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Abstract. In this paper we consider weak and strong quasiequilibrium problems with
moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness
of these problems are established under relaxed continuity assumptions. All kinds of well-
posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness
under perturbations. Many examples are provided to illustrate the essentialness of the
imposed assumptions. As applications of the main results, sufficient conditions for lower
and upper bounded equilibrium problems and elastic traffic network problems to be well-
posed are derived.
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1. Introduction

The equilibrium problem was introduced by Blum and Oettli [16] in 1994. The

mathematical formulation of the problem unifies various important problems related

to optimization, namely, constrained minimization, variational inequality, comple-

mentarity problem, Nash equilibria, minimax problem, fixed-point and coincidence-

point problems, traffic network problem, etc. Due to the important role of the

problem, it has been intensively studied for all of the main topics, such as existence

theory [10], [14], [18], [22], [25], [28], [31], [35], [38], [40], stability and sensitivity

analysis theory [1], [3], [4], [5], [6], [13], [15], and solution methods [17], [32], [37],

[42], etc.

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 101.01-2014.44.
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Well-posedness may be understood in two ways. The first concept is the well-

posedness in the sense of Hadamard [27]. This property includes the existence,

uniqueness and continuous dependence of the optimal solution and optimal value on

the perturbed data of the problem. The second concept was introduced by Tikhonov

in 1966 in [43], where the author proposed it as the existence and uniqueness of the

solution and convergence of each minimizing sequence to the solution. Well-posedness

under perturbations (termed also parametric well-posedness) is a generalized notion

of those of Hadamard and Tikhonov. Recently, the study of generalized well-posed

concepts was extended to mathematical programming [30], optimization problem (see

e.g., [39], [47]–[49]), variational inequality [24], Nash equilibria [34]. Well-posedness

for equilibrium problems is a theme of great importance and has received increasing

attention of many researchers recently. The sufficient and necessary conditions and

metric characterizations of some types of generalized well-posedness for the class of

equilibrium problems were considered. For more details, we refer the reader to [7],

[8], [9], [12], [23], [29], [33], and the references therein.

Optimization-related problems with moving cones play an important role in many

practical situations. For example, when we want to choose a product from the

market, of course, the characteristics of the chosen product have to satisfy our re-

quirements, the so-called requirement domain. Naturally, the higher quality of the

product is the better choice, and hence the requirement domain is a cone which is

called the requirement cone. Since our requirement cones may be different from those

of the other ones, the requirement cone will depend on some parameters.

Motivated and inspired by the above observations, in this paper we consider the

weak and strong quasiequilibrium problems with moving cones. We introduce the

concepts of moving cone semicontinuity and investigate their properties. Under the

moving cone semicontinuity assumptions, we establish sufficient and/or necessary

conditions for such problems to be (uniquely) well-posed under perturbations and

(generalized) Hadamard well-posed. Moreover, since we consider the problems with

moving cones, the main results in [7], [8], [9], [12], [23], [29], [33] cannot be applied

to such problems. Therefore, our results are new and different from the existing ones

in the literature.

The rest of the paper is organized as follows. Section 2 is devoted to problem

statements and preliminary facts. The concepts of moving cone semicontinuity and

their properties are also introduced and discussed in this section. We study, in Sec-

tion 3, the necessary and/or sufficient conditions for the weak and strong vector

quasiequilibrium problems with moving cones to be (uniquely) well-posed under per-

turbations and (generalized) Hadamard well-posed. The applications of the main

results to some special cases of quasiequilibrium problems are presented in Section 4.
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2. Preliminaries

Let X,Λ be two metric spaces, and Y a Hausdorff topological vector space. Let

K : X×Λ ⇒ X and C : Λ ⇒ Y be two set-valued mappings such that, for each λ ∈ Λ,

C(λ) is a closed, convex, pointed and solid cone. Let e : Λ → Y be a continuous

mapping such that, for each λ ∈ Λ, e(λ) ∈ intC(λ). Let f : X × X × Λ → Y be

a vector valued mapping. For each λ ∈ Λ, we consider the following parametric

vector quasiequilibrium problems:

(WQEPλ) Find x̄ ∈ K(x̄, λ) such that, for each y ∈ K(x̄, λ),

f(x̄, y, λ) ∈ (Y \ −intC(λ)).

(SQEPλ) Find x̄ ∈ K(x̄, λ) such that, for each y ∈ K(x̄, λ),

f(x̄, y, λ) ∈ C(λ).

Instead of writing {(WQEPλ) : λ ∈ Λ} and {(SQEPλ) : λ ∈ Λ} for the sets of such

problems, we will simply write (WQEP) and (SQEP), respectively, in the sequel. For

each λ ∈ Λ, the solution sets of (WQEPλ) and (SQEPλ) are denoted by S
w(λ) and

Ss(λ), respectively, i.e.,

Sw(λ) = {x ∈ K(x, λ) : f(x, y, λ) ∈ (Y \ −intC(λ)) ∀ y ∈ K(x, λ)},

Ss(λ) = {x ∈ K(x, λ) : f(x, y, λ) ∈ C(λ) ∀ y ∈ K(x, λ)}.

Definition 2.1. Let Q be a set-valued mapping from X into Y .

(i) Q is said to be upper semicontinuous (usc, shortly) at x0 if for any open superset

U of Q(x0), there is a neighborhood N of x0 such that Q(N) ⊂ U .

(ii) Q is said to be lower semicontinuous (lsc, shortly) at x0 if for any open subset

U of Y with Q(x0) ∩ U 6= ∅, there is a neighborhood N of x0 such that for all

x ∈ N , Q(x) ∩ U 6= ∅.

The mapping Q is said to be continuous at x0 if it is both usc and lsc at x0. We

say that Q satisfies a certain property on a subset A ⊂ X if Q satisfies it at every

points of A. If A = X we omit “on X” in the statement.

Lemma 2.1 ([11]).

(i) Q is usc at x0, if for each superset U of Q(x0) and for every sequence {xn}

in X converging to x0, there is n0 such that for all n > n0, Q(xn) ⊂ U .

(ii) Q is lsc at x0 if, for each sequence xn → x0 and y0 ∈ Q(x0), there exists

yn ∈ Q(xn) such that yn → y0.
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Definition 2.2. Let Q be a set-valued mapping from X into Y .

(i) Q is said to be Hausdorff upper semicontinuous (H-usc, shortly) at x0 if, for

each neighborhood B of the origin θY in Y , there exists a neighborhood N of

x0 such that, Q(x) ⊂ Q(x0) +B for every x ∈ N .

(ii) Q is said to be Hausdorff lower semicontinuous (H-lsc, shortly) at x0 if, for each

neighborhood B of the origin θY in Y , there exists a neighborhood N of x0 such

that, Q(x0) ⊂ Q(x) +B for every x ∈ N .

Q is said to be Hausdorff continuous at x0 if it is both H-usc and H-lsc at x0.

Picking up the main ideas from [18], we introduce the concepts of moving cone

upper and lower semicontinuity as follows.

Definition 2.3. LetX,Λ be two topological spaces, Y a topological vector space,

and C : Λ ⇒ Y a set-valued mapping with pointed solid convex cone values. Let

g : X × Λ → Y be a vector valued mapping.

(i) g is said to be C-upper semicontinuous (C-usc, for short) at (x0, λ0) if, for any

neighborhood V of θY in Y , there exists a neighborhood U of (x0, λ0) such that,

for all (x, λ) ∈ U ,

g(x, λ) ∈ g(x0, λ0) + V − C(λ0).

(ii) g is said to be C-lower semicontinuous (C-lsc, for short) if −g is C-upper semi-

continuous.

The mapping g is said to be C-continuous at (x0, λ0) if it is both C-usc and C-lsc

at (x0, λ0). We say that g satisfies a certain property on a subset A ⊂ X × Λ if g

satisfies it at every point of A. If A = X × Λ we omit “on X ×Λ” in the statement.

Proposition 2.1. Let X,Λ, C, g be as in Definition 2.3. The following conditions

are equivalent to each other.

(i) g is C-upper semicontinuous.

(ii) For each (x0, λ0) ∈ X × Λ and d ∈ intC(λ0), there is a neighborhood U of

(x0, λ0) such that g(x, λ) ∈ g(x0, λ0) + d− intC(λ0), for all (x, λ) ∈ U .

(iii) For each (x0, λ0) ∈ X × Λ and a ∈ Y , g−1(a− intC(λ0)) is open.

P r o o f. First, we show that (i) and (ii) are equivalent to each other. Let

(x0, λ0) ∈ X×Λ and d ∈ intC(λ0). Let V = d−intC(λ0). Then V is a neighborhood

of θY in Y . If (i) is satisfied, then there is a neighborhood U of (x0, λ0) such that

g(x, λ) ∈ g(x0, λ0) + V − C(λ0) ∀ (x, λ) ∈ U.

Since C(λ0) is a convex cone, −intC(λ0)− C(λ0) = −intC(λ0), we conclude that

g(x, λ) ∈ g(x0, λ0) + d− intC(λ0) ∀ (x, λ) ∈ U,
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i.e., (ii) holds. Conversely, let (x0, λ0) ∈ X × Λ and let V be a neighborhood of θY .

Since C(λ0) is a pointed solid cone, there is d ∈ intC(λ0) such that d ∈ V . If (ii) is

satisfied, there exists a neighborhood U of (x0, λ0) such that

g(x, λ) ∈ g(x0, λ0) + d− intC(λ0) ∀ (x, λ) ∈ U,

and hence, g(x, λ) ∈ g(x0, λ0) + V − C(λ0) for all (x, λ) ∈ U , i.e., (i) holds.

Next, we prove that (ii) and (iii) are equivalent to each other. Assume that, for

each (x0, λ0) ∈ X × Λ and a ∈ Y , g−1(a − intC(λ0)) is open. Let d ∈ intC(λ0),

we have (x0, λ0) ∈ g−1(g(x0, λ0) + d − intC(λ0)), which is open. Thus, there is

a neighborhood U of (x0, λ0) such that U ⊂ g−1(g(x0, λ0) + d− intC(λ0)), i.e.,

g(x, λ) ∈ g(x0, λ0) + d− intC(λ0) ∀ (x, λ) ∈ U.

Conversely, for each a ∈ Y and (x0, λ0) ∈ g−1(a− intC(λ0)), let d = a− g(x0, λ0).

Since d ∈ intC(λ0), there is a neighborhood U of (x0, λ0) such that

g(x, λ) ∈ g(x0, λ0) + d− intC(λ0) ∀ (x, λ) ∈ U,

i.e., U ⊂ g−1(g(x0, λ0) + d− intC(λ0)). Hence, g
−1(a− intC(λ0)) is open. �

Next, we propose other properties of the C-upper semicontinuity.

Proposition 2.2. Let X,Λ, C be as in Definition 2.3 and let f, g : X × Λ → Y

be vector valued mappings. If f and g are C-upper semicontinuous, then

(i) f + g is C-upper semicontinuous;

(ii) kf is C-upper semicontinuous, for each k ∈ (0,∞).

P r o o f. (i) For each (x0, λ0) ∈ X × Λ and d ∈ intC(λ0), since f and g are

C-usc, there are two neighborhoods U1 and U2 of (x0, λ0) such that

f(x, λ) ∈ f(x0, λ0) +
1

2
d− intC(λ0) ∀ (x, λ) ∈ U1,

g(x, λ) ∈ g(x0, λ0) +
1

2
d− intC(λ0) ∀ (x, λ) ∈ U2.

Therefore,

(f + g)(x, λ) ∈ (f + g)(x0, λ0) + d− intC(λ0) ∀ (x, λ) ∈ U = U1 ∩ U2.

Applying Proposition 2.2, we conclude that f + g is C-upper semicontinuous.

(ii) The C-upper semicontinuity of kf can be proved similarly. �

Passing to the C-lower semicontinuity, we also establish conclusions similar to

those in Propositions 2.1 and 2.2.
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Proposition 2.3. Let X , Λ, C, g be as in Definition 2.3. The following conditions

are equivalent to each other.

(i) g is C-lower semicontinuous.

(ii) For each (x0, λ0) ∈ X × Λ and d ∈ intC(λ0), there is a neighborhood U of

(x0, λ0) such that g(x, λ) ∈ g(x0, λ0)− d+ intC(λ0) for all (x, λ) ∈ U .

(iii) For each (x0, λ0) ∈ X × Λ and a ∈ Y , g−1(a+ intC(λ0)) is open.

Proposition 2.4. Let X , Λ, C, f , g be as in Proposition 2.2. If f and g are

C-lower semicontinuous, then

(i) f + g is C-lower semicontinuous;

(ii) kf is C-lower semicontinuous for each k ∈ (0,∞).

If X = Λ = Y = R, C(λ) ≡ R+, and g(x, λ) ≡ g(x), then Propositions 2.1 and 2.3

imply that the C-upper (lower) semicontinuity of g reduces to the ordinary upper

(lower, respectively) semicontinuity of such function.

Definition 2.4. Let λ ∈ Λ and let {λn} ⊂ Λ be a sequence converging to λ. A se-

quence {xn}, xn ∈ K(xn, λn), is said to be an approximating sequence for (WQEPλ)

or (SQEPλ) corresponding to {λn}, if there exists a sequence {εn} ↓ 0 such that, for

each n ∈ N and y ∈ K(xn, λn),

f(xn, y, λn) + εne(λn) ∈ (Y \ −intC(λn)),

or f(xn, y, λn) + εne(λn) ∈ C(λn), respectively.

Definition 2.5. The problem (WQEP) or (SQEP) is said to be well-posed under

perturbations (well-posed, shortly), if for each λ ∈ Λ,

(i) (WQEPλ) or (SQEPλ) has solutions;

(ii) for any sequence {λn} ⊂ Λ converging to λ, every approximating sequence {xn}

for (WQEPλ) or (SQEPλ) corresponding to {λn} has a subsequence converging

to an element in Sw(λ) or Ss(λ), respectively.

The problem (WQEP) or (SQEP) is said to be uniquely well-posed under pertur-

bations (uniquely well-posed, shortly) if for each λ ∈ Λ the solution set Sw(λ) or

Ss(λ) is a singleton, and every approximating sequence for (WQEPλ) or (SQEPλ)

tends to the unique solution, respectively.

Definition 2.6. The problem (WQEP) or (SQEP) is said to be generalized

Hadamard well-posed if, for each λ ∈ Λ,

(i) (WQEPλ) or (SQEPλ) has solutions;

(ii) for any sequence {λn} ⊂ Λ converging to λ and xn ∈ Sw(λn) or xn ∈ Ss(λn),

{xn} has a subsequence converging to some point of Sw(λ) or Ss(λ), respec-

tively.
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The problem (WQEP) or (SQEP) is said to be Hadamard well-posed if for each

λ ∈ Λ the solution set Sw(λ) or Ss(λ) is a singleton, and every xn ∈ Sw(λn) or

xn ∈ Ss(λn), {xn} converges to the unique solution, respectively.

For each λ ∈ Λ, ε > 0, we denote the ε-solution sets of (WQEPλ) and (SQEPλ)

by S̃w(λ, ε) and S̃s(λ, ε), respectively, defined as follows:

S̃w(λ, ε) = {x ∈ K(x, λ) : f(x, y, λ) + εe(λ) ∈ (Y \ −intC(λ)) ∀ y ∈ K(x, λ)},

and S̃s(λ, ε) = {x ∈ K(x, λ) : f(x, y, λ) + εe(λ) ∈ C(λ)) ∀ y ∈ K(x, λ)}.

Lemma 2.2 ([9]). Let S : X ⇒ Y be a set-valued mapping between two topolog-

ical spaces. Then the following assertions hold.

(i) If S(x̄) is compact, then S is usc at x̄ if and only if for any sequence {xn}

convergent to x̄ and yn ∈ S(xn), there is a subsequence {ynk
} convergent to

some y ∈ S(x̄).

(ii) If, in addition, S(x̄) = {y} is a singleton, then the above limit point y must be

y and the whole {yn} converges to y.

3. Main results

Since the existence theory of the equilibrium problems has been intensively studied,

in this paper we only focus on the well-posedness of such problems, and hence we

always assume that the solutions of the problems considered exist in a neighborhood

of the reference point.

Theorem 3.1. Assume that, for given λ ∈ Λ, the following assumptions hold:

(i) f(·, ·, λ) is C-upper semicontinuous;

(ii) K(·, λ) is continuous with compact values.

Then the solution sets Sw(λ) and Ss(λ) are closed in X .

P r o o f. Since the techniques of the proofs are similar, we discuss only the

closedness of Sw(λ). Let an arbitrary sequence {xn} ⊂ Sw(λ) such that xn → x̄ ∈ X .

We need to show that x̄ belongs to Sw(λ). Since xn is a solution of (WQEPλ) for

each n ∈ N, xn ∈ K(xn, λ), and

(3.1) f(xn, y, λ) ∈ (Y \ −intC(λ)) ∀ y ∈ K(xn, λ).

Since K(·, λ) is usc with compact values, x̄ ∈ K(x̄, λ). If x̄ /∈ Sw(λ), then there

exists y0 ∈ K(x̄, λ) such that

f(x̄, y0, λ) ∈ −intC(λ).

657



Due to the openness of −intC(λ), there is a neighborhood V of θY such that

(f(x̄, y0, λ) + V ) ⊂ −intC(λ). Since f(·, ·, λ) is C-usc at (x̄, y0), and xn → x̄,

there exist a neighborhood U of y0 and n0 ∈ N such that for all y ∈ U and n > n0

we have

(3.2) f(xn, y, λ) ∈ f(x̄, y0, λ) + V − C(λ) ⊂ −intC(λ)− C(λ) = −intC(λ).

Due to y0 ∈ K(x̄, λ), K(x̄, λ) ∩ U 6= ∅. Since K(·, λ) is lsc at x̄, there exists n1 ∈ N

such that

(3.3) K(xn, λ) ∩ U 6= ∅ ∀n > n1.

Choose up n > max{n0, n1}. Combining (3.2) with (3.3), we infer the existence of

y ∈ K(xn, λ) ∩ U such that

f(xn, y, λ) ∈ −intC(λ),

which is in contradiction with (3.1). Therefore, x̄ ∈ Sw(λ). �

Now we pass to the semicontinuity results of the approximating solution sets,

which play an important role in the well-posedness for the corresponding problems.

Theorem 3.2. Assume that X is compact, f is C-upper semicontinuous, and K

is continuous with compact values. Then

(a) S̃w is upper semicontinuous with compact values on Λ× R+ if for given λ ∈ Λ

and an arbitrary sequence {λn} ⊂ Λ converging to λ there exists λn0
such that

C(λ) ⊂ C(λn0
).

(b) S̃s is upper semicontinuous with compact values on Λ × R+ if for given λ ∈ Λ

and an arbitrary sequence {λn} ⊂ Λ converging to λ there exists λn0
such that

C(λn0
) ⊂ C(λ).

P r o o f. As an example we present only the proof for (b). We first prove the

upper semicontinuity with compact values of Ss(·) = S̃s(·, 0) on Λ. For each λ ∈ Λ,

Theorem 3.1 yields that Ss(λ) is a closed subset of X , so Ss(λ) is compact. We

show that Ss is usc on Λ. Assume, to arrive at a contradiction, that there exists

λ ∈ Λ such that Ss is not usc at λ. Then there are an open superset V of Ss(λ) and

a sequence {λn} ⊂ Λ, λn → λ such that, for each n ∈ N, there exists xn ∈ Ss(λn)\V .

Since xn ∈ Ss(λn), xn ∈ K(xn, λn) and

f(xn, y, λn) ∈ C(λn) ∀ y ∈ K(xn, λn).
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By the compactness of X , we can assume that xn converges to x̄ for some x̄ ∈ X .

Since K is usc with compact values, K is closed, and hence x̄ ∈ K(x̄, λ). Since

xn /∈ V for all n, x̄ does not belong to Ss(λ) ⊂ V , i.e., there exists y0 ∈ K(x̄, λ) such

that

f(x̄, y0, λ) ∈ (Y \ C(λ)),

and hence, there is a neighborhood B of θY such that

(f(x̄, y0, λ) +B) ⊂ (Y \ C(λ)).

Since f is C-usc at (x̄, y0, λ), there is a neighborhood U of y0 and n0 ∈ N such that

for all y ∈ U and n > n0,

f(xn, y, λn) ∈ f(x̄, y0, λ) +B − C(λ) ⊂ (Y \ C(λ)) − C(λ) ⊂ (Y \ C(λ)).

Since y0 ∈ K(x̄, λ), we have K(x̄, λ) ∩ U 6= ∅. By the lower semicontinuity of K at

(x̄, λ), there exists n1 ∈ N such that for all n > n1,

K(xn, λn) ∩ U 6= ∅.

Applying the assumption in (b), we obtain the existence of n2, where n2 >

max{n0, n1}, C(λn2
) ⊂ C(λ), and hence

(Y \ C(λ)) ⊂ (Y \ C(λn2
)).

Therefore, f(xn2
, y, λn2

) /∈ C(λn2
) for some y ∈ K(xn2

, λn2
)∩U , which is impossible

as xn2
∈ Ss(λn2

). Hence, Ss is usc at λ.

Now we show that S̃s is usc with compact values on Λ × R+. Let g : X × X ×

R+ × Λ → Y be defined by

g(x, y, ε, λ) = f(x, y, λ) + εe(λ).

Since f is C-usc and e is continuous, Proposition 2.2 implies that g is C-usc. Using

the techniques as in the proof for Ss, where f is replaced by g, we conclude that S̃s

is upper semicontinuous with compact values on Λ× R+. �

The essentialness of the assumptions imposed in (a) and (b) of Theorem 3.2 is

shown by the following examples.
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E x am p l e 3.1. Let X = [0, 1
2

π]; Λ = [0, 2]; Y = R
2, K(x, λ) = [ 1

2
λx, x], e(λ) ≡

(1; 1), f(x, y, λ) = (x + cosx;λ− y),

C(λ) =

{
R

2
+, if λ 6= 1,

R× R+, if λ = 1.

ThenX is compact, f andK are continuous with compact values. Direct calculations

give

Sw(λ) =

{
[0, 1

2
π], if λ 6= 1,

[0, 1], if λ = 1,

and

S̃w(λ, ε) =

{
[0, 1

2
π], if λ 6= 1,

[0, ε+ 1] ∩ [0, 1
2

π], if λ = 1.

It is obvious that Sw and S̃w are not usc at 1 and (1, 0), respectively. The reason is

that the imposed assumption in (a) is violated.

E x am p l e 3.2. Let X = [0, 2]; Λ = [0, 1]; Y = R
2, K(x, λ) = [λx, x], e(λ) ≡

(1; 1), f(x, y, λ) = (ex+y;λ− y),

C(λ) =

{
R

2
+, if λ = 1

2
,

R+ × R, if λ 6= 1

2
.

Then X is compact, f and K are continuous with compact values. Easy calculations

yield

Ss(λ) =

{
[0, 1

2
], if λ = 1

2
,

[0, 2], if λ 6= 1

2
,

and

S̃s(λ, ε) =

{
[0, 1

2
+ ε] ∩ [0, 2], if λ = 1

2
,

[0, 2], if λ 6= 1

2
.

It is clear that Ss and S̃s are not usc at 1

2
and (1

2
, 0), respectively. The reason is

that the imposed assumption in (b) is violated.

Although the imposed assumptions in (a) and (b) of Theorem 3.2 cannot be dis-

pensed with in the statement, we can replace such assumptions together with the

imposed condition on f as follows.
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Theorem 3.3. Assume that X is compact and K is continuous with compact

values. Then

(a) S̃w is upper semicontinuous with compact values on Λ×R+ if one of the following

two conditions holds:

(i) f is continuous and Y \ −intC(·) is closed.

(ii) f is C-upper semicontinuous and Y \−intC(·) is H-upper semicontinuous.

(b) S̃s is upper semicontinuous with compact values on Λ×R+ if one of the following

two conditions holds:

(i) f is continuous and C is closed in Λ.

(ii) f is C-upper semicontinuous and C is H-upper semicontinuous.

P r o o f. We verify only (a) as an example. The proof of part (b) is similar.

(i) For given λ ∈ Λ, we first prove that Sw is usc at λ. Suppose to the contrary that

Sw is not usc at λ. Then we can pick a superset U of Sw(λ) and a sequence {λn} in

Λ converging to λ such that there is xn ∈ Sw(λn) \U , for all n. Since X is compact,

we can assume that xn tends to x̄, for some x̄ ∈ X . By the upper semicontinuity

with compact values of K at (x̄, λ), we have x̄ ∈ K(x̄, λ). For each y ∈ K(x̄, λ),

since K is lsc at (x̄, λ), there is yn ∈ K(xn, λn), yn → y. As xn ∈ Sw(λn), we have

f(xn, yn, λn) ∈ (Y \ −intC(λn)).

Combining the closedness of Y \−intC(·) with the continuity of f , we conclude that

f(x̄, y, λ) ∈ (Y \ −intC(λ)),

i.e., x̄ ∈ Sw(λ), which is impossible as xn /∈ U for all n. Hence Sw is usc at λ.

Theorem 3.1 yields that Sw(λ) is a closed subset of X , and hence it is compact.

For given (λ, ε) ∈ Λ × R+, it is clear that g(x, y, ε, λ) = f(x, y, λ) + εe(λ) is

continuous as f and e are continuous. Arguing as above, we conclude that S̃w is

upper semicontinuous with compact values at (λ, ε).

(ii) Similarly to the first part, if Sw is not usc at λ, then there exist a superset

U of Sw(λ) and a sequence {λn} → λ such that there is xn ∈ Sw(λn) \ U for all n,

xn → x̄ ∈ K(x̄, λ). For each y ∈ K(x̄, λ) there is yn ∈ K(xn, λn), yn → y, and

f(xn, yn, λn) ∈ (Y \ −intC(λn)).

For each neighborhood B of θY , there is a balanced neighborhood B1 of θY , i.e.,

−B1 = B1, such that B1 +B1 ⊂ B. Since Y \−intC(·) is H-usc at λ and f is C-usc

at (x̄, y, λ), there is n0 ∈ N such that, for each n > n0, we have

(Y \ −intC(λn)) ⊂ (Y \ −intC(λ)) +B1, and

f(xn, yn, λn) ∈ f(x̄, y, λ) +B1 − C(λ).
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By the balance of B1, we have

f(x̄, y, λ) ∈ f(xn, yn, λn)−B1 + C(λ) = f(xn, yn, λn) +B1 + C(λ),

so,

f(x̄, y, λ) ∈ (Y \ −intC(λn)) +B1 + C(λ).

Since C(λ) is a convex cone, (Y \ −intC(λ)) + C(λ) ⊂ (Y \ −intC(λ)). Therefore,

f(x̄, y, λ) ∈ (Y \ −intC(λ)) +B1 +B1 + C(λ) ⊂ (Y \ −intC(λ)) +B.

Since B is arbitrary and Y \ −intC(λ) is closed, we conclude that f(x̄, y, λ) ∈ (Y \

−intC(λ)), i.e., x̄ ∈ Sw(λ), which is impossible as xn /∈ U for all n. Hence Sw is usc

at λ. Theorem 3.1 yields the closedness of Sw(λ), and hence Sw(λ) is compact as X

is compact.

Using the same arguments as above, the upper semicontinuity with compact values

of S̃w is also established. �

Now let us present an important relationship between well-posedness and stability

of the problems considered.

Theorem 3.4.

(i) The problems (WQEP) and (SQEP) are well-posed under perturbations if and

only if, for each λ ∈ Λ, S̃w and S̃s are upper semicontinuous with compact

values at (λ, 0), respectively.

(ii) The problems (WQEP) and (SQEP) are generalized Hadamard well-posed if

and only if, for each λ ∈ Λ, Sw and Ss are upper semicontinuous with compact

values at λ, respectively.

P r o o f. We show only the well-posedness under perturbations for the problem

(SQEP), since the other cases are similar. Suppose that for given λ ∈ Λ, S̃s is usc

at (λ, 0) and Ss(λ) is compact. Let {λn} ⊂ Λ an arbitrary sequence converging to

λ and {xn} an approximating sequence for (SQEPλ) corresponding to {λn}. Then

there exists a sequence {εn} ↓ 0 such that, for each n ∈ N, xn ∈ K(xn, λn) and

f(xn, y, λn) + εne(λn) ∈ C(λn) ∀ y ∈ K(xn, λn),

i.e., xn ∈ S̃s(λn, εn). Since S̃s is upper semicontinuous with compact values at (λ, 0),

Lemma 2.2 implies that there is a subsequence {xnk
} of {xn}, xnk

→ x̄, for some

x̄ ∈ Ss(λ). Therefore, the problem (SQEP) is well-posed.
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Conversely, suppose that the problem (SQEP) is well-posed. Let λ ∈ Λ,

{(λn, εn)} ⊂ Λ × R+, with (λn, εn) → (λ, 0) and xn ∈ S̃s(λn, εn). Then, for

each n ∈ N, xn ∈ K(xn, λn), and

f(xn, y, λn) + εne(λn) ∈ C(λn) ∀ y ∈ K(xn, λn),

i.e., {xn} is an approximating sequence of (SQEPλ) corresponding to {λn}. Using the

well-posedness of the problem (SQEP), we can find a subsequence of {xn} converging

to some point of Ss(λ) = S̃s(λ, 0). Using Lemma 2.2, we obtain that S̃s is upper

semicontinuous with compact values at (λ, 0). �

Combining Theorems 3.2 and 3.3, we establish the results of well-posedness under

perturbations and generalized Hadamard well-posedness for the problems (WQEP)

and (SQEP).

Corollary 3.1.

(a) If the conditions of Theorem 3.2(a) or those of Theorem 3.3(a) are satisfied,

then the problem (WQEP) is well-posed under perturbations and generalized

Hadamard well-posed.

(b) If the conditions of Theorem 3.2(b) or those of Theorem 3.3(b) are satisfied,

then the problem (SQEP) is well-posed under perturbations and generalized

Hadamard well-posed.

Passing to uniquely well-posedness under perturbations and Hadamard well-

posedness, we obtain results similar to those of Theorem 3.4 and Corollary 3.1.

Theorem 3.5. Suppose that, for each λ ∈ Λ, (WQEPλ) and (SQEPλ) have

a unique solution. Then

(i) (WQEP) and (SQEP) are uniquely well-posed under perturbations if and only

if, for each λ ∈ Λ, S̃w and S̃s are upper semicontinuous with compact values at

(λ, 0), respectively;

(ii) (WQEP) and (SQEP) are Hadamard well-posed if and only if, for each λ ∈ Λ,

Sw and Ss are upper semicontinuous with compact values at λ, respectively.

Corollary 3.2.

(a) If the conditions of Theorem 3.2(a) or those of Theorem 3.3(a) are satisfied and

assuming further that, for each λ ∈ Λ, the problem (WQEPλ) has a unique solu-

tion, then (WQEP) is uniquely well-posed under perturbations and Hadamard

well-posed.
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(b) If the conditions of Theorem 3.2(b) or those of Theorem 3.3(b) are satisfied and

assuming further that, for each λ ∈ Λ, the problem (SQEPλ) has a unique so-

lution, then (SQEP) is uniquely well-posed under perturbations and Hadamard

well-posed.

4. Applications

4.1. Lower and upper bounded equilibrium problems. Let X and Λ be

as in Section 2. Let g : X × X × Λ → R be a vector valued mapping and let

α, β ∈ R+, α < β, be fixed. For each λ ∈ Λ, we consider the lower and upper

bounded equilibrium problem studied in [19], [45]:

(BEPλ) Find x̄ ∈ K(λ) such that, for each y ∈ K(λ),

α 6 g(x̄, y, λ) 6 β.

Setting Y = R
2, C(λ) ≡ R

2
+ and f(x, y, λ) = (g(x, y, λ)−α;β− g(x, y, λ)), (SQEPλ)

reduces to (BEPλ).

Combining Theorems 3.2 and 3.4, we establish sufficient conditions for the well-

posedness of the lower and upper bounded equilibrium problem as follows.

Corollary 4.1. Assume that

(i) g is continuous;

(ii) K is continuous and with compact values.

Then the family {(BEPλ) : λ ∈ Λ} is well-posed under perturbations and gener-

alized Hadamard well-posed. Moreover, if the solution set is a singleton, then the

problem is uniquely and Hadamard well-posed.

Recently, there have been many works devoted to the lower and upper bounded

equilibrium problems, such as existence conditions [19], [45], [21], stability conditions

[46], and the references therein. To the best of our knowledge, there have not been any

papers on the well-posedness for the lower and upper bounded equilibrium problems.

4.2. Traffic network problems. The Wardrop equilibrium flows for the trans-

portation network problem was first introduced in 1952 by Wardrop [44] together

with a basic traffic network principle. Since then, traffic network problems have been

intensively studied from both the theory and methodology view points. Contribut-

ing to the development of traffic network problems, Smith [41] derived a spotlight

point by claiming that the Wardrop equilibrium flows of a network are expressed

as solutions of the corresponding variational inequality. Because of diverse prac-

tical situations, these demands may depend on the equilibrium vector flows which
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were considered in [20], [36]; the so-called elastic network problems, and then the

Wardrop equilibrium flows of the elastic network problem are obtained as solutions

of the corresponding quasivariational inequality.

Let us recall the mathematical model of the elastic traffic network problem studied

in [2], [6], [20], [36]. Let N the set of nodes and L that of arcs (or links). We denote

the collection of origin-destination pairs (O/D pairs for short) byW = (W1, . . . ,Wl).

Suppose that the pair Wj , j = 1, . . . , l, is connected by a set Pj of paths and Pj

contains rj paths, rj > 1. Let us denote the path vector flow by F = (F1, . . . , Fm),

where m = r1 + . . . + rl. The capacity of these paths must be taken into account

in practice (see, [26]), and hence we assume that the compact capacity restriction is

defined by

F ∈ X := {F ∈ R
m : 0 6 γs 6 Fs 6 Γs, s = 1, . . . ,m}.

Suppose that the travel cost on the path flow Fs, s = 1, . . . ,m, depends on the

whole path vector flow F and is Ts(F ) > 0. Then we derive the path cost vector

T (F ) = (T1(F ), . . . , Tm(F )).

A path vector flow H is named an equilibrium vector flow as defined in [44], if for

each Wj and p, s ∈ Pj ,

[Tp(H) < Ts(H)] =⇒ [Hs = γs or Hp = Γp].

Now assume that the perturbation on the traffic is expressed by a parameter λ of

a metric space Λ. Suppose that the travel demands gj of the O/D pair Wj depend

on λ ∈ Λ and also on the equilibrium vector flow H as interpreted in [20], [36]. We

denote the travel vector demand by g = (g1, . . . , gl) and set

ϕjs =

{
1, if s ∈ Pj ,

0, if s /∈ Pj ,

ϕ = {ϕjs}, j = 1, . . . , l; s = 1, . . . ,m.

Then the path vector flows meeting the travel demands are termed the feasible path

vector flows and form the constraint set

K(H,λ) = {F ∈ X : ϕF = g(H,λ)}.

The matrix ϕ is called the O/D pair—path incidence matrix. Assume further that

the path costs also depend on the parameter λ, Ts(F, λ), s = 1, . . . ,m.

Our traffic network problem is equivalent to a quasivariational inequality as fol-

lows.

665



Lemma 4.1 ([41]). A path vector flow H ∈ K(H,λ) is an equilibrium flow if and

only if it is a solution of the following quasivariational inequality:

(QVIλ) find H ∈ K(H,λ) such that, for each F ∈ K(H,λ),

〈T (H,λ), F −H〉 > 0.

Setting f(H,F, λ) = 〈T (H,λ), F −H〉, (WQEPλ) and (SQEPλ) become (QVIλ).

Lemma 4.2 ([6]). If g is continuous at (H,λ), then K is continuous with convex

and compact values at (H,λ).

The following result is derived from Theorems 3.2, 3.4 and Lemmas 4.1, 4.2.

Corollary 4.2. If g and T are continuous, then the family of parametric elastic

network problems is well-posed under perturbations and generalized Hadamard well-

posed. Furthermore, if (QVIλ) has a unique solution, then this problem is uniquely

well-posed under perturbations and Hadamard well-posed.
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