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1. Introduction

It has been pointed out recently that orders of imaginary quadratic fields have

served as a very remarkable example for the understanding of linear algebras over

rings, in particular in a detection of elementary second order matrices among in-

vertible second order matrices, see [4]. Thus, we are motivated to use orders of

quaternion algebras in the same situation. It turns out, however, that the issue here

is much more difficult and deserves a deeper study. We present our first results in

this paper where we discuss primarily a number of properties of quaternion algebras.

The main part is focused on the so called primitive algebras, i.e. quaternion algebras

(−1,b
Q ) and their isomorphisms. Several results about orders and suborders of these

algebras are also presented.
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In particular, we start with the discretely normed rings defined by Cohn in [1]. We

present the orders of imaginary quadratic fields and mainly the orders of quaternion

algebras (which will play an important role in our investigation). That is why some

properties of Hurwitz and Lipschitz quaternions and their suborders are mentioned

and then our attention concentrates on primitive algebras and their maximal orders.

It is aimed to describe of Q-algebra isomorphism of (−1,b
Q ) and (−1,Nb

Q ) in the first

part. The final section deals with the question of uniqueness of the discrete norm.

Results in the paper are new or with our original proof. Our intention is to present

a widely intelligible research paper having also some didactic value.

In the paper, we suppose R is a ring with identity.

2. Discretely normed rings

2.1. The discrete norm.

Definition 2.1. A mapping | | : R → R+ (R+ are nonnegative real numbers) is

called a norm on the ring R if

(N1) |x| = 0 if and only if x = 0R;

(N2) |x+ y| 6 |x|+ |y|;
(N3) |xy| = |x||y|
for all x, y are satisfied. A ring R with a fixed norm is called a normed ring.

Clearly, then R has no zero divisors, therefore normed rings are always integral

domains (though not necessarily commutative).

Definition 2.2. Let R be a normed ring. If the conditions

(N4) |x| > 1 for all 0R 6= x ∈ R and |x| = 1 if and only if x ∈ U(R);

(N5) there exists no x ∈ R such that 1 < |x| < 2

are satisfied, then the norm is called a discrete norm on the ring R and R is called

a discretely normed ring.

In [1], (5.5), one more condition is used for certain purposes:

(N0) if |x| = 1 and |x+ 1| = 2, then x = 1R.

R em a r k 2.3. Furthermore, we recall two definitions from the number field the-

ory and add an important remark. In general, for a number field which is a finite

extension of Q, there are d monomorphisms σ1, . . . , σd from such a field to C assign-

ing to the minimal polynomial its roots. Then, for an element x of the number field,

the norm N and the trace Tr of x are defined by

N(x) =

d∏

i=1

σi(α), Tr(x) =

d∑

i=1

σi(α).
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But we strictly distinguish betweenN and | |. For our purposes one can take
√

N(x) =

|x| and then | | meets Definition 2.1.

2.2. Imaginary quadratic orders. First, we recall well-known imaginary

quadratic orders. We assume that d is a negative square-free integer and C a

positive integer. We will distinguish two cases:

(I) d ≡ 1 (mod 4),

(II) d ≡ 2 or d ≡ 3 (mod 4).

Further, we set

ε =

{

1 for the case (I),

0 for the case (II);

we will use this ε for formal unification of the two cases described above to a single

one in a number of formulas below. Let

θ =
√
d+

ε

2
(1−

√
d) and D = −d+

ε

4
(1 + 3d).

(It is evident that always D > 1.) Further, we denote by Z[Cθ] the order of the

imaginary quadratic field Q[
√
d], so

Z[Cθ] = {x0 + x1Cθ : x0, x1 ∈ Z}.

We take the norm | | : Z[Cθ] → R+ to be equal to the complex numbers absolute

value. Then for x = x0 + x1Cθ ∈ Z[Cθ] we have

|x|2 = x2
0 + εx0x1C + x2

1C
2D.

Then the following assertion holds (formulated by Cohn, [1]). (The claim is not new,

but we write it here for the text to be more self-contained and, in particular, we

present also a proof which remains usually skipped by most of the authors.)

Proposition 2.4. The order Z[Cθ] with the norm defined above is a normed

ring. Moreover, it is a discretely normed ring with the exception for d = −1,−2,−3,

−7,−11 and C = 1 for which the condition (N5) is not satisfied (The condition (N4)

is satisfied for all cases).

P r o o f. Although we have the usual complex absolute value, we demon-

strate some known computations in the proof. As ℜex = x0 + 1
2εx1C, ℑmx =

(
1− 1

2ε
)
x1C

√
−d and |x|2 = (ℜe x)2+(ℑmx)2, it is clear that (N1) is satisfied. One

can verify (N2) and (N3) directly.
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In particular, for Q[d], N(x) = x · x, |x| =
√

N(x). For (N3), one can show by

direct evaluation that xy = x · y. Then

N(xy) = (xy) · (xy) = x · y · y · x = x ·N(y) · x = N(x) ·N(y).

For square roots, the equality remains valid.

For (N2), we first observe that

N(x+ y) = (x+ y) · (x+ y) = xx+ yy + xy + yx = N(x) + N(y) + 2Tr(xy)

and then, for square roots, we obtain |x+ y| 6 |x|+ |y|.
As to (N4), it is clear that for |x|2 > 0 we in fact have |x|2 > 1 because x0, x1, C

and ε are integers and D > 1. Thus, if x is a unit, |x| = 1 because |x−1| > 1 and

|x||x−1| = 1. On the other hand, for |x|2 = 1 we have

(1) x2
0 = 0 and x2

1C
2D = 1: thus, x2

1 = 1, C = 1 and D = 1;

(2) x2
0 = 1 and εx0x1C + x2

1C
2D = 0: thus,

(2a) ε = 0 and x1 = 0 or

(2b) ε = 1: then we have (C ∈ N)

x1(x0 + x1CD) = 0;

it follows that x1 = 0 or x1CD = −x0 = 1 or x1CD = −x0 = −1.

For verification of (N5), we search for integer solutions of

(∗) 1 < x2
0 + εx0x1C + x2

1C
2D < 4.

For C > 2 there is no integer solution for (∗) obviously. So we can suppose that
C = 1. If d ≡ 1 (mod 4) then the inequalities 1 < x2

0 + x1x2 + x2
1

(
1−d
4

)
< 4 have

solutions for d = −3 (x0 = x1 = 1), d = −7 (x0 = 0, x1 = 1) and d = −11 (x0 = 0,

x1 = 1). If d ≡ 2, 3 (mod 4) we get solutions for d = −2 (x0 = x1 = 1) and d = −1

(x0 = x1 = 1). �

2.3. Quaternion orders. We consider quaternion algebras over Q with the

Hilbert symbol
(
a,b
Q

)
having elements of the form x0 + x1i+ x2j+ x3k where i

2 = a,

j2 = b, ij = −ji = k, where a, b are negative integers. As
(
a,b
Q

) ∼=
(
b,a
Q

) ∼=
(
au2,bv2

Q

)

for any negative a, b and nonzero u, v, there is no restriction to suppose that both

a, b are square-free and a > b.

In particular, for a = −1, b square-free and a > b, the quaternion algebras
(
−1,b
Q

)

of this type will be called primitive (rational quaternion) algebras. This case will be

studied in more detail.
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We recall that the discriminant d(a, b) of
(
a,b
Q

)
is

d(a, b) =
∏

p∈X

p

where X is the set of all prime numbers for which (a, b)p = −1, (a, b)p being the

Hilbert symbol in the field Qp. Its explicit formula is (for details see [3])

(a, b)p =







(−1)(r
2
−1)/8 · (−1)(u−1)(v−1)/2 if p = 2,

(r (mod p)

p

)

if p 6= 2,

where

r = (−1)ijujv−i

with

a = piu, b = pjv, i, j ∈ Z, u, v ∈ Z×

p .

Now, we define (for details see [5]) that an order O of
(
a,b
Q

)
is a complete Z-lattice

which is also a ring with 1. We also recall that the norm N(α) and the trace Tr(α) of

an element α from a Z-lattice lie in Z, cf. [5], Lemma 2.2.4. Thus, the trivial result

is that

Z[1, i, j, k]
(a, b

Q

)

= {x0 + x1i+ x2j + x3k : xi ∈ Z, i = 0, 1, 2, 3}

is the order for each a, b; let us call it the order of Lipschitz-like quaternions. We

observe also that if x = x0 + x1i + x2j + x3k is an element of an order O of
(
a,b
Q

)

then 2x0 ∈ Z.

An order is maximal if it is maximal with respect to inclusion. In particular, the

following results hold.

Proposition 2.5. Let A =
(
−1,b
Q

)
be a primitive algebra.

(i) If b ≡ 1 (mod 4), then

Z
[1 + j

2
,
i+ k

2
, j, k

](−1, b

Q

)

is the maximal order of A.

(ii) If b is even, there is no unique description of the basis of the maximal order

of A valid for all even b.
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P r o o f. (i) This is Theorem 6.1 in [2].

(ii) Let A1 =
(
−1,−2

Q

)
, A2 =

(
−1,−10

Q

)
with bases {1̂, î, ĵ, k̂}, {1̃, ĩ, j̃, k̃} and take

B =
(
−1,−1

Q

)
, which is isomorphic to both A1, A2 and has the basis {1, i, j, k} (we will

discuss isomorphisms in more detail in Section 4, in particular in 4.1) and the max-

imal order Z[(1 + i+ j + k)/2, i, j, k]
(
−1,−1

Q

)
. The isomorphisms can be expressed

explicitly as

ϕB→A1
(1) = 1̂, ϕB→A1

(i) = î, ϕB→A1
(j) =

ĵ + k̂

2
, ϕB→A1

(k) =
−ĵ + k̂

2
,

ϕB→A2
(1) = 1̃, ϕB→A2

(i) = ĩ, ϕB→A2
(j) =

3j̃ + k̃

10
, ϕB→A2

(k) =
−j̃ + 3k̃

10
.

It is sufficient to find images of (1 + i+ j + k)/2 in both the isomorphisms:

ϕB→A1

(1 + i+ j + k

2

)

=
1 + î+ k̂

2
,

ϕB→A2

(1 + i+ j + k

2

)

=
1 + ĩ

2
+

j̃ + 2k̃

10
;

we have just computed OA1
= Z

[
(1 + î+ k̂)/2, î, (ĵ + k̂)/2, (−ĵ + k̂)/2]

(
−1,−2

Q

)
,

OA2
= Z[(1 + ĩ)/2 + (j̃ + 2k̃)/10, ĩ, (3j̃ + k̃)/10, (−j̃ + 3k̃)/10]

(
−1,−10

Q

)
as maximal

orders of A1, A2 and it can be easily computed that these two orders are mutually

distinct. We remark that it implies that the Theorem 6.2 in [2] is not correct.1 �

R em a r k 2.6. The algorithm how to derive maximal orders of quaternion alge-

bras can be found in the paper [6] of Voight.

3. Hurwitz and Lipschitz quaternions and their suborders

The case of the algebra
(
−1,−1

R

)
is classical and its maximal orders (as well as for

the algebra
(
−1,−1

Q

)
) are Hurwitz quaternions

Z
[1 + i+ j + k

2
, i, j, k

](−1,−1

R

)

For fixed C0, C1, C2, C3 ∈ N, let us take

H(C0, C1, C2, C3) = Z
[

C0
1 + i+ j + k

2
, C1i, C2j, C3k

](−1,−1

R

)

1 The exact quote from [2]: Let B =
(

a, b/Q
)

with a ≡ 3 (mod 4), b even, and ab square-
free. Then L = Z[1, i, (1 + i+ j)/2, (j + k)/2] is a maximal order in B. We have shown
the inadequacy of this description.
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and determine whether H(C0, C1, C2, C3) has a structure of a ring. (We remark that

we consider rings with multiplication given by i2 = j2 = −1 and ij = k = −ji and

having 1 as the neutral element of the multiplication.) First, it is well known that

the answer is affirmative for H(1, 1, 1, 1) and H(2, 1, 1, 1), Hurwitz quaternions and

Lipschitz quaternions, respectively. Looking for other examples, we observe that if

H(C0, C1, C2, C3) is a subset of H(C0, C1, C2, C3), then C0 6 C0, C1 6 C1, C2 6 C2

and C3 6 C3. Now, in general, we have:

Lemma 3.1.

(i) If H(C0, C1, C2, C3) is a ring, then C0 = 1 or C0 = 2.

(ii) If H(1, C1, C2, C3) is a ring, then C1 = C2 = C3 = 1.

P r o o f. (i) If C0 > 3, then 1 /∈ H(C0, C1, C2, C3).

(ii) The same reasoning. �

So, suborders different from Hurwitz and Lipschitz quaternions are proper subor-

ders of Lipschitz quaternions H(2, C1, C2, C3). Now, we take Lipschitz quaternions

Z[1, i, j, k]
(−1,−1

R

)

and similarly, for fixed C0, C1, C2, C3 ∈ N, we consider

L(C0, C1, C2, C3) = Z[C0, C1i, C2j, C3k]
(−1,−1

R

)

and determine whether L(C0, C1, C2, C3) has a structure of a ring; again, if

L(C0, C1, C2, C3) is a subset of L(C0, C1, C2, C3), then C0 6 C0, C1 6 C1, C2 6 C2

and C3 6 C3. We have already proved that if L(C0, C1, C2, C3) is a ring, then

C0 = 1.

Let us denote by 〈S〉 the ring generated by a set S with the above described
multiplication.

Lemma 3.2. 〈L(1, C1, C2, C3)〉 = 〈L(1, C1, C2, gcd(C1C2, C3))〉.

P r o o f. Evidently, in 〈L(1, C1, C2, C3)〉 there coexist C1iC2j = C1C2k and C3k.

Thus, gcd(C1C2, C3)k ∈ 〈L(1, C1, C2, C3)〉, too. �

Analogously,

〈L(1, C1, C2, C3)〉 = 〈L(1, C1, gcd(C1C3, C2), C3)〉 = 〈L(1, gcd(C2C3, C1), C2, C3)〉.

We can formulate the following result.

Proposition 3.3. L(1, C1, C2, C3) = 〈L(1, C1, C2, C3)〉 if and only if C1 | C2C3,

C2 | C1C3 and C3 | C1C2.
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P r o o f. Let us suppose that {x0 + x1C1i + x2C2j + x3C3k : x0, x1, x2, x3 ∈ Z}
represents a ring. As C1iC2j = C1C2k belongs to this ring, C1C2 must be a multiple

of C3. The properties C2 | C1C3 and C3 | C1C2 are derived in the same way.

The proof of the opposite implication is trivial. �

Because of symmetric properties of C1, C2 and C3, it is no restriction to consider

C1 6 C2 6 C3. (The “simplest” example of a proper suborder is L(1, 1, 2, 2).)

4. Primitive quaternion algebras

We start with the following assertion.

Lemma 4.1. The discriminant of a primitive algebra
(
−1,b
Q

)
is a non-prime num-

ber if and only if −b has a form 2l(4k+1) which is not a sum of two squares (k ∈ N,

l ∈ {0, 1}).

P r o o f. We use the explicit formula for the discriminant given above. First, let

p = 2. We have i = 0, u = −1, j = l and v = −4k − 1. We compute r = −1 and

(a, b)2 = −1. Hence d(a, b) is even.

Second, let p 6= 2 be a prime number which divides 4k + 1. Then 4k + 1 = pn,

where p does not divide n. Now, we have i = 0, u = −1, j = 1 and v = −2ln and we

compute r = −1 and (a, b)p =
(
p−1
p

)
. So, d(a, b) is a multiple of p if

(
p−1
p

)
= −1.

We have 4k + 1 square-free and morever not a sum of two squares. It follows

4k + 1 is not a prime number. Thus, 4k + 1 is a product of different prime numbers

pi, i = 1, . . . , h, and one of them, say p1, has a form 4m1+3. However, it is impossible

that all other pi have a form 4mi + 1 because the product has a form 4k+ 1. Hence

we have at least two primes which factorize 4k+1 and have a form 4mi+3, say with

indexes i = 1, 2. Then
(
p1−1
p1

)
=

(
p2−1
p2

)
= −1 and both p1 and p2 divide d(a, b). �

Corollary 4.2. There is no primitive algebra
(
−1,b
Q

)
with a discriminant which

is a product of exactly two prime factors.

P r o o f. We have proved that the discriminant is even and if it has a divisor

p1 6= 2, it has one more different divisor p2. �

4.1. Q-algebra isomorphisms of quaternion algebras
(
−1,b
Q

)
and

(
−1,Nb

Q

)
.

It is known that there exist infinitely many non-isomorphic quaternion algebras
(
a,b
Q

)
.

Isomorphisms preserve maximal orders. We want to find some conditions under

which two primitive algebras are isomorphic. It is well known that algebras
(
−1,b
Q

)
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and
(
−1,bu2

Q

)
, u ∈ N are isomorphic; however, we aim at describing when two prim-

itive algebras are isomorphic: so, we recall that b is assumed negative square-free

and, for
(
−1,Nb

Q

)
to be primitive, Nb is negative square-free, too.

4.1.1. Binding equations. So, let us consider algebras A1 =
(
−1,b
Q

)
with the

base (, i, j, k) and the discriminant d1 and A2 =
(
−1,Nb

Q

)
with the base (1, I, J,K)

and the discriminant d2, b ∈ Z−, N ∈ N− {1} and a homomorphism ϕ : A1 → A2,

ϕ() = 1,

ϕ(i) = ϕ10 + ϕ11I + ϕ12J + ϕ13K,

ϕ(j) = ϕ20 + ϕ21I + ϕ22J + ϕ23K,

ϕ(k) = ϕ30 + ϕ31I + ϕ32J + ϕ33K

with ϕuv rational. If we search for Q-algebra homomorphisms, ϕ(k) is given by

multiplication. Further, −1 = ϕ(i2) gives ϕ10 = 0 and

(4.1) −1 = −ϕ2
11 + ϕ2

12Nb+ ϕ2
13Nb,

b = ϕ(j2) gives ϕ20 = 0 and

(4.2) b = −ϕ2
21 + ϕ2

22Nb+ ϕ2
23Nb

and finally ϕ(ij) = −ϕ(ji) gives

(4.3) 0 = ϕ11ϕ21 − ϕ12ϕ22Nb− ϕ13ϕ23Nb ( = −ϕ30).

Hence every Q-algebra homomorphism ϕ : A1 → A2 has a form

ϕ() = 1,

ϕ(i) = ϕ11I + ϕ12J + ϕ13K,

ϕ(j) = ϕ21I + ϕ22J + ϕ23K,

ϕ(k) = (ϕ13ϕ22 − ϕ12ϕ23)NbI + (ϕ13ϕ21 − ϕ11ϕ23)J + (ϕ11ϕ22 − ϕ12ϕ21)K,

with conditions (4.1), (4.2) and (4.3) necessarily fulfilled. (Of course, it is possible

to express the Q-algebra homomorphism only in three ϕuv-s and without additional

conditions. But the obtained form is rather complicated.)

Proposition 4.3. Every Q-algebra homomorphism described above is a Q-

algebra isomorphism.
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P r o o f. The determinant of the transformation above equals

ϕ2
11ϕ

2
22 − 2ϕ11ϕ12ϕ21ϕ22 + ϕ2

12ϕ
2
21 + ϕ2

11ϕ
2
23 − 2ϕ11ϕ13ϕ21ϕ23 + ϕ2

13ϕ
2
21

− (ϕ2
12ϕ

2
23 − 2ϕ12ϕ13ϕ22ϕ23 + ϕ2

13ϕ
2
22)Nb

and we obtain the same expression as ϕ(k2)/Nb.

It is evident from the form of Q-algebra homomorphism that ϕ(k) is nonzero if

and only if at least one minor of the order 2 of the matrix

(
ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

)

is

nonzero, i.e. the rank of the matrix is 2. First, let us notice that (ϕ11 ϕ12 ϕ13 ) =

( 0 0 0 ) and (ϕ21 ϕ22 ϕ23 ) = ( 0 0 0 ) are impossible due to (4.1) and (4.2), respec-

tively. So, let us suppose (ϕ11 ϕ12 ϕ13 ) 6= ( 0 0 0 ), c 6= 0 and (ϕ21 ϕ22 ϕ23 ) =

c (ϕ11 ϕ12 ϕ13 ). Then (4.3) gives 0 = cϕ2
11 − cϕ2

12Nb − cϕ2
13Nb. But this contra-

dicts (4.1). Hence ϕ(k) is nonzero and the transformation is nonsingular. �

Let us remark that (4.1) yields

(4.4) |ϕ11| =
√

1 + (ϕ2
12 + ϕ2

13)Nb which implies ϕ11 ∈ [−1, 1] ∩Q

and (4.2) yields

(4.5) |ϕ21| =
√

−b+ (ϕ2
22 + ϕ2

23)Nb which implies ϕ21 ∈ [−
√
−b,

√
−b ] ∩Q.

4.1.2. Special cases. First, let us consider the case |ϕ11| = 1. Then, due to (4.4)

and (4.3), ϕ12 = ϕ13 = ϕ21 = 0 and (4.2) reads

(4.6)
1

ϕ2
22 + ϕ2

23

= N.

Evidently, neither ϕ22 nor ϕ23 can be integer because N ∈ N−{1}. If α, β ∈ N0 and

N = α2 + β2, we find a rational solution ϕ22 = α/(α2 + β2), ϕ23 = β/(α2 + β2).2

But one can even find infinitely many rational solutions, see e.g. [3]. Moreover, no

other case can occur as we show in the following lemma.

Lemma 4.4. If 1/(τ2 + υ2) = N ∈ N for rational τ , υ, then N = α2 + β2,

α, β ∈ N0.

2 In particular, for N = 2 we find easily isomorphisms ϕ(i) = ±I , ϕ(j) = 1

2
J + 1

2
K,

ϕ(k) = −
1

2
J ±

1

2
K.
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P r o o f. Let τ = a/b, υ = c/d, a, b, c, d ∈ Z, gcd(a, b) = 1, gcd(c, d) = 1. Then

b2d2 = N(a2d2 + c2b2).

It is well known that a number M is a sum of two squares if and only if in the prime

factorization of M , every prime congruent to 3 modulo 4 occurs an even number of

times, i.e. M = 2κpλ1

1 . . . pλr

r q2µ1

1 . . . q2µs

s where pi, i = 1, . . . , r, are different prime

numbers congruent to 1 modulo 4 and qj , j = 1, . . . , s, are different prime numbers

congruent to 3 modulo 4, κ ∈ N0, λi, µj ∈ N. If N is not a sum of two squares, there

exist a prime number q congruent to 3 modulo 4 and µ ∈ N such that q2µ−1 | N and
q2µ ∤ N . However, this q must be an even number of times in the factorization of

b2d2 on the left hand side. Thus, there exist µ̄ ∈ N such that q2µ̄−1 | (a2d2 + c2b2)

and q2µ̄ ∤ (a2d2 + c2b2), but this contradicts the fact that a2d2 + c2b2 is the sum of

two squares. �

Thus we have proved

Proposition 4.5. If ϕ : A1 → A2 is a Q-algebraic homomorphism with |ϕ11| = 1,

then A1 and A2 are isomorphic and N is necessarily a sum of squares.

Second, let us consider the case |ϕ11| 6= 1. We start with an example.

E x am p l e 4.6. Let b = −2, ϕ11 = 1/2. Then (4.1) gives

8N

3
(ϕ2

12 + ϕ2
13) = 1.

E.g., for N = 3, the equation has a rational solution ϕ12 = 1/4, ϕ13 = 1/4. (Cf. The-

orem 2.3 from [3].) Using (4.3) and (4.2), we continue with the equation

15

2
ϕ2
22 + 9ϕ22ϕ23 +

15

2
ϕ2
23 = 1,

which, after the linear transformation ξ = 2ϕ22 + 2ϕ23, η = ϕ22 − ϕ23, reads

3

2
ξ2 +

3

2
η2 = 1,

which has no rational solution (using also Theorem 2.3 from [3]).3

3We can also take another solution: e.g. ϕ12 = 1/20, ϕ13 = 7/20; then we continue with
the equation

159
50

ϕ222 +
63
25

ϕ22ϕ23 +
591
50

ϕ223 = 1.
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Proposition 4.7. If N ≡ 3 (mod 4), then there is no Q-algebra homomorphism

from A1 to A2.

P r o o f. If |ϕ11| = 1, then N must be a sum of squares due to Proposition 4.5

which contradicts N ≡ 3 mod 4. For |ϕ11| 6= 1, we put γ = ϕ21/(1− ϕ11). We

compute easily γ2 = (ϕ21 + ϕ11γ)
2.

Let us express the equation (4.2) + 2γ(4.3) + γ2(4.1):

b− γ2 = − ϕ2
21 − 2γϕ21ϕ11 − γ2ϕ2

11

+Nb(ϕ2
22 + 2γϕ22ϕ12 + γ2ϕ2

12 + ϕ2
23 + 2γϕ23ϕ13 + γ2ϕ2

13),

i.e.

b− γ2 = −γ2 +Nb((ϕ22 + γϕ12)
2 + (ϕ23 + γϕ13)

2).

Hence

N =
1

(ϕ22 + γϕ12)2 + (ϕ23 + γϕ13)2

and it follows that N is a sum of squares due to Lemma 4.4. Again, it contradicts

N ≡ 3 (mod 4). �

Theorem 4.8. A1 and A2 are isomorphic if and only if N is a sum of squares.

P r o o f. The previous propositions yield that the existence of a Q-algebra ho-

momorphism implies N = α2 + β2. On the other hand, if we assume N = α2 + β2,

then
ϕ() = 1,

ϕ(i) = I,

ϕ(j) =
α

N
J +

β

N
K,

ϕ(k) = − β

N
J +

α

N
K

is an example of a Q-algebra isomorphism and this completes the proof. �

4.2. Automorphisms: examples. Let ϕ : A1 → A2 and ϕ : A2 → A1 be iso-

morphisms, then ϕ◦ϕ : A1 → A1 is clearly an automorphism of A1. We remark that

there is a nontrivial structure of such automorphisms with all these possibilities:

(i) αn = id for some n ∈ N,

(ii) αn 6= id for every n ∈ N,

(iii) α is unipotent which means α− id is nilpotent, i.e. (α− id)n is the zero endo-

morphisms for some n ∈ N.
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We will demonstrate it in the following examples. For representation of ϕ we can

take its matrix form ϕ = {ϕij}, i, j = 0, . . . , 3 described in the previous sections.

For simplicity, we can use in the next considerations only the submatrix

Φ =







ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33







.

The identity matrix corresponding to id is denoted by I.

E x am p l e 4.9. (Case (i).)

(1) Let A1 =
(
−1,−1

Q

)
, A2 =

(
−1,−2

Q

)
and let ϕ1, ϕ2 be given by the matrices

ϕ1 =





1 0 0

0 1 −1

0 1 1



 , ϕ2 =





1 0 0

0 1
2

1
2

0 − 1
2

1
2



 ;

then it is easy to compute that





1 0 0

0 1 −1

0 1 1









1 0 0

0 1
2

1
2

0 − 1
2

1
2



 = I, so we have n = 1.

(2) Let A1 =
(
−1,−1

Q

)
, A2 =

(
−1,−2

Q

)
and let ϕ1, ϕ2 be given by the matrices

ϕ1 =





1 0 0

0 1 1

0 −1 1



 , ϕ2 =





1 0 0

0 1
2

1
2

0 − 1
2

1
2



 ;

then 



1 0 0

0 1 1

0 −1 1









1 0 0

0 1
2

1
2

0 − 1
2

1
2



 =





1 0 0

0 0 1

0 −1 0



 6= I

and




1 0 0

0 0 1

0 −1 0





4

= I i.e. n = 4.

Nevertheless,




1 0 0

0 0 1

0 −1 0



− I =





0 0 0

0 −1 1

0 −1 −1





has nonzero determinant and that is why the condition (iii) is not fulfilled.
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E x am p l e 4.10. (Case (ii).) We will prove that for the matrix A=





1
3

1
3

1
3

− 4
3

2
3 − 1

3

− 4
3 − 1

3
2
3





there exists no n ∈ N such that An = I.

First we need to realize that for arbitrary i ∈ N we can express Ai in the special

form

Ai =





a b b

c d e

c e d



 , a, b, c, d, e ∈ Q.

But this is easy, because





a b b

c d e

c e d









x y y

z u t

z t u



 =





ax+ 2bz ay + b(u+ t) ay + b(u+ t)

cx+ z(d+ e) cy + du+ et cy + du+ et

cx+ z(d+ e) cy + eu+ dt cy + eu+ dt





and we have only finitely many + and · for numbers in Q.

Now suppose n ∈ N is minimal such that An = I, and distinguish two cases:

(1) Let n be odd (n = 2k + 1), put i = k, so Ak =





a b b

c d e

c e d



 and

(Ak)2 =





a2 + 2bc b(a+ d+ e) b(a+ d+ e)

c(a+ d+ e) bc+ d2 + e2 bc+ 2de

c(a+ d+ e) bc+ 2de bc+ d2 + e2



 = An−1 =





1
3 − 1

3 − 1
3

4
3

2
3 − 1

3
4
3 − 1

3
2
3



 ,

where An−1 = A−1, which can be easily computed. However, if we solve the

above set of equations for rational numbers a, b, c, d and e, we obtain a contra-

diction, because a = ±
√

2/3.

(2) Let n be even (n = 2k + 2), put i = k, so Ak =





a b b

c d e

c e d



 and

(Ak)2 =





a2 + 2bc b(a+ d+ e) b(a+ d+ e)

c(a+ d+ e) bc+ d2 + e2 bc+ 2de

c(a+ d+ e) bc+ 2de bc+ d2 + e2



 = An−2 = (A−1)2

=





− 7
3 − 2

9 − 2
9

8
9

1
9 − 8

9
8
9 − 8

9
1
9



 .

It this case we also obtain a contradiction, again by computing irrational solu-

tion. Nevertheless the computation is a little bit more complicated than in the

first case.
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E x am p l e 4.11. (Case (iii).) We present the following example of an automor-

phism which is not unipotent. Let A1 =
(
−1,−1

Q

)
, A2 =

(
−1,−4

Q

)
and let ϕ and ϕ be

given by matrices

Φ =





1 0 0

0 −2 0

0 0 −2



 , Φ =





1
3

1
3

1
3

2
3 − 1

3
1
6

2
3

1
6 − 1

3



 .

We compute

ΦΦ =





1 0 0

0 −2 0

0 0 −2









1
3

1
3

1
3

2
3 − 1

3
1
6

2
3

1
6 − 1

3



 =





1
3

1
3

1
3

− 4
3

2
3 − 1

3

− 4
3 − 1

3
2
3



 = M

and it could be shown that there does not exist n ∈ N for which (M − I)n is the zero

matrix.

R em a r k 4.12. We notice that some automorphisms above are nothing but ro-

tations given by actions of the group SO(3,Q). Nevertheless, non-rotational auto-

morphisms also exist. For instance, such an automorphism in A =
(
−1,−2

Q

)
is given

by the matrix




0 − 1
2 − 1

2

1 − 1
2

1
2

−1 − 1
2

1
2



 .

Of course, it would be interesting to describe geometric transformations correspond-

ing to non-rotational automorphisms.

We say that an order O in
(
a,b
Q

)
is in the canonical position if O ⊆ Z[1, i, j, k]

(
a,b
Q

)

or Z[1, i, j, k]
(
a,b
Q

)
⊆ O.

R em a r k 4.13. Let us formulate an easy observation about suborders of maxi-

mal orders of primitive algebras. If we take Lipschitz-like orders of primitive algebras,

it is not difficult to see that the property from Proposition 3.3 is preserved for this

case, too.

Thus, for the description of the whole structure of orders it remains to determine

the structure between the maximal order and the Lipschitz-like order.
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5. On the uniqueness of discrete norm

5.1. Integers. In this section, we prove assertions on the uniqueness of the dis-

crete norm. We start with classical integers.

Proposition 5.1. For R = Z, there is one and only one norm satisfying condi-

tions (N1)–(N5).

P r o o f. Let k ∈ N. Using (N2) we obtain

|k| = | 1 + . . .+ 1
︸ ︷︷ ︸

k-times

| 6 |1|+ . . .+ |1|
︸ ︷︷ ︸

k-times

= k,

so we have |k| 6 k, which can be rewritten into the form |k| = k − Q(k), where

Q(k) ∈ R+, 0 6 Q(k) < k. It is easy to see that for every norm this gives the

map Q : N → R+. If we suppose that there exists k0 ∈ N, k0 6= 1, for which

Q(k0) < Q(k0 − 1), then

|k0| = k0 −Q(k0) > k0 −Q(k0 − 1) = (k0 − 1)−Q(k0 − 1) + 1,

but of course (k0 − 1)−Q(k0 − 1) = |(k0 − 1)| and 1 = |1| by (N4), so we have

|k0| > |k0 − 1|+ |1|,

which contradicts (N2). Thus, there is no such k0 for which Q(k0) < Q(k0 − 1),

hence Q is nondecreasing. Finally, let us evaluate | | at some points: |1| = 1 by (N4)

and |2| = 2 by (N4), (N5) and |k| 6 k. Moreover, by (N3) it is easy to deduce

|2n| = 2n for all n ∈ N, so Q(2n) = 2n − |2n| = 0. Q is nondecreasing, it is

identically equal to 0. Thus, |k| = k for every k ∈ N. Clearly, |0| = 0 and as

1 = |1| = |(−1)(−1)| = |−1||−1|, where | | is nonnegative, so |−1| = 1. Hence for

every k ∈ N, |−k| = |−1||k| = |k|. Altogether, the discrete norm | | : Z → R+

satisfying (N1)–(N5) is unique and it is nothing but the standard absolute value. �

R em a r k 5.2. We note that the weakening of the definition of the discretely

normed ring by omitting (N4) leads to the non-uniqueness. Certainly, one can express

m ∈ Z by the formally infinite product

m = sgn(m)
∏

p∈P

pe(m,p)

where P is the set of prime numbers. Now, for a prime number p, we define the

p-norm | |p : Z → R+ on Z by

|m|p =
1

pe(m,p)
for m 6= 0, |0|p = 0.
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The conditions (N1), (N3) and (N5) are satisified evidently, the verification of (N2)

requires a straightforward calculation which is left to the reader. It is clear that

there are integers not belonging to U(Z) = {−1, 1} having the p-norm 1/p0 = 1;

therefore (N4) is not satisfied. We thank Professor Ladislav Skula for his kind interest

and for pointing out this nice example.

5.2. Imaginary quadratic orders.

Proposition 5.3. For R = Z[Cθ], there is one and only one norm satisfying

(N1)–(N5).

P r o o f. Let x = x0 + x1Cθ ∈ Z[Cθ] and let us take the number x = x0 +

εx1C − x1Cθ. Then

xx = x2
0 + εx0x1C +

ε(1 + 3d)− 4d

4
x2
1C

2 ∈ Z

and thus

|x||x| = |xx| = x2
0 + εx0x1C +

ε(1 + 3d)− 4d

4
x2
1C

2.

Now we would like to show |x| = |x|. Suppose that there exists some x 6= 0 (we

trivially have |0| = |0|) such that |x| 6= |x|, without loss of a generality |x| > |x|. It
means that |x| = q

√

|xx|, q > 1, since |x||x| = q 1
q

√

|xx|
√

|xx|.
For every n ∈ N we can calculate the n-th power of x, denote it by y = y0+ y1Cθ.

Using (N2), (N3),
∣
∣1− 1

2ε
∣
∣ =

∣
∣ 1
2

√
4− 3ε

∣
∣ for both cases and |y1C

√
d| = |y1C

√
−d|

(
noting that |y1C

√
d| =

√

|y1C
√
d||y1C

√
d| =

√

|y21C2d| =
√

|y21C2(−d)||−1|

=
√

|y21C2(−d)| =
√

|y1C
√
−d||y1C

√
−d| = |y1C

√
−d|

)

we obtain

|y| = |y0 + y1Cθ| =
∣
∣
∣y0 +

ε

2
y1C +

(

1− ε

2

)

y1C
√
d
∣
∣
∣

6

∣
∣
∣y0 +

ε

2
y1C

∣
∣
∣+

∣
∣
∣

(

1− ε

2

)∣
∣
∣

∣
∣
∣y1C

√
d
∣
∣
∣

=
∣
∣
∣y0 +

ε

2
y1C

∣
∣
∣+

∣
∣
∣
1

2

√
4− 3ε

∣
∣
∣

∣
∣y1C

√
−d

∣
∣ =

∣
∣
∣y0 +

ε

2
y1C

∣
∣
∣ +

∣
∣
∣
1

2

√
4− 3ε y1C

√
−d

∣
∣
∣.

On the other hand,

|y| = |xn| = |gn
√

|xx|n| = qn
√

|xnxn| = qn
√

|yy| =

= qn
√
∣
∣
∣y20 + εy0y1C +

ε(1 + 3d)− 4d

4
y21C

2
∣
∣
∣ =

= qn
√
∣
∣
∣y20 + εy0y1C +

ε2

4
y21C

2 +
1

2
(4− 3ε)(−dy21C

2)
∣
∣
∣,
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because ε = ε2 for both cases and finally

|y| = qn
√
(

y0 +
ε

2
y1C

)2

+
(1

2

√
4− 3ε y1C

√
−d

)2

.

Altogether we have

qn
√
(

y0 +
ε

2
y1C

)2

+
(1

2

√
4− 3ε y1C

√
−d

)2

6

∣
∣
∣y0 +

ε

2
y1C

∣
∣
∣+

∣
∣
∣
1

2

√
4− 3ε y1C

√
−d

∣
∣
∣

or

qn 6

∣
∣y0 +

1
2εy1C

∣
∣+

∣
∣ 1
2

√
4− 3ε y1C

√
−d

∣
∣

√
(
y0 +

1
2εy1C

)2
+
(
1
2

√
4− 3ε y1C

√
−d

)2
,

where
(
y0 +

ε
2y1C

)
,
(
1
2

√
4− 3εy1C

√
−d

)
∈ R2 \ {(0, 0)}.

But the function D(s, t) = (|s|+ |t|)/
√
s2 + t2 is bounded by

√
2 and because

q > 1, there exists n0 ∈ N such that

∀n > n0, qn >
√
2 >

∣
∣y0 +

1
2εy1C

∣
∣ +

∣
∣1
2

√
4− 3ε y1C

√
−d

∣
∣

√
(
y0 +

1
2εy1C

)2
+
(
1
2

√
4− 3ε y1C

√
−d

)2
,

which contradicts our previous assumption.

So we have |x| = |x| =
√

|xx|, where xx ∈ Z, which means |xx| is given uniquely
by Proposition 5.1 and we have one and only one norm satisfying (N1)–(N5) for

R = Z[Cθ]. �

5.3. Quaternion orders. Now we would like to extend the proposition about

uniqueness of the norm to the quaternion algebra. First, we will formulate some

lemmas. We denote by J =
{
x0+x1i+x2j+x3k ∈

(
a,b
Q

)
: 0 6 xn < 1, n = 0, 1, 2, 3

}

the left-closed and right-open unit quaternion interval.

Lemma 5.4. Let O be an order of
(
a,b
Q

)
and x = x0 + x1i+ x2j + x3k ∈ J ∩ O.

Then x0 ∈ {0, 1/2}.

P r o o f. Let x̂ ∈ J . Then:
(1) For x̂0 = 0, the lemma is trivially satisfied.

(2) For x̂1,2,3 = 0 and x0 6= 0 we easily get contradiction with the definition of

a Z-lattice.

(3) For x̂ ∈ J1 = {x ∈ J : x0,1 6= 0}, because x̂ ∈ J1, |J1| > 1 and because

of J1 being a Z-lattice, we have |J1| < ∞, so there exists x1min ∈ (0, 1) ∩ Q such

that exists x̃ ∈ J1, x̃1 = x1min and for all x ∈ J1, x1 > x̃1 = x1min. Now suppose

x̂1 = x̃1 and:
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(a) x̂0 ∈ (0, 1/2). It is not difficult to see that, there exists K ∈ L(1, 1, 1, 1) such
that ˆ̂x = x̂2 +K lies in J1. But ˆ̂x1 = 2x̂0x̂1 < x̃1, is a contradiction.

(b) x̂0 ∈ (1/2, 1). Put ˆ̂x = 1 − x̂; as in the previous paragraph one can see that,

there exists K ∈ L(1, 1, 1, 1) such that ˆ̂x̂ = 1 − ˆ̂x2 +K lies in J1. But also one can

compute
ˆ̂
x̂1 < x̃1.

Altogether, x̂1 = x̃1 implies x̂0 = 1/2.

On the other hand, suppose x̂1 > x̃1, it means x̂1 = nx̃1+r, n ∈ N, r ∈ 〈0, x̂1)∩Q.

(a′) r = 0, compute ˆ̂x = x̂ − nx̃. ˆ̂x0 = x̂0 − n/2 and for x̂0 6= 1/2, ˆ̂x0 − x̂0 =

n/2 ⇒ 2ˆ̂x0 6∈ Z, so there exists K ∈ L(1, 1, 1, 1) such that ˆ̂x̂ = ˆ̂x +K lies in J and
ˆ̂
x̂1 = 0, for which a contradiction is shown in paragraphs (4), (5) of this proof. So

r = 0 ⇒ x̂0 = 1/2.

(b′) r 6= 0, put ˆ̂x = x̂ − nx̃ + K for a suitable K ∈ L(1, 1, 1, 1), which yields a
contradiction ˆ̂x1 = r < x̃1.

(4) x̂ ∈ J2 = {x ∈ J : x0,2 6= 0, x1 = 0}. We find x2min ∈ (0, 1) ∩ Q such that

exists x̃ ∈ J2, x̃2 = x2min and for all x ∈ J2, x2 > x̃2 = x2min. Then we use totally

the same technique as in the paragraph (3).

(5) x̂ ∈ J3 = {x ∈ J : x0,3 6= 0, x1,2 = 0}. We find x3min ∈ (0, 1) ∩ Q such that

exists x̃ ∈ J3, x̃3 = x3min and for all x ∈ J3, x3 > x̃3 = x3min and repeat our ideas

once more. Only if there is some ˆ̂x such that ˆ̂x3 = 0 (ˆ̂x1, ˆ̂x2 = 0 holds now), we find

the final contradiction as in paragraph (2). �

Corollary 5.5. Let O be an order of
(
a,b
Q

)
. Then for all x = x0 + x1i + x2j +

x3k ∈ O, 2x0 ∈ Z.

P r o o f. L(1, 1, 1, 1) ⊂ O and for all x ∈ O there exists K ∈ L(1, 1, 1, 1) such
that x+K ∈ J = {x ∈ O : xn ∈ 〈0, 1) ∩Q, n = 0, 1, 2, 3} �

Proposition 5.6. Let O be an order of
(
a,b
Q

)
. Then by (N1)–(N5) the norm is

given uniquely.

P r o o f. Let x ∈ O be arbitrary. Then, because (by Corollary 5.5) 2x0 ∈ Z ⊂ O,
we can put x = 2x0 − x. So xx = 2x0 ∈ Z. Finally |x| = |x| =

√

|x||x| can be
proved using the same technique as in the proof of Proposition 5.3 and boundedness

of function D(s, t, u, v) = (|s|+ |t|+ |u|+ |v|)/
√
s2 + t2 + u2 + v2 > 4, which with

|x||x| = |xx| ∈ Z completes the proof. �

Lemma 5.7. Any order O = L(1, r1, r2, r3) with basis B = {1, r1i, r2j, r3k} can
be discretely normed if and only if inequalities −r21a > 4, −r22b > 4, r23ab > 4 are

satisfied.
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P r o o f. =⇒: Suppose without loss of generality that −r21a < 4, then

(1) |r1i| > 1, thus 1 < |r1i| =
√

(r1i)(−r1i) =
√

−r21a < 2 contradicts (N5);

(2) |r1i| = 1, thus r1 = 1, 1 = 12 = |i|2 = −i2 and for 1 + i ∈ O, |1 + i| =√
1− i2 =

√
2 also contradicts (N5).

⇐=: Let x, y be any elements of O.
(N1) The inequality a, b < 0 is an easy consequence of −r21a,−r22b, r

2
3ab > 4 as

0 = |x| =
√

x2
0 − x2

1a− x2
2b+ x2

3ab
a,b<0
===⇒ xn = 0 ∀n ⇒ x = 0.

(N2) By straightforward calculation

|x+ y| 6 |x|+ |y| ⇐⇒
√

(x0 + y0)2 − (x1 + y1)2a− (x2 + y2)2b+ (x3 + y3)2ab

6

√

x2
0 − x2

1a− x2
2b+ x2

3ab+
√

y20 − y21a− y22b+ y23ab.

(N3) Also by straightforward calculation

|x0+x1i+x2j+x3k||y0+y1i+y2j+y3k| = |(x0+x1i+x2j+x3k)(y0+y1i+y2j+y3k)|.

(N4) For x 6= 0 we have |x| > 1, because |x| < 1 implies that all xn have absolute

value smaller than 1, but only 0 ∈ O has this property. Further 1 = |x| =
√
xx ⇐⇒

xx = 1, hence |x| = 1 ⇐⇒ x ∈ U(O).

(N5) (a) Suppose at least one of x1, x2, x3 is nonzero. Without loss of generality

x1 6= 0, so x2
1 > 1. Then

xx = x2
0 − x2

1r
2
1a− x2

2r
2
2b+ x2

3r
2
3ab > −x2

1r
2
1a > −r21a > 4,

whence |x| =
√
xx > 2.

(b) All of x1, x2, x3 are zeros, so x = x0. Then |x| = |x0|, where x0 ∈ Z.

Altogether, the norm is well defined. �

References

[1] P.M.Cohn: On the structure of the GL2 of a ring. Publ. Math., Inst. Hautes Études
Sci. Publ. Math. 30 (1966), 5–53.

[2] D.G. James: Quaternion algebras, arithmetic Kleinian groups and Z-lattices. Pac. J.
Math. 203 (2002), 395–413.

[3] K.Kato, N.Kurokawa, T. Saito: Number Theory I. Fermat’s Dream. Translations of
Mathematical Monographs. Iwanami Series in Modern Mathematics 186, AMS, Provi-
dence, 2000.

[4] M.Kureš, L. Skula: Reduction of matrices over orders of imaginary quadratic fields.
Linear Algebra Appl. 435 (2011), 1903–1919.

404



[5] C.Maclachlan, A.W.Reid: The Arithmetic of Hyperbolic 3-Manifolds. Graduate Texts
in Mathematics 219, Springer, New York, 2003.

[6] J.Voight: Identifying the matrix ring: algorithms for quaternion algebras and quadratic
forms. Quadratic and Higher Degree Forms (K.Alladi et al., eds.). Developments in
Mathematics 31, Springer, New York, 2013, pp. 255–298.

Authors’ addresses: Jan Horníček, Miroslav Kureš, Institute of Mathematics, Brno
University of Technology, Technická 2, 616 69 Brno, Czech Republic, e-mail: hhornicek@
seznam.cz, kures@fme.vutbr.cz; Lenka Macálková, Global Change Research Centre Czech
Academy of Sciences, v. v. i., Bělidla 4a, 603 00 Brno, Czech Republic, and Department of
Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37
Brno, Czech Republic, e-mail: macalkoval@gmail.com.

405


		webmaster@dml.cz
	2020-07-01T19:23:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




