − Y †Y )(∆Y )T(Y Y T)−1]D−1X†

− Y †D−1(∆D)D−1X†.

Since κ2(X) = ‖X‖2‖X†‖2 and due to (4.1), we have

‖Â† −A†‖2 6 2‖Y †‖2‖D−1‖2‖X†‖22‖∆X‖2
+ 2‖X†|2‖D−1‖2‖Y †‖22‖∆Y ‖2 + ‖X†‖2‖Y †‖2‖D−1‖22‖∆D‖2

6 2‖Y †‖2‖D−1‖2‖X†‖22‖X‖2p(m,n)u

+ 2‖X†‖2‖D−1‖2‖Y †‖22‖Y ‖2p(m,n)u

+ ‖X†‖2‖Y †‖2‖D−1‖22‖D‖2p(m,n)u

= [2κ2(X) + 2κ2(Y ) + κ2(D)]
κ2(X)κ2(Y )κ2(D)

‖X‖2‖Y ‖2‖D‖2
p(m,n)u.

�
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5. Numerical examples

Now we present some extremely ill-conditioned examples for computing the Moore-

Penrose inverse.

5.1. Ill-conditioned examples.

Example 5.1 ([32]). Let A ∈ R
3×4 with an element 0 6= ε ∈ R. It is easy

to check the determinant det(AAT) = 6ε2 and A is of full row rank. Here we

use Matlab function ‘pinv’ and Algorithm 2.5 to compute the Moore-Penrose in-

verse of the matrix A. If ε is close to zero, then we compare the relative error of

‖R−A†‖∞/‖A†‖∞.

Let

A =




0 −1 0 −1

−1 1 1 −1

0 1 ε 1


 , and A† =

1

6ε




2 −2ε 2

−2− 3ε 2ε −2

6 0 6

2− 3ε −2ε 2


 .

We present the numerical result. It follows from the results in Table 1 that we can

compute the exact value of A† by Algorithm 2.4 after only two iterations.

ε = 20 ε = 2−5 ε = 2−10 ε = 2−20

pinv 2.9497e−016 1.0142e−014 3.2135e−013 3.2927e−010

Iteration 1 of Algorithm 2.5 9.1552e−017 2.9233e−015 9.2802e−014 9.5053e−011

Iteration 2 of Algorithm 2.5 0 0 0 0

Table 1. Relative error and number of iteration results.

Example 5.2 ([46], page 153). Let A ∈ R
5×7 with rank(A) = 5. The maximum

and minimum singular values are σmax = 5.9161|a| and σmin = 1/
√
2|a|, respectively.

We can compute κ2(A) ≈ 8.3|a|2. Let a = 1× 1015 so that κ2(A) ≈ 8.3× 1030.

Let

A =




a+ 1 a+ 2 a+ 2 a+ 3 a+ 4 a a− 1

a+ 2 a+ 2 a+ 3 a+ 4 a+ 5 a+ 1 a− 1

a+ 2 a+ 3 a+ 4 a+ 5 a+ 6 a+ 1 a− 1

a+ 3 a+ 4 a+ 5 a+ 5 a+ 6 a+ 2 a+ 1

a+ 4 a+ 5 a+ 6 a+ 6 a+ 7 a+ 3 a+ 2




,
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and

A† =
1

12




4 16 −22 6a+ 16 −6a− 8

8 −10 4 −10 8

−12 0 0 36 −24

−4 −10 22 −6a− 34 6a+ 20

8 8 −14 6a+ 8 −6a− 4

−8 −2 14 −6a− 26 6a+ 16

4 −2 −4 −2 4




.

The numerical result is listed in Table 2.

k ‖S̃k‖∞ ‖Xk‖∞ ‖Im − S̃kXk‖∞ ‖In −RkA‖∞ ‖Rk−A†‖∞

‖A†‖∞

k = 1 3.5000e+030 3.5527e−015 2.1731e+000 1.9394e+000 1.0000e+000

k = 2 1.1731e+000 3.8160e+016 5.9898e+000 1.4602e+001 1.0000e+000

k = 3 6.5488e+001 1.4500e+016 7.4065e+000 5.2841e+001 1.0000e+000

k = 4 6.4065e+001 6.7598e+014 5.3312e−001 1.4475e+001 3.7971e−001

k = 5 1.5311e+001 1.2530e+000 7.8873e−017 2.7149e−017 1.1827e−016

k = 6 1.0000e+000 1.0000e+000 2.8297e−034 6.6126e−017 8.8388e−017

Table 2. Example 5.2.

Example 5.3 ([46], page 150). Let A ∈ R
6×7 with rank(A) = 6. The maximum

and minimum singular values are σmax =
√
42|a| and σmin =

√
2/49/|a|, respectively.

We can compute κ2(A) ≈ O(|a|2). In this example, we select a = 1× 1015.

Let

A =




a+ 5 a+ 3 a+ 2 a+ 4 a+ 3 a+ 2 a+ 1

a+ 3 a+ 4 a+ 2 a+ 3 a+ 3 a+ 2 a

a+ 2 a+ 2 a+ 2 a+ 2 a+ 2 a+ 1 a+ 1

a+ 4 a+ 3 a+ 2 a+ 3 a+ 3 a+ 2 a+ 1

a+ 3 a+ 3 a+ 2 a+ 3 a+ 2 a+ 2 a+ 1

a+ 2 a+ 2 a+ 1 a+ 2 a+ 2 a a− 1




,

and

A† =
1

4




−4a− 12 −4a− 12 −4a− 8 4a+ 16 4a+ 12 4a+ 8

−3a− 9 −3a− 6 −3a− 5 3a+ 9 3a+ 9 3a+ 5

−5a− 11 −5a− 10 −5a− 3 5a+ 11 5a+ 11 5a+ 7

4a+ 16 4a+ 12 4a+ 8 −4a− 20 −4a− 12 −4a− 8

4a+ 12 4a+ 12 4a+ 8 −4a− 12 −4a− 16 −4a− 8

3a+ 5 3a+ 6 3a+ 1 −3a− 5 −3a− 5 −3a− 5

a+ 3 a+ 2 a+ 3 −a− 3 −a− 3 −a− 3




.
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The numerical result is shown in Table 3.

k ‖S̃k‖∞ ‖Xk‖∞ ‖Im − S̃kXk‖∞ ‖In −RkA‖∞ ‖Rk−A†‖∞

‖A†‖∞

k = 1 4.2000e+031 8.9775e−023 8.5425e+000 8.5425e+000 1.0000e+000

k = 2 7.5425e+000 3.6029e+016 4.6093e+000 3.6479e+000 1.0000e+000

k = 3 2.6479e+000 5.6867e+017 1.8928e+002 2.0025e+002 1.0000e+000

k = 4 1.9925e+002 2.8177e+014 3.3036e+000 5.1361e+000 1.0000e+000

k = 5 4.1363e+000 2.6385e+010 3.6051e−006 4.1939e−006 1.6027e−006

k = 6 1.0000e+000 1.0000e+000 2.1665e−016 1.9621e−016 1.6646e−016

k = 7 1.0000e+000 1.0000e+000 1.0625e−016 1.5601e−016 6.8464e−017

Table 3. Example 5.3.

5.2. Comparative results. Here we select a different number a in Example 5.2,

we compare the relative error of Algorithm 2.5 with SVD based algorithms (Original

SVD, Truncated SVD and Regularized SVD). Independently of the choice of a, the

relative error of Algorithm 2.5 can be smaller than 10−11. We list the number of

iterations for Algorithm 2.5 to converge.

a = 103 a = 104 a = 107 a = 108 a = 1015

Error-svd-original 1.9957e−010 4.0150e−008 9.3846e−003 1.0000 1.0000

Error-svd-truncated 1.9957e−010 4.0150e−008 9.3846e−003 3.2891e−001 1.0000

Error-svd-regularized 2.5518e−010 1.7566e−008 9.3846e−003 7.4549e−001 1.0000

Number of Iteration 2 2 3 3 5

Table 4. Relative error and number of iteration (Algorithm 2.5).

Next we choose different initial guess for A† and compare the relative error results

in Example 5.2, see Table 5. Here ∆Aij = rijuAij and Algorithm 2.5 is convergent

for R1 = AT.

R1 = randn(n,m) R1 = pinv(A+∆A) R1 = AT

a = 1 0.7394 1.9517e−016 0

a = 104 0.6984 8.7328e−013 1.1900e−016

a = 108 0.2587 0.7101 1.2197e−016

a = 1015 0.3901 1.0000 1.4369e−016

Table 5. Relative error of different initial gueses.
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Example 5.4 ([35]). We compute the ‘glued matrices’ introduced by Smok-

tunowicz, Barlow, and Langou, and compare the computational residual and error of

direct algorithms in [36] with Algorithm 2.5. This matrix A is given by the following

Matlab code, with different values of the parameter c:

randn(state,0)

m=24; n=2; B=hilb(m);

A1=ones(m,n)-B(:,1:n)*c;

B=pascal(m); A2=B(:,1:n);

A3=randn(m,n)-A1;

A4=A1+1.1e-7*randn(m,n);

A5=A2-1.1e-7*randn(m,n);

B=magic(m); A6=B(:,1:n);

A=[A1 A2 A6+A2 A3 A4 A5-A4]’;

Now we compare the residual and error of direct algorithms, see [36] with Algo-

rithm 2.4. Since we do not know the exact Moore-Penrose inverse of A, we define

the residual and error from [36] as follows:

resAlgorithm =
‖AX̃Algorithm − Im‖2
‖A‖2‖X̃Algorithm‖2

,(5.1)

eAlgorithm =
‖X̃Algorithm − pinv(A)‖2

u‖pinv(A)‖2κ2(A)
.(5.2)

The results are shown in Tables 6 and 7. It is obvious that we can compute the

Moore-Penrose inverse of the ‘glued matrices’ more accurate than that of [36].

c κ2(A) eQR eQRpivot
eQRCGS2

eAlg2.4

1 1.44e+10 3.92e+2 5.21e+0 3.92e+2 4.31e−3

10−1 1.37e+10 6.97e+3 5.66e+0 6.97e+3 5.68e−3

10−2 1.25e+10 4.30e+4 5.66e+0 4.40e+4 6.48e−3

10−3 1.29e+10 4.76e+5 5.79e+0 4.76e+5 3.20e−3

10−4 1.36e+10 3.58e+6 5.81e+0 3.58e+6 2.14e−3

10−5 1.20e+10 4.23e+7 5.25e+0 4.23e+7 8.40e−3

10−6 5.58e+10 1.01e+8 1.20e+0 1.01e+8 2.99e−2

10−8 6.62e+12 1.26e+8 1.55e+0 1.26e+8 3.38e−2

Table 6. Relative error of different initial gueses.
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c κ2(A) resQR resQRpivot
resQRCGS2

resQRBdiag1
resBdiags2 resSVD resAlg2.4

1 1.44e+10 5.11e−15 1.14e−16 6.39e−15 1.33e−16 6.17e−17 5.39e−17 9.10e−27

10−1 1.37e+10 3.26e−14 7.75e−17 5.21e−14 8.68e−17 8.15e−17 4.21e−17 1.08e−26

10−2 1.25e+10 3.55e−13 2.63e−17 1.17e−12 8.14e−17 1.19e−16 5.21e−17 9.74e−27

10−3 1.29e+10 4.63e−12 4.27e−17 9.25e−12 1.14e−16 7.29e−17 3.88e−17 7.44e−27

10−4 1.36e+10 3.81e−11 8.02e−17 3.13e−11 1.19e−16 5.77e−17 5.78e−17 1.01e−26

10−5 1.20e+10 2.58e−10 1.05e−16 8.87e−10 1.50e−16 9.44e−17 9.02e−17 6.77e−27

10−6 5.58e+10 4.45e−10 6.04e−17 8.73e−10 6.38e−17 1.85e−16 1.44e−16 1.80e−27

10−8 6.62e+12 1.21e−9 6.09e−17 3.63e−10 1.63e−16 1.40e−16 1.03e−16 2.28e−29

Table 7. Relative error of different initial gueses.

6. Appendix

6.1. Matlab code for Algorithm 2.5. The sub-function ‘accdot’ and ‘ProdKL’

(with a bit modification) are from INTLAB V5.6, see [30].

function R = MPInvIllco(A)

% MP Inverse of Full rank extremely ill-conditioned matrices

% The output R is stored in matrices R_1,...,R_k

[m,n] = size(A);

if (m>n)

A=A’;m=n;flag=1;

end

R=A’;

kmax=15;res=0;

for k=1:kmax

preres=res;

S = ProdKL(A,R,k+1,1);

X = inv(S);

while any(any(isinf(X)))

X = inv(C.*(1+sqrt(eps)*randn(m)));

end

R = ProdKL(R,X,k+1,k+1);

res=norm(accdot(A,R,-1,eye(m)),’inf’);

if (abs(preres-res)<1e-16) break; end

end

while (flag)

870



for i=1:length(R)

R{i}=R{i}’;

end

end

return

6.2. The Proof of Theorem 3.1. It follows from [26] that we can estimate the

approximation

(6.1) |S̃k − Sk| 6 C1

√
u|Sk|,

where C1 = O(1).

Using (6.1), we have the upper bound

(6.2) |S̃k| 6
1

1−C1
√
u
|Sk|.

In this section, we show that

(6.3) κ∞(Sk+1) = O(m)
√
uκ∞(Sk) +O(1),

provided that κ∞(Sk) 6 u−1.

First, we estimate ‖Sk+1‖∞.
Let Γ := S̃k − Sk, it follows from (6.1) and (6.2) that

(6.4) ‖Γ‖∞ 6 C1

√
u‖Sk‖∞ 6 C′

1

√
u‖S̃k‖∞,

where C′
1 := C1/(1−Ci

√
u).

The difference between Sk (which is almost singular) and S̃k is of order
√
u‖S̃k‖∞.

This implies that (cf. [10])

(6.5) κ∞(S̃k) = C2u
−1/2.

Now we need some assumptions given by [26].

Assumption 1. C2 = O(1).

It implies that

(6.6) κ∞(S̃k) = C2u
−1/2 ≪ u−1.

In the previous section, numerical examples show that Assumption 1 is satisfied in

many cases.
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Assumption 2.

‖I − S̃kXk‖∞ = ε ≪ 1.

It follows from Assumption 2 that S̃k

−1
exists. Then we derive that

‖Xk − S̃k

−1
‖∞ = ‖S̃k

−1
(I − S̃kXk)‖∞

6 ‖S̃k

−1
‖∞‖I − S̃kXk‖∞

6
‖Xk‖∞

1− ‖I − S̃kXk‖∞
‖I − S̃kXk‖∞

=
ε

1− ε
‖Xk‖∞.

From the above equation, we can bound

(6.7) ‖Xk‖∞ 6 ‖S̃k

−1
‖∞ + ‖Xk − S̃k

−1
‖∞ 6 ‖S̃k

−1
‖∞ +

ε

1− ε
‖Xk‖∞.

It follows that

(6.8) ‖Xk‖∞ 6
‖S̃k

−1
‖∞

1− ε/(1− ε)
= C3‖S̃k

−1
‖∞,

where C3 = (1− ε)/(1− 2ε) = O(1).

Since we use Matlab ‘inv’ function, according to [26] we have

(6.9) ‖I − S̃kXk‖∞ 6 cmO(u)‖Xk‖∞‖S̃k‖∞,

where cm = O(m).

From (6.6), (6.8) and (6.9), we can achieve that

(6.10) ‖I − S̃kXk‖∞ 6 cmO(u)κ∞(S̃) = cmC4

√
u.

Assumption 2 is equivalent to

Assumption 3. C4 = O(1) satisfying cmC4
√
u ≪ 1.

Lemma 6.1. Suppose that Assumptions 1 and 3 are satisfied, then we have

(6.11) ‖I − SkXk‖∞ 6 C6,

where C6 := C2C3(C1 + cmO(1)
√
u).
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P r o o f. Using (6.4), (6.8), and (6.9), we have

‖I − SkXk‖∞ = ‖I − (Sk − S̃k + S̃k)Xk‖∞(6.12)

6 ‖(Sk − S̃k)Xk‖∞ + ‖I − S̃kXk‖∞
6 C1

√
u‖Xk‖∞‖S̃k‖∞ + cmO(u)‖Xk‖∞‖S̃k‖∞

6 (C1 + cmO(u))‖Xk‖∞‖S̃k‖∞
= C5

√
uκ∞(S̃k),

where C5 = C3(C1 + cmO(1)u). This equation and (6.5) prove the lemma. �

It follows from Lemma 6.1 that

(6.13) ‖SkXk‖∞ = ‖SkXk − I‖∞ + ‖I‖∞ = 1 + ‖SkXk − I‖∞ 6 1 +C6.

Then we can derive a relationship between Sk+1 and XkSk:

(6.14) |Sk+1−SkXk| = |ARk+1−ARkXk| = |A(Rk+1−RkXk)| 6 |A||Rk+1−RkXk|.

Since Rk+1 = flk,k(Rk ·Xk), we have

(6.15) |Rk+1 −RkXk| 6 C7u
k+1|RkXk|,

where C7 = O(1).

From (6.14) and (6.15), we have

(6.16) |Sk+1 − SkXk| 6 C7u
k+1|A| · |Rk| · |Xk|.

Then

(6.17) ‖Sk+1‖∞ 6 ‖SkXk‖∞ + uk+1α,

where

(6.18) α := C7‖|A| · |Rk| · |Xk|‖∞.

Now we introduce

Assumption 4. uk+1α ≪ 1.

If this assumption is not satisfied, then we modify Algorithm 2.5 as follows:
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Algorithm 6.2. Modified Rump’s method II for the Moore-Penrose inversion of

an extremely ill-conditioned matrix

R1 = AT, X0 = R1;

For k = 1, 2, . . . , until convergence

Sk = fl(k−1)p+1,1(A · Rk) % stored in working precision

S̃k = Sk +∆Sk % perturbation for Sk

Xk = inv(S̃k) % floating-point Inverse

Rk+1 = fl(kp+1),(kp+1)(R(k−1)p+1 ·Xk) % stored in (kp+ 1)-fold precision

end

Here ‘inv(B)’ is a built-in function in Matlab for the inversion of B, (∆Sk)ij =

rij
√
u(|Sk|)ij for (i, j)-entry of ∆Sk. Here we denote κ(Sk) = ‖Sk‖∞‖S−1

k ‖∞. If
κ∞(Sk) > u−1, then we choose rij as pseudorandom numbers distributed uniformly

in [−1, 1]; otherwise, we choose rij = 0.

Thus Assumption 4 becomes

Assumption 5. ukp+1α ≪ 1.

This assumption is satisfied for sufficiently large p ∈ N (integer). Without loss of

generality, we can assume that Assumption 4 is satisfied.

Under Assumption 4, it can be seen from (6.16) that

(6.19) ‖Sk+1‖∞ = ‖SkXk‖∞ + ε,

where ε ≪ 1.

Now, we estimate ‖S−1
k+1‖∞.

Let ∆ = X−1
k − S̃k, from (6.4) and (6.10) we have

‖∆‖∞ = ‖X−1
k − S̃k‖∞

= ‖(I − S̃kXk)X
−1
k ‖∞

6 ‖I − S̃kXk‖∞‖X−1
k ‖∞

6 ‖I − S̃kXk‖∞
‖S̃k‖∞

1− ‖I − S̃kXk‖∞

6
cmC4

√
u

1− cmC4
√
u
‖S̃k‖∞

6 cmC8

√
u‖Sk‖∞,

where C8 := C′
1C4/(1− cmC4

√
u) = O(1).
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It follows from (6.4) that

‖(SkXk)
−1‖∞ = ‖(Sk(Sk +∆+ Γ)−1)−1‖∞

= ‖I + (∆ + Γ)S−1
k ‖∞

6 1 + ‖S−1
k ‖∞(‖Γ‖∞ + ‖∆‖∞)

6 1 + (C′
1 + cmC8)

√
u‖S−1

k ‖∞‖Sk‖∞
6 1 + (C′

1 + cmC8)
√
uκ∞(Sk).

For nonsingular matrices P and Q, we drop the second order terms, it is well

known that

‖P−1 −Q−1‖ = ‖P−1(P −Q)Q−1‖ 6 ‖P −Q‖‖P−1‖‖Q−1‖.

From (6.16), we get

‖S−1
k+1 − (SkXk)

−1‖∞ 6 ‖Sk+1 − SkXk‖∞‖S−1
k+1‖∞‖(SkXk)

−1‖∞(6.20)

6 uk+1β‖S−1
k+1‖∞,

where β := C7‖|A| · |Rk| ·Xk‖∞‖(SkXk)
−1‖∞.

From (6.20), we have

‖S−1
k+1‖∞ 6 ‖S−1

k+1 − (SkXk)
−1‖∞ + ‖(SkXk)

−1‖∞(6.21)

6 uk+1β‖S−1
k+1‖∞ + ‖(SkXk)

−1‖∞.

Let the following assumption hold:

Assumption 6. uk+1β ≪ 1.

Then we have

(6.22) ‖S−1
k+1‖∞ 6 (1 − uk+1β)−1‖(SkXk)

−1‖∞.

If Assumption 6 is not satisfied, then we use the modified Rump’s method II (Algo-

rithm 6.2). Namely, we introduce

Assumption 7. ukp+1β ≪ 1.

This assumption is satisfied, if we choose a sufficiently large m ∈ N, then (6.22)

becomes

(6.23) ‖S−1
k+1‖∞ 6 (1− ukp+1β)−1‖(SkXk)

−1‖∞.
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Without loss of generality, we can assume that Assumption 6 is satisfied. Then

(6.24) ‖S−1
k+1‖∞ 6 C9|(SkXk)

−1‖∞,

where C9 = O(1).

From (6.13), (6.19) and (6.24), we have

κ∞(Sk+1) = ‖Sk+1‖∞‖S−1
k+1‖∞

6 (‖SkXk‖∞ + ε)C9‖(SkXk)
−1‖∞

6 (1 +C6 + ε)C9(1 +C′
1cmC8

√
uκ∞(Sk))

6 O(m)
√
uκ∞(Sk) +O(1).

If Assumptions 1, 3, 4, and 6 (or Assumptions 1, 3, 5, and 7) are satisfied, then we

can prove Theorem 3.1.

6.3. The Proof of Theorem 3.2. In this section, we need to prove that

‖I − Sk+1‖∞ = O(
√
u) if κ∞(Sk) = O(1). Since ‖Sk − S̃k‖∞ 6 C1

√
u‖Sk‖∞, we

can estimate κ∞(S̃k) ≈ κ∞(Sk) = O(1). Then we can expect that Xk becomes

a good approximation inverse of S̃k satisfying

(6.25) ‖I − S̃kXk‖∞ ≪ 1.

This implies that there exists C10 = O(1) such that

(6.26) ‖Xk‖∞ 6 C10‖S̃k

−1
‖∞.

Then, from (6.12) we have

(6.27) ‖I − SkXk‖∞ 6 C5

√
uκ∞(S̃k) = C11

√
u.

Thus, from (6.16) and (6.27) we have

(6.28) ‖I − Sk+1‖∞ 6 ‖I − SkXk‖∞ + ‖SkXk − Sk+1‖∞ 6 C11

√
u+ uk+1α,

where α is defined in (6.18). Since κ∞(S̃k) = O(1), we introduce

Assumption 8. C11 = O(1).

Furthermore, we assume that k is so large that the following inequality holds:

Assumption 9. uk+1α ≪ 1.
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If this assumption does not hold, then we use the modified Rump’s method II

(Algorithm 6.2), and

(6.29) ‖I − Sk+1‖∞ 6 C10

√
u+ ukj+1α

holds. If j is large enough, then the following inequality holds:

Assumption 10. ukj+1α ≪ 1.

Without loss of generality, we can assume that Assumption 9 is satisfied. If As-

sumptions 8 and 9 (or Assumptions 8 and 10) are satisfied, then we can prove The-

orem 3.2.
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