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Abstract. We consider the viscous Allen-Cahn and Cahn-Hilliard models with an ad-
ditional term called the nonlinear Willmore regularization. First, we are interested in
the well-posedness of these two models. Furthermore, we prove that both models possess
a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned,
we construct a robust family of exponential attractors, i.e. attractors which are continuous
with respect to the perturbation parameter. Finally, we give some numerical simulations
which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard
equation.
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1. Introduction

The Allen-Cahn equation (see [1])

(1.1)
∂u

∂t
= ∆u− F ′(u)

and the Cahn-Hilliard equation (see [6])

(1.2)
∂u

∂t
= ∆(F ′(u)−∆u)

are central to material sciences, as they characterize important qualitative features

of two-phase systems. Each of these equations governs the evolution of an order
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parameter u = u(t, x): the Allen-Cahn equation describes the ordering of atoms

within unit cells in a lattice, while the Cahn-Hilliard equation, a conservation law,

describes the transport of atoms between unit cells.

Here, f is the derivative of a double-well potential F whose wells characterize

the phases. A thermodynamically relevant potential F is the following logarithmic

function which follows from a mean-field model:

(1.3) Flog(s) =
λ1

2
(1− s2) +

λ2

2

(

(1− s) ln
1− s

2
+ (1 + s) ln

1 + s

2

)

,

s ∈ (−1, 1), 0 < λ2 6 λ1,

hence

(1.4) flog(s) = −λ1s+
λ2

2
ln

1 + s

1− s
,

although, as this will be the case in this article, such a function is very often approx-

imated by regular ones, typically,

(1.5) F (s) =
1

4
(s2 − 1)2,

hence

(1.6) f(s) = s3 − s

(see [5], [6], [9], [31], and [13]).

Both the Allen-Cahn and Cahn-Hilliard equations are based on the total free

energy

(1.7) Ψ(u) =

∫

V

(

F (u) +
1

2
‖∇u‖2

)

dV,

with F (u) the “coarse grain” free energy, a double-well potential whose wells define

the phases. Each of these equations governs the evolution of an order parameter

u = u(t, x). The Allen-Cahn equation describes the evolution of a non-conserved

order field during the anti-phase domain coarsening. It can be identified by the

phase variable u appearing in the context of diffuse interface modelling. The Cahn-

Hilliard approach, on the other hand, consists in assuming that the interface thickness

between two phases in the system is small but greater than the real physical one.

One phase is described geometrically by the smooth function u which is equal to 1

in one phase and −1 outside, and which varies continuously in the interfaces from

one phase to the other (see Figure 1).
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Figure 1. Sharp and diffuse interfaces

The standard derivation of the Allen-Cahn equation begins by assuming the re-

laxation dynamics (see [1])
∂u

∂t
= −

δΨ

δu
,

where δ/δu is the variational derivative. To obtain (1.1), we write formally for a small

variation and assuming proper boundary conditions,

δΨ =

∫

Ω

(∇u · ∇δu+ f(u)δu) dx =

∫

Ω

(−∆u+ f(u))δu dx.

The Cahn-Hilliard equation is derived analogously. The starting point is to write

the mass conservation and the relaxation dynamics (see [16]), i.e.

∂u

∂t
= ∆µ, µ =

∂Ψ

∂u
,

and this leads to equation (1.2).

A slightly more complicated model, which is based on a new balance law for

microforces and which takes into account the working of internal microforces, was

introduced in [19] (we can note that microforces describe forces which are associated

with microscopic configurations of atoms, whereas standard forces are associated

with macroscopic length scales, hence a reason to consider separate balance laws

for microforces and standard forces). For an isotropic material, this leads to the

following generalizations of equations (1.1) and (1.2):

(1.8)
∂

∂t
(u+ ξ(−∆)u)−∆u+ f(u) = 0
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and

(1.9)
∂

∂t
(u+ ξ(−∆)u) = ∆(−∆u+ f(u)),

where ξ is a (small) positive parameter and where the term ξ∂tu describes the in-

fluence of the internal microforces. These equations can also be viewed as viscous

Allen-Cahn and Cahn-Hilliard equations, see e.g. [18], [3], [29], [19].

In particular, the viscous Cahn-Hilliard equation was proposed in [29] as a model

of phase separation in mixtures of polymers, where the intermolecular friction forces

can be significant. This model arises as a singular limit of the phase-field model in

phase transition. It contains both the Cahn-Hilliard and Allen-Cahn equations as

particular limits (see [3], [14]).

These equations have been studied intensively, see e.g. the review articles [14], [30]

and, among many references, [29], [4]. In particular, in the case of regular potentials,

the problem is well understood and one has existence and uniqueness of solutions

and existence of the finite dimensional global attractor.

Furthermore, a robust family of exponential attractors with regular nonlinear

terms for equation (1.9) has been studied in [32], while in [11] the authors study

the one with singular nonlinear terms. In addition, in [27] the authors introduce the

viscous Cahn-Hilliard equation but with dynamic boundary conditions.

In this paper we deal with the asymptotic behavior of the two equations with an

additional term describing the influence of the internal microforces of order four and

six in space, respectively.

These evolution equations arise for instance in anisotropic crystal models (see

e.g. [35]), since the regularization term which contains a small parameter is added

to the Ginzburg-Landau free energy. More precisely, we will consider the Willmore

regularization of the viscous Allen-Cahn and the viscous Cahn-Hilliard equations.

Indeed, denoting by β > 0 a small regularization parameter, the anisotropic energy

functional reads

(1.10) E(u) =

∫

Ω

(

γ(n)
(1

2
|∇u|2 + F (u)

)

+
β

2
ω2

)

dx,

where Ω ⊂ R
3 is a smooth domain containing the two-phase systems and ω =

f(u) − ∆u. Moreover, n = ∇u/|∇u| is the unit normal and γ(n) accounts for

anisotropy effects. The Willmore regularization is relevant, e.g., in determining the

equilibrium shape of a crystal in its own liquid matrix when the anisotropy effects

are strong. Indeed, in that case the equilibrium interface may not be a smooth curve

but may present facets and corners with slope of discontinuities (see e.g. [33]), which

can lead to an ill-posed problem and requires regularization.
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Although such models have already been studied from a numerical point of view [7],

[36], to the best of our knowledge, their mathematical analysis has been performed

only when γ is constant (γ(n) = ±1, see [25] and [23]) and very recently, in a slightly

different anisotropic model [21], [22]. However, while the choice γ(n) = −1 does not

lead to dissipativity, in the aforementioned anisotropic case it is difficult to carry

the study beyond existence and uniqueness of solutions. Therefore, because in this

paper we are concerned with attractors, we restrict ourselves to γ(n) = 1.

In that case, the relaxation dynamics leads to the (isotropic) Willmore regulariza-

tion of the viscous Allen-Cahn equation

∂u

∂t
+ ξ(−∆)

∂u

∂t
−∆u+ f(u) + βωf ′(u)− β∆ω = 0,(1.11)

ω = f(u)−∆u,(1.12)

whereas the mass conservation and the relaxation dynamics provide the (isotropic)

Willmore regularization of the viscous Cahn-Hilliard equation

∂u

∂t
= ∆K(u),(1.13)

K(u) = f(u)−∆u+ ξ∂tu+ βωf ′(u)− β∆ω,(1.14)

ω = f(u)−∆u.(1.15)

When ξ is equal to zero, we see that (1.11)–(1.12) formally becomes the regularized

Allen-Cahn equation (see [25]) and (1.13)–(1.15) the regularized Cahn-Hilliard equa-

tion (see [23]). We also note that the authors in [8] study the Willmore regularization

in terms of finite dimensional exponential attractors (depending on a small regular-

ization parameter β > 0), for the isotropic Allen-Cahn and Cahn-Hilliard equations

based on (1.10).

Our aim in this article is to study the asymptotic behavior of the viscous Allen-

Cahn and Cahn-Hilliard equations, respectively, (1.11) and (1.13)–(1.15). First, we

treat the viscous Allen-Cahn model with Willmore regularization. We prove the

well-posedness, existence of global attractors and construct a family of robust expo-

nential attractors. Then we study the viscous Cahn-Hilliard model and prove the

existence, uniqueness of solutions and the existence of global attractors. Finally,

we give some numerical results, illustrating the influence of the viscosity parame-

ter ξ on the isotropic and strong anisotropic Cahn-Hilliard equations with willmore

regularization.

We recall that the global attractor A is the smallest (for the inclusion) compact set

of the phase space which is invariant by the flow (i.e. S(t)A = A for all t > 0, where

S(t) denotes the solution operator mapping the initial datum onto the solution at
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time t) and attracts all bounded sets of initial data as time goes to infinity; it thus

appears as a suitable object in view of the study of the asymptotic behavior of the

system. Furthermore, the finite-dimensionality means, roughly speaking, that even

though the initial phase space is infinite-dimensional, the reduced dynamics is, in

some proper sense, finite-dimensional and can be described by a finite number of pa-

rameters. We refer the reader to [2], [28], and [34] for more details and discussions on

this. Now, an exponential attractorM is only positively invariant (i.e. S(t)M ⊂ M

for all t > 0), contains the global attractor, has by definition finite fractal dimension

and attracts (uniformly) the bounded sets of initial data. Compared to the global

attractor, an exponential attractor is expected to be more robust under perturba-

tions. Indeed, the rate of attraction of trajectories to the global attractor may be

slow and it is very difficult, if not impossible, to estimate this rate of attraction with

respect to the physical parameters of the problem in general. As a consequence,

global attractors may change drastically under small perturbations. We refer the

reader to [10] and [28] for discussions on this subject.

Assumptions and notation. As far as the nonlinear term f is concerned, we

assume more generally that f is of class C4 and that

f(0) = 0, f ′(s) > −c0, c0 > 0, s ∈ R,(1.16)

f(s)s > c1F (s)− c2 > −c′2, c1 > 0, c2, c′2 > 0, s ∈ R,(1.17)

where F (s) =
∫ s

0
f(τ) dτ ,

sf(s)f ′(s)− f(s)2 > c3f(s)
2 − c4, c3 > 0, c4 > 0, s ∈ R,(1.18)

|f ′(s)| 6 ε|f(s)|+ c5 ∀ ε > 0, c5(ε) > 0, s ∈ R,(1.19)

sf ′′(s) > 0, s ∈ R.(1.20)

We can note that (1.16)–(1.19) are satisfied by polynomials of the form f(s) =
∑2p+1

i=1 ais
i, a2p+1 > 0, and in particular by the usual cubic nonlinear term (1.6).

Assumption (1.20), which allows to obtain dissipative estimates (see below), is more

restrictive; it is however reasonable as it is satisfied by the cubic nonlinear term (1.6).

We denote by ((·, ·)) the usual L2-scalar product with associated norm ‖·‖ and

we set ‖·‖−1 = ‖(−∆)−1/2 · ‖, where (−∆)−1 is the inverse minus Laplace operator

associated with Neumann boundary conditions and acting on functions with null

average. Furthermore, ‖·‖X denotes the norm in the Banach space X .

We set, whenever it makes sense, 〈·〉 = Vol−1(Ω)
∫

Ω
· dx, being understood that

for ϕ ∈ H−1(Ω) = H1(Ω)′, 〈ϕ〉 = Vol−1(Ω)〈ϕ, 1〉H−1(Ω),H1(Ω), and we note that

ϕ 7→ (‖ϕ− 〈ϕ〉2‖2
−1 + 〈ϕ〉2)1/2

is a norm on H−1(Ω) which is equivalent to the usual one.
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We define the following spaces:

(1.21) Vξ =

{

H1(Ω) for ξ > 0,

L2(Ω) for ξ = 0
and Hξ =

{

L2(Ω) for ξ > 0,

H−1(Ω) for ξ = 0,

where the spaces Vξ and Hξ are equipped with the following norms, respectively:

(1.22) ‖v‖2Vξ
= ‖v‖2 + ξ‖∇v‖2 and ‖v‖2Hξ

= ‖v‖2
−1 + ξ‖v‖2.

Throughout the paper, the same letter c, cM (and sometimes c
′, c′′ and c′′′) denotes

constants which may vary from line to line. Similarly, the same letter Q denotes

monotone increasing (with respect to each argument) functions which may vary

from line to line.

2. Viscous Allen-Cahn system

Setting the problem: Let Ω be an open bounded domain of Rn, n = 1, 2, or 3,

with a smooth boundary Γ. The unknown function is a scalar u = u(x, t), x ∈ Ω,

t ∈ R and we consider the viscous Allen-Cahn system (for 0 6 ξ < 1 and taking

β = 1)

∂u

∂t
+ ξ(−∆)

∂u

∂t
−∆u+ f(u) + ωf ′(u)−∆ω = 0 on Ω,(2.1)

ω = f(u)−∆u on Ω(2.2)

together with the Dirichlet boundary condition

(2.3) u = ω = 0 on Γ,

and initial data

(2.4) u|t=0 = u0,

where f is the cubic function defined by (1.6) and F is the antiderivative of f defined

by (1.5).

2.1. A priori estimates. We multiply (2.1) by ∂u/∂t and have, integrating

over Ω and by parts,

∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+
1

2

d

dt
‖∇u‖2 +

d

dt

∫

Ω

F (u) dx+
((

ωf ′(u)−∆ω,
∂u

∂t

))

= 0,
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which yields, noting that it follows from (2.2) that

((

ωf ′(u),
∂u

∂t

))

−
((

∆ω,
∂u

∂t

))

=
1

2

d

dt
‖ω‖2,

the differential equality

(2.5)
d

dt

(

‖∇u‖2 + 2

∫

Ω

F (u) dx+ ‖ω‖2
)

+ 2
(∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2)

= 0.

In particular, it follows from (2.5) that the energy decreases along the trajectories

as expected.

We then multiply (2.1) by u and obtain, owing to (2.2),

(2.6)
1

2

d

dt
‖u‖2 +

ξ

2

d

dt
‖∇u‖2 + ‖∇u‖2 + ((f(u), u)) +

∫

Ω

uf(u)f ′(u) dx+ ‖∆u‖2

+ 2((f ′(u)∇u,∇u)) + ((uf ′′(u)∇u,∇u)) = 0,

which yields, owing again to (2.2) and using integration by parts,

(2.7)
1

2

d

dt
‖u‖2Vξ

+ ‖∇u‖2 + ((f(u), u)) + ‖ω‖2

+

∫

Ω

(uf(u)f ′(u)− f(u)2) dx+ ((uf ′′(u)∇u,∇u)) = 0,

hence, in view of (1.17), (1.18), and (1.20),

(2.8)
d

dt
‖u‖2Vξ

+ c

(

‖∇u‖2 + 2

∫

Ω

F (u) dx+ ‖ω‖2
)

6 c′, c > 0.

Summing (2.5) and (2.8), we find a differential inequality of the form

(2.9)
dE1,ξ

dt
+ c

(

E1,ξ +
∥

∥

∥

∂u

∂t

∥

∥

∥

2

Vξ

)

6 c′, c > 0,

where

(2.10) E1,ξ = ‖u‖2Vξ
+ 2

∫

Ω

F (u) dx+ ‖ω‖2.

In particular, it follows from (2.9) and Gronwall’s lemma that

(2.11) E1,ξ(t) 6 E1,ξ(0)e
−ct + c′, c > 0,
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hence, in view of (1.16) (which yields that ‖ω‖2 > ‖∆u‖2 + ‖f(u)‖2 − 2c0‖∇u‖2),

(2.11) and classical elliptic regularity results,

(2.12) ‖u(t)‖H2(Ω) 6 Q(‖u0‖H2(Ω))e
−ct + c′, c > 0, t > 0.

Next, we multiply (2.1) by −∆u and integrate over Ω to get

(2.13)
1

2

d

dt
‖∇u‖2 +

ξ

2

d

dt
‖∆u‖2 + ‖∆u‖2 + ((f ′(u)∇u,∇u))− ((ωf ′(u),∆u))

+ ((∆f(u),∆u)) + ‖∇∆u‖2 = 0.

Noting that, owing to the continuous embedding H2(Ω) ⊂ C(Ω) (here n 6 3)

and (2.2),

(2.14) |((f ′(u)∇u,∇u))|+ |((ωf ′(u),∆u))|+ |((∆f(u),∆u))| 6 Q(‖u‖H2(Ω))

(indeed, it follows from (2.2) that ‖ω‖ 6 Q(‖u‖H2(Ω))), we obtain

(2.15)
d

dt
(‖∇u‖2 + ξ‖∆u‖2) + c‖u‖2H3(Ω) 6 Q(‖u‖H2(Ω)), c > 0.

We then multiply (2.1) by −∆∂u/∂t and find, owing to (2.2),

(2.16)
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

+
1

2

d

dt
‖∆u‖2

+
((

f ′(u)∇u,∇
∂u

∂t

))

+
((

∇(ωf ′(u)),∇
∂u

∂t

))

−
((

∇∆f(u),∇
∂u

∂t

))

+
1

2

d

dt
‖∇∆u‖2 = 0.

We have

(2.17)
∣

∣

∣

((

f ′(u)∇u,∇
∂u

∂t

))∣

∣

∣
6 ‖f ′(u)‖L∞(Ω)‖∇u‖

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

6
1

8

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+ ‖f ′(u)‖2L∞(Ω)‖∇u‖2

6
1

8

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H2(Ω))

(here we have used the fact that H2(Ω) is continuously embedded in C(Ω), noting

that

|f ′(u)| 6 Q(|u|) 6 Q(‖u‖L∞(Ω))
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for some monotone increasing and continuous function Q) and, proceeding similarly,

(2.18)
∣

∣

∣

((

∇(ωf ′(u)),∇
∂u

∂t

))∣

∣

∣

6

∣

∣

∣

((

ωf ′′(u)∇u,∇
∂u

∂t

))∣

∣

∣
+
∣

∣

∣

((

f ′(u)∇ω,∇
∂u

∂t

))∣

∣

∣

6 ‖ω‖ ‖f ′′(u)‖L∞(Ω)‖∇u‖
∥

∥

∥
∇
∂u

∂t

∥

∥

∥
+ ‖f ′(u)‖L∞(Ω)‖∇ω‖

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

6
1

8

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H2(Ω))(‖∇∆u‖2 + 1),

noting that it follows from (2.2) that

‖∇ω‖2 6 Q(‖u‖H2(Ω)) + 2‖∇∆u‖2.

Finally,

∇∆f(u) = f ′′(u)∆u∇u+ f ′(u)∇∆u + f ′′′(u)∇u|∇u|2 + 2f ′′(u)∇∇u · ∇u,

so, owing to (2.12), the Hölder’s inequality and proper Sobolev embeddings,

(2.19)
∣

∣

∣

((

∇∆f(u),∇
∂u

∂t

))∣

∣

∣
6

∣

∣

∣

((

f ′′(u)∆u∇u,∇
∂u

∂t

))∣

∣

∣
+
∣

∣

∣

((

f ′(u)∇∆u,∇
∂u

∂t

))∣

∣

∣

+
∣

∣

∣

((

f ′′′(u)|∇u|2∇u,∇
∂u

∂t

))∣

∣

∣
+ 2

∣

∣

∣

((

f ′′(u)∇∇u · ∇u,∇
∂u

∂t

))∣

∣

∣

6 ‖f ′′(u)‖L∞(Ω)‖∆u‖ ‖∇u‖
∥

∥

∥
∇
∂u

∂t

∥

∥

∥
+ ‖f ′(u)‖L∞(Ω)‖∇∆u‖

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

+ ‖f ′′′(u)‖L∞(Ω)‖∇u‖2L4(Ω)‖∇u‖
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

+ 2‖f ′′(u)‖L∞(Ω)‖∆u‖ ‖∇u‖
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

6
1

4

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H2(Ω))‖∇∆u‖2.

It thus follows from (2.16)–(2.19) that

(2.20)
d

dt
(‖∆u‖2+ ‖∇∆u‖2)+

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

6 Q(‖u‖H2(Ω))(‖∇∆u‖2+1).

We multiply (2.1) by ∆2u and integrate over Ω to obtain, owing to (2.2),

(2.21)
1

2

d

dt
‖∆u‖2 +

ξ

2

d

dt
‖∇∆u‖2 + ‖∇∆u‖2 + ((f(u),∆2u)) + ((ωf ′(u),∆2u))

− ((∆f(u),∆2u)) + ‖∆2u‖2 = 0,
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which yields, noting that

|((f(u),∆2u))|+ |((ωf ′(u),∆2u))|+ |((∆f(u),∆2u))| 6
1

2
‖∆2u‖2 +Q(‖u‖H2(Ω)),

the inequality

(2.22)
d

dt
(‖∆u‖2 + ξ‖∇∆u‖2) + ‖u‖2H4(Ω) 6 Q(‖u‖H2(Ω)).

We finally multiply (2.1) by ∆2 ∂u

∂t
and integrate over Ω to find, owing to (2.2),

(2.23)
∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∇∆

∂u

∂t

∥

∥

∥

2

+
1

2

d

dt
‖∇∆u‖2

+
((

∆f(u),∆
∂u

∂t

))

+
((

∆(ωf ′(u)),∆
∂u

∂t

))

−
((

∆2f(u),∆
∂u

∂t

))

+
1

2

d

dt
‖∆2u‖2 = 0.

We have

(2.24)
∣

∣

∣

((

∆f(u),∆
∂u

∂t

))∣

∣

∣
6

1

8

∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H2(Ω)).

Furthermore,

∆(ωf ′(u)) = f ′(u)∆ω + 2f ′′(u)∇u · ∇ω + ωf ′′(u)∆u+ ωf ′′′(u)|∇u|2,

which yields, owing to (2.2),

(2.25)
∣

∣

∣

((

∆(ωf ′(u)),∆
∂u

∂t

))∣

∣

∣

6

∣

∣

∣

((

f ′(u)∆ω,∆
∂u

∂t

))∣

∣

∣
+ 2

∣

∣

∣

((

f ′′(u)∇u · ∇ω,∆
∂u

∂t

))∣

∣

∣

+
∣

∣

∣

((

ωf ′′(u)∆u,∆
∂u

∂t

))
∣

∣

∣
+
∣

∣

∣

((

ωf ′′′(u)|∇u|2,∆
∂u

∂t

))
∣

∣

∣

6 ‖f ′(u)‖L∞(Ω)‖∆ω‖
∥

∥

∥
∆
∂u

∂t

∥

∥

∥
+ 2‖f ′′(u)‖L∞(Ω)‖∇u‖‖∇ω‖

∥

∥

∥
∆
∂u

∂t

∥

∥

∥

+ ‖ω‖‖f ′′(u)‖L∞(Ω)‖∆u‖
∥

∥

∥
∆
∂u

∂t

∥

∥

∥
+ ‖ω‖‖f ′′′(u)‖L∞(Ω)‖∇u‖2L4(Ω)

∥

∥

∥
∆
∂u

∂t

∥

∥

∥

6
1

8

∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H3(Ω))(‖∆
2u‖2 + 1).
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Finally,

∆2f(u) = f ′(u)∆2u+ 2f ′′(u)∇∆u · ∇u+ f ′′(u)|∆u|2 + 2f ′′(u)∇∇u · ∇∇u

+ 4f ′′′(u)∇∇u · ∇u · ∇u+ f ′′′(u)|∇u|2∆u+ f (4)(u)|∇u|4

and, proceeding as above, we can prove that

(2.26)
∣

∣

∣

((

∆2f(u),∆
∂u

∂t

))∣

∣

∣
6

1

4

∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H3(Ω))(‖∆
2u‖2 + 1).

It thus follows from (2.23)–(2.26) that

(2.27)
d

dt
(‖∇∆u‖2+‖∆2u‖2)+

∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

+ξ
∥

∥

∥
∇∆

∂u

∂t

∥

∥

∥

2

6 Q(‖u‖H2(Ω))(‖∆
2u‖2+1).

2.2. Well-posedness and existence of the global attractor. We first state

the following theorem.

Theorem 2.1. Assume that u0 ∈ H2(Ω) ∩ H1
0 (Ω). Then (2.1)–(2.4) possesses

a unique variational solution u such that

u ∈ L∞(R+;H2(Ω) ∩H1
0 (Ω)) ∩ L∞(τ,∞;H4(Ω))

and

∂u

∂t
∈ L2(0, T ;L2(Ω)) ∩ L2(τ, T ;H2(Ω)) ∀ τ > 0, ∀ 0 < τ 6 T, for ξ = 0,

∂u

∂t
∈ L2(0, T ;H1(Ω)) ∩ L2(τ, T ;H3(Ω)) ∀ τ > 0, ∀ 0 < τ 6 T, for ξ > 0.

Furthermore,

ω ∈ L∞(R+;L2(Ω)) ∩ L∞(τ,∞;H2(Ω) ∩H1
0 (Ω)) ∀ τ > 0.

P r o o f. a) Uniqueness: Let (u1, ω1) and (u2, ω2) be two solutions of (2.1)–(2.4)

with initial data u0,1 and u0,2 respectively, where ωi, i = 1, 2, are defined by (2.2).

We set u = u1 − u2, ω = ω1 − ω2, u0 = u0,1 − u0,2 and have

∂u

∂t
+ ξ(−∆)

∂u

∂t
−∆u + f(u1)− f(u2) + ω1f

′(u1)− ω2f(u2)−∆ω = 0,(2.28)

ω = f(u1)− f(u2)−∆u,(2.29)

u = ω = 0 on Γ,(2.30)

u|t=0 = u0.(2.31)
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We multiply (2.28) by u and obtain, integrating over Ω,

(2.32)
1

2

d

dt
‖u‖2 +

ξ

2

d

dt
‖∇u‖2 + ‖∇u‖2 + ((f(u1)− f(u2), u))

+ ((ω1f
′(u1)− ω2f

′(u2), u))− ((∆(f(u1)− f(u2)), u)) + ‖∆u‖2 = 0.

We note that, owing to (1.16),

(2.33) ((f(u1)− f(u2), u)) > −c0‖u‖
2

and that, owing to (2.11), (2.29), the regularity of f and Poincaré’s inequality,

(2.34) |((ω1f
′(u1)− ω2f

′(u2), u))| 6 |((ωf ′(u1), u))|+ |((ω2(f
′(u1)− f ′(u2)), u))|

6 ‖ω‖ ‖u‖ ‖f ′(u)‖L∞(Ω) + ‖ω2‖ ‖u‖
2
L4(Ω)‖f

′′(u)‖L∞(Ω)

6 Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))(‖ω‖‖u‖+ ‖ω2‖‖u‖
2
L4(Ω))

6 Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))(‖∆u‖‖u‖+ ‖∇u‖2)

6 Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))‖u‖‖∆u‖

6
1

4
‖∆u‖2 +Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))‖u‖

2;

here we have used the interpolation inequality

‖∇u‖2 6 c‖u‖‖∆u‖

and the fact that

(2.35) ‖ω‖ 6 Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))‖u‖H2(Ω),

which follows from (2.29). Finally,

(2.36) |((f(u1)− f(u2),∆u))| 6
1

8
‖∆u‖2 +Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))‖u‖

2.

We finally deduce from (2.32)–(2.36) that

(2.37)
d

dt
(‖u‖2 + ξ‖∇u‖2) + ‖∆u‖2 6 Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))‖u‖

2

6 Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))(‖u‖
2 + ξ‖∇u‖2).

Gronwall’s lemma then yields

(2.38) ‖u(t)‖2Vξ
6 cec

′t‖u0‖
2
Vξ
,
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where c and c′ only depends on ‖u0,i‖H2(Ω), i = 1, 2, (and are in particular indepen-

dent of ξ).

This gives the uniqueness as well as the continuous dependence with respect to

the initial data in the Vξ-norm.

b) Existence: The proof of existence is based on a classical Galerkin scheme and

the a priori estimates derived in the previous subsection.

A weak (variational) formulation for (2.1)–(2.4) reads

((∂u

∂t
, v
))

− ξ
((

∆
∂u

∂t
, v
))

− ((∆u, v)) + ((f(u), v)) + ((ωf ′(u), v))(2.39)

−((∆ω, v)) = 0 ∀ v ∈ H1(Ω),

((ω, v)) = ((f(u), v))− ((∆u, v)) ∀ v ∈ H1(Ω),(2.40)

u|t=0 = u0.(2.41)

We can note that all estimates in Subsection 3.1 follow (formally) from this vari-

ational formulation.

Let v0, v1, . . . be an orthonormal (in L2(Ω)) and orthogonal (in H1(Ω)) family

associated with the eigenvalues 0 = λ0 < λ1 6 . . . of the self-adoint, bounded and

strictly positive operator −∆ (note that v0 is a constant). We set

Vm = Span{v0, v1, . . . , vm}

and consider the approximated problem:

Find (um, ωm) : [0, T ] → Vm × Vm such that

((∂um

∂t
, v
))

− ξ
((

∆
∂um

∂t
, v
))

− ((∆um, v)) + ((f(um), v)) + ((ωmf ′(um), v))

−((∆ωm, v)) = 0 ∀ v ∈ Vm,(2.42)

((ωm, v)) = ((f(um), v))− ((∆um, v)) ∀ v ∈ Vm,(2.43)

um|t=0 = u0,m,(2.44)

where u0,m = Pmu0, Pm is the orthogonal projector from L2(Ω) onto Vm.

The existence of a local (in time) solution to (2.42)–(2.44) is standard. Indeed, we

have to solve a Lipschitz continuous finite-dimensional system of ODE’s to find um,

which yields ωm over an interval (0, Tm) for certain Tm > 0.

We will consider now a maximal solution defined over [0, Tm] and we will prove

that Tm = T . In other words, we will prove that the local (in time) solution obtained

is a global (in time) solution. We have, owing to (2.12),

‖um(t)‖2H2(Ω) 6 Q(‖u0‖H2(Ω))e
−ct + c′.
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Moreover,

(2.45) sup
t∈[0,T ]

‖um(t)‖2H2(Ω) 6 c′,

where, c′ is independent of m. We thus conclude that the solution is global in time

and Tm = T .

The passage to the limit: In this step we get a limit boundary problem by

letting m tend to infinity. We then have, owing to (2.12), up to a subsequence,

which will not be relabeled, that

(2.46) um → u weak star in L∞(0, T ;H2(Ω)).

Next we have by (2.9) that

(2.47)
dEm

1,ξ

dt
+ c

(

Em
1,ξ +

∥

∥

∥

∂um

∂t

∥

∥

∥

2

Vξ

)

6 c′, c > 0.

We then integrate (2.47) from 0 to t and obtain

(2.48) Em
1,ξ(T ) +

∫ t

0

∥

∥

∥

∂um(s)

∂t

∥

∥

∥

2

Vξ

ds 6 c+ Em
1,ξ(0) ∀ t ∈ [0, T ], c > 0,

where the constant c is independent of m. It then follows that

(2.49)
∂um

∂t
→

∂u

∂t
weakly in L2(0, T ;Vξ).

Considering now the set

W =
{

u ∈ L2(0, T ;H2(Ω));
∂u

∂t
∈ L2(0, T ;H1(Ω))

}

,

we obtain, owing to the classical Aubin-Lions compacteness lemma, that

W →֒ L2(0, T ;H1(Ω)), with compact inection

and consequently,

(2.50) um → u strongly in C([0, T ];H2−ε(Ω)) ∀ ε > 0 and a.e.

Moreover, since f is a continuous polynomial,

f(um(t, x)) → f(u(t, x)) a.e.
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and since f(um) is bounded in L2((0, T )× Ω),

f(um) → f(u) weakly in L2((0, T )× Ω),

owing to the weak dominated convergence theorem. We also have, owing to (2.46),

(2.51) ∆um → ∆u weak star in L∞(0, T ;L2(Ω)).

Therefore, owing to (2.2), we have

(2.52) ωm → ω weak star in L∞(0, T ;L2(Ω)).

Noting that, owing to (2.2) ‖ω‖ 6 Q(‖um‖H2(Ω)), we finally obtain

(2.53) ωm → ω weakly in L2(0, T ;H2(Ω)).

As far as the passage to the limit is concerned, the most delicate part is to prove

that
∫ T

0

∫

Ω

ωmf ′(um)ϕdxdt −→
m→∞

∫ T

0

∫

Ω

ωf ′(u)ϕdxdt

for ϕ regular enough.

We have, say, for ϕ ∈ C2([0, T ]× Ω) such that ϕ(T ) = ϕ(0) = 0,

(2.54)

∫ T

0

∫

Ω

(ωmf ′(um)− ωf ′(u))ϕdxdt =

∫ T

0

∫

Ω

(ωm − ω)f ′(u)ϕdxdt

+

∫ T

0

∫

Ω

ωm (f ′(um)− f ′(u))ϕdxdt.

The passage to the limit in the first integral on the right-hand side of (2.54) is

straightforward, while the passage to the limit in the second one follows from the

above convergences which yield in particular the inequality

∣

∣

∣

∣

∫ T

0

∫

Ω

ωm(f ′(um)− f ′(u))ϕdxdt

∣

∣

∣

∣

6 c‖um − u‖L2((0,T )×Ω).

Finally, it follows from (2.9)–(2.10) and (2.12) that u ∈ L∞(R+;H2(Ω)) and conse-

quently, ω ∈ L∞(R+;L2(Ω)). �

It follows from Theorem 2.1 that we can define the family of solution operators

Sξ(t) : Φ → Φ, u0 → u(t), t > 0, ξ > 0,
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which maps the initial datum onto the solution at time t with Φ = H2(Ω) ∩H1
0 (Ω).

This family of operators forms a semigroup, i.e.

x 7→ Sξ(t)x is continuous, t > 0,

Sξ(0) = Id, Sξ(t+ s) = Sξ(t) ◦ Sξ(s), t, s > 0,

where Id denotes the identity operator.

We now have the following theorem:

Theorem 2.2. The semigroup Sξ(t) is dissipative in Φ in the sense that it pos-

sesses a bounded absorbing set B1 ⊂ Φ, i.e., for all B ⊂ Φ bounded there exists

t0 = t0(B) such that t > t0 implies Sξ(t)B ⊂ B1. Furthermore, we can choose B1

such that B1 ⊂ H4(Ω).

P r o o f. The dissipativity in Φ immediately follows from (2.12).

Let now B0 be a bounded absorbing set in Φ. Let B ⊂ Φ be bounded and

t0 = t0(B) be such that t > t0 implies Sξ(t)B ⊂ B0.

It follows from (2.9) and (2.12) that

(2.55)

∫ t+r

t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

Vξ

ds 6 c(r), t > t0, r > 0,

and from (2.15) we have

(2.56)

∫ t+r

t

‖u‖2H3(Ω) ds 6 c(r), t > t0, r > 0;

again, all constants are independent of ξ.

We thus deduce from (2.20), (2.56), and the uniform Gronwall’s lemma that (as-

suming, as above, that ‖u0‖H2(Ω) 6 R)

‖u(t)‖H3(Ω) 6 c, t > t1 (> t0),(2.57)
∫ t+r

t

(∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2)

ds 6 cr, t > t1.(2.58)

Note that this also yields the existence of a bounded absorbing set for the associated

dynamical system on H3(Ω).

Integrating (2.22) with respect to time, we have

(2.59)

∫ t+r

t

‖u‖2H4(Ω) ds 6 cr, t > t1.
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We deduce again from above and the uniform Gronwall’s lemma applied to (2.27)

that

(2.60) ‖u(t)‖H4(Ω) 6 c, t > t2 (> t1)

and

(2.61)

∫ t+r

t

(
∥

∥

∥
∆
∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∇∆

∂u

∂t

∥

∥

∥

2)

ds 6 cr, t > t2, r > 0.

Consequently, this yields the existence of a bounded absorbing set for the associ-

ated dynamical system on H4(Ω). �

Note that from (2.60) we deduce that u ∈ L∞(τ,∞;H4(Ω)) for all τ > 0, and it

follows from (2.27) that

∂u

∂t
∈ L2(τ, T ;H2(Ω)) ∀ τ > 0, ∀ 0 < τ 6 T, for ξ = 0,

∂u

∂t
∈ L2(τ, T ;H3(Ω)) ∀ τ > 0, ∀ 0 < τ 6 T, for ξ > 0.

As a consequence of Theorem 2.2, we have the following result.

Theorem 2.3. The semigroup Sξ(t) possesses the global attractor Aξ on the

phase space Φ, which is compact in H2(Ω) and bounded in H4(Ω).

R em a r k 2.1. Replacing, if necessary, B1 by (the closure of)
⋃

t>t1

Sξ(t)B1, where

t1 is such that t > t1, implies Sξ(t)B1 ⊂ B1, we can assume, without loss of generality,

that B1 is (closed and) positively invariant by Sξ(t), i.e., Sξ(t)B1 ⊂ B1 for all t > 0.

2.3. Robust exponential attractors.

Estimates on the difference of two solutions: Let (u1, ω1) and (u2, ω2) be two

solutions of (2.1)–(2.4) with initial data u0,1 and u0,2, respectively, where ωi, i = 1, 2,

are defined in (2.2).

We set u = u1 − u2, ω = ω1 − ω2, u0 = u0,1 − u0,2 and have

∂u

∂t
+ ξ(−∆)

∂u

∂t
−∆u + f(u1)− f(u2) + ω1f

′(u1)− ω2f(u2)−∆ω = 0,(2.62)

ω = f(u1)− f(u2)−∆u,(2.63)

u = ω = 0 on Γ,(2.64)

u|t=0 = u0.(2.65)
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Now, we derive a smoothing property on the difference of two solutions which is

the key estimate for proving the existence of exponential attractors.

We multiply (2.62) by t∂u∂t and integrate over Ω and by parts to get

(2.66) t
∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ ξt
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+
1

2

d

dt

(

t(‖∇u‖2 + ‖∆u‖2)
)

−
1

2
(‖∇u‖2 + ‖∆u‖2)

+ t
((

f(u1)− f(u2),
∂u

∂t

))

+ t
((

ω1f
′(u1)− ω2f

′(u2),
∂u

∂t

))

− t
((

∆(f(u1)− f(u2)),
∂u

∂t

))

= 0.

We note that, owing to (2.12),

(2.67)
∣

∣

∣

((

f(u1)− f(u2),
∂u

∂t

))∣

∣

∣
6

1

8

∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ c‖u‖2,

where here and below all the constants only depend on the absorbing set B1 con-

structed above. Furthermore,

(2.68)
∣

∣

∣

((

ω1f
′(u1)− ω2f

′(u2),
∂u

∂t

))∣

∣

∣
6

∣

∣

∣

((

ωf ′(u1),
∂u

∂t

))∣

∣

∣

+
∣

∣

∣

((

ω2(f
′(u1)− f ′(u2)),

∂u

∂t

))∣

∣

∣
6

1

8

∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ c‖u‖2H2(Ω);

here we have used the fact that

‖ω‖ 6 c‖u‖H2(Ω).

Finally,

∆(f(u1)− f(u2)) = f ′(u1)∆u1 − f ′(u2)∆u2 + f ′′(u1)|∇u1|
2 − f ′′(u2)|∇u2|

2,

so, owing once more to (2.12),

(2.69)
∣

∣

∣

((

∆(f(u1)− f(u2)),
∂u

∂t

))∣

∣

∣
6

1

4

∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ c‖u‖2H2(Ω).

It finally follows from (2.66)–(2.69) that

(2.70)
d

dt

(

t(‖∇u‖2 + ‖∆u‖2)
)

+ t
∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ ξt
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

6 ct‖u‖2H2(Ω) + (‖∇u‖2 + ‖∆u‖2).
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Integrating (2.70) from 0 to t, we have

(2.71) ‖u(t)‖2H2(Ω) 6 c
1 + t

t

∫ t

0

‖u‖2H2(Ω) ds

and noting that it follows from (2.37) that

(2.72)

∫ t

0

‖u‖2H2(Ω) ds 6 cec
′t‖u0,1 − u0,2‖

2
Vξ
,

we deduce from (2.71) and (2.72) that

(2.73) ‖u(t)‖2H2(Ω) 6 c
1 + t

t
ec

′t‖u0‖
2
Vξ
,

where all constants are independent of ξ.

Let finally (uξ, ωξ) and (u0, ω0) be two solutions to (2.1)–(2.2) for ξ > 0 and ξ = 0,

respectively, with the same initial datum u0. We set u = uξ − u0 and ω = ωξ − ω0.

We then have

∂u

∂t
+ ξ(−∆)

∂u

∂t
−∆u+ f(uξ)− f(u0) + ωξf ′(uξ)(2.74)

−ω0f ′(u0)−∆ω = ξ∆
∂u0

∂t
,

ω = f(uξ)− f(u0)−∆u,(2.75)

u|t=0 = u0.(2.76)

Multiplying (2.74) by u and integrating over Ω, we get

(2.77)
1

2

d

dt
‖u‖2 +

ξ

2

d

dt
‖∇u‖2 + ‖∇u‖2

+ ((f(uξ)− f(u0), u)) + ((ωξf ′(uξ)− ω0f ′(u0), u))

− ((∆(f(uξ)− f(u0)), u)) + ‖∆u‖2 = ξ
((∂u0

∂t
,∆u

))

.

We have, owing to (1.16),

((f(uξ)− f(u0), u)) > −c0‖u‖
2,(2.78)

|((f(uξ)− f(u0),∆u))| 6
1

8
‖∆u‖2 + c‖u‖2,(2.79)
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and owing to (2.75), we have

(2.80) |((ωξf ′(uξ)− ω0f ′(u0), u))| 6
1

4
‖∆u‖2 + c‖∇u‖2,

and

(2.81)
∣

∣

∣
ξ
((∂u0

∂t
,∆u

))
∣

∣

∣
6

1

8
‖∆u‖2 + cξ2

∥

∥

∥

∂u0

∂t

∥

∥

∥

2

.

We finally deduce from (2.77)–(2.81) and a proper interpolation inequality that

(2.82)
d

dt
(‖u‖2 + ξ‖∇u‖2) + ‖∆u‖2 6 cξ2

∥

∥

∥

∂u0

∂t

∥

∥

∥

2

+ c′‖u‖2.

Now, to find ‖∂u0/∂t‖2, we multiply the equation

∂u0

∂t
−∆u0 + f(u0) + ω0f ′(u0)−∆ω0 = 0,

by ∂u0/∂t and have, in view of (2.2),

(2.83)
∥

∥

∥

∂u0

∂t

∥

∥

∥

2

+
1

2

d

dt
‖∇u0‖2 +

d

dt
F (u0) dx+

1

2

d

dt
‖ω‖2 = 0.

We integrate over [0, t] and over [t, t+ 1] to have

‖∇u0(t)‖2 + 2

∫ t

0

∥

∥

∥

∂u0

∂t

∥

∥

∥

2

ds+ 2

∫

Ω

F (u0(t)) dx+ ‖ω0(t)‖2

6 ‖∇u0(0)‖2 +

∫

Ω

F (u0(0)) dx+ ‖ω0(0)‖2

6 ‖u0(0)‖2H2(Ω) + c‖u0(0)‖4L4(Ω) + c′

and

‖∇u0(t+ 1)‖2 + 2

∫ t+1

t

∥

∥

∥

∂u0

∂t

∥

∥

∥

2

ds+ 2

∫

Ω

F (u0(t+ 1)) dx+ ‖ω0(t+ 1)‖2

6 ‖∇u0(0)‖2 +

∫

Ω

F (u0(0)) dx+ ‖ω0(0)‖2,

respectively. Now, by the above two relations we have

(2.84)

∫ t+1

t

∥

∥

∥

∂u0

∂t

∥

∥

∥

2

ds 6 constant.
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By estimate (2.82) we have

d

dt
(‖u‖2 + ξ‖∇u‖2) + ‖∆u‖2 6 cξ2

∥

∥

∥

∂u0

∂t

∥

∥

∥

2

+ c′(‖u‖2 + ξ‖∇u‖2).

Integrating from 0 to t, t > 0 we obtain, owing to Gronwall’s lemma and in view

of (2.84),

(2.85) ‖u(t)‖2 + ξ‖∇u(t)‖2 6 cξ2ec
′′t, ‖u(t)‖2Vξ

6 cξ2ec
′′t,

where the constants c and c′′ only depend on ‖u0‖H2(Ω) and are independent of ξ.

Next we recall the following result concerning the construction of a robust family

of exponential attractors for a discrete dynamical system (see [11]; see also [12], [15],

[17], [24] and [26] for generalizations):

Proposition 2.1. Let H and H1 be two Banach spaces such that the injection

H1 ⊂ H is compact, let B be a bounded subset of H and Lξ : B → B, ξ ∈ [0, ξ0],

ξ0 > 0 be a family of operators such that

a) For every x1, x2 ∈ B and every ξ ∈ [0, ξ0],

‖Lξx1 − Lξx2‖H1
6 c‖x1 − x2‖H ,

where the constant c is independent of ξ.

b) For every ξ ∈ [0, ξ0], every i ∈ N and every x ∈ B,

‖Li
ξx− Li

0x‖H 6 ciξ,

where the constant c is independent of ξ.

Then there exists a family Mξ ⊂ B, ξ ∈ [0, ξ0], such that Mξ is an exponential

attractor for the discrete dynamical system generated by Lξ, i.e.:

(i) The setMξ is compact in H and has a finite fractal dimension in H ,

dimFMξ 6 c.

(ii) The setMξ is positively invariant,

LξMξ ⊂ Mξ.

(iii) The setMξ attracts B exponentially fast,

distH(LiB,Mξ) 6 ce−c′i, i ∈ N, c′ > 0,
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where distH denotes the Hausdorff semidistance between sets defined by

distH(A,B) = sup
a∈A

inf
b∈B

‖a− b‖H .

(iv) Furthermore, the familyMξ is Hölder continuous at ξ = 0,

distsym(Mξ,M0) 6 cec
′

, c′ ∈ (0, 1),

where distsym denotes the Hausdorff symmetric distance between sets defined by

distsym(A,B) = max(distH(A,B), distH(B,A)).

Finally, all constants are independent of ξ and can be computed explicitly.

Based on Proposition 4.1, we can prove the following theorem.

Theorem 2.4. For every ξ ∈ [0, ξ0], ξ0 > 0, the semigroup Sξ(t) acting on Φ

possesses an exponential attractorMξ on Φ such that

1. The setMξ has finite fractal dimension in Vξ,

dimFMξ 6 c.

2. The setMξ is positively invariant by Sξ(t),

Sξ(t)Mξ ⊂ Mξ, t > 0.

3. The setMξ attracts all bounded subsets of Φ exponentially fast, i.e. for every

bounded subset B of Φ there exists a constant c = c(B) such that

distVξ
(Sξ(t)B,Mξ) 6 ce−c′t, t > 0, c′ > 0.

4. The family of setsMξ is Hölder continuous at 0,

distsym(Mξ,M0) 6 cξc
′

, c′ ∈ (0, 1).

Furthermore, all constants are independent of ξ and can be computed explicitly.

P r o o f. We first note that, owing to the uniform estimates obtained in the

previous section, we have the existence of a uniform (with respect to ξ) absorbing

set B1 ⊂ Φ, i.e., for all B ⊂ Φ bounded there exists t0 = t0(B) independent of

ξ ∈ [0, ξ0] such that

Sξ(t)B ⊂ B1, t > t0, ξ ∈ [0, ξ0].
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It is thus sufficient to construct the exponential attractorMξ on B1.

To do so, we first construct exponential attractors for a proper family of discrete

semigroups and then pass to the continuous case.

From the above there exists t1 > 0 independent of ξ ∈ [0, ξ0] such that

Sξ(t)B1 ⊂ B1, t > t1, ξ ∈ [0, ξ0].

We then set

Lξ := Sξ(t1)

and consider the sets H = Vξ and H1 = H2(Ω). It follows from (2.73) and (2.85)

that the assumptions of Proposition 2.1 are satisfied, hence the existence of a robust

family of exponential attractors Md
ξ for the discrete dynamical systems generated

by the operators Lξ. We finally set

Mξ =
⋃

t∈[0,t1]

Sξ(t)M
d
ξ .

To finish the proof, it suffices to prove that the mapping (t, x) 7→ Sξ(t)x is Hölder

continuous on [0, t1]×B, uniformly with respect to ξ ∈ [0, ξ0]. The Hölder continuity

with respect to x follows from (2.12). �

We then have:

Proposition 2.2. For any solutions to (2.1)–(2.4) with initial datum belonging

to B0 and for any T > 0,

(2.86) ‖u(t1)− u(t2)‖Vξ
6 c(T,B0)|t1 − t2|

1/2 ∀ t1, t2 ∈ [0, T ].

P r o o f. We have

u(t1)− u(t2) =

∫ t2

t1

∂u

∂t
dτ,

which yields

(2.87) ‖u(t2)− u(t2)‖Vξ
6

∥

∥

∥

∥

∫ t2

t1

∂u

∂t
dτ

∥

∥

∥

∥

Vξ

6

∣

∣

∣

∣

∫ t2

t1

∥

∥

∥

∂u

∂t

∥

∥

∥

Vξ

dτ

∣

∣

∣

∣

6 |t1 − t2|
1/2

∣

∣

∣

∣

∫ t2

t1

∥

∥

∥

∂u

∂t

∥

∥

∥

2

Vξ

∣

∣

∣

∣

1/2

,

where u is a solution of (2.1)–(2.4).
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We note that, owing to (2.9),

(2.88)

∣

∣

∣

∣

∫ t2

t1

∥

∥

∥

∂u

∂t

∥

∥

∥

2

Vξ

dτ

∣

∣

∣

∣

6 c,

where the constant c depends only on B1 and T such that t1, t2 ∈ [0, T ], so

‖u(t1)− u(t2)‖Vξ
6 c|t1 − t2|

1/2,

where the constant c depends only on B1 and T such that t1, t2 ∈ [0, T ]. �

Since an exponential attractor yields the existence of the global attractor Aξ ⊂

Mξ, we deduce from Theorem 2.4 the following result.

Corollary 2.1. The global attractor Aξ has a finite fractal dimension in Vξ.

3. Viscous Cahn-Hilliard system

Setting the problem: It will be more convenient for us to rewrite equations

(1.13)–(1.15) in the following form (taking β = 1):

∂u

∂t
+ ξ(−∆)

∂u

∂t
= ∆µ,(3.1)

µ = f(u)−∆u+ ωf ′(u)−∆ω,(3.2)

ω = f(u)−∆u,(3.3)

together with the Neumann boundary conditions

(3.4)
∂u

∂ν
=

∂µ

∂ν
=

∂ω

∂ν
= 0 on Γ

and the initial condition

(3.5) u(x, 0) = u0(x), x ∈ Ω.

R em a r k 3.1. We note that the above viscous Cahn-Hilliard system associated

with periodic boundary conditions can also be treated in a similar way as below.

709



3.1. A priori estimates. We first note that integrating (3.1) over Ω we obtain

the conservation of mass, namely

(3.6) 〈u(t)〉 = 〈u0〉 ∀ t > 0.

Multiplying (3.1) by (−∆)−1∂u/∂t and integrating over Ω and by parts, we have

(3.7)
∥

∥

∥

∂u

∂t

∥

∥

∥

2

−1
+ ξ

∥

∥

∥

∂u

∂t

∥

∥

∥

2

= −
((

µ,
∂u

∂t

))

.

We then multiply (3.2) by ∂u
∂t and integrate over Ω to obtain

(3.8)
((

µ,
∂u

∂t

))

=
d

dt

∫

Ω

F (u) dx+
1

2

d

dt
‖∇u‖2 +

((

ωf ′(u),
∂u

∂t

))

−
((

∆ω,
∂u

∂t

))

.

Noting that it follows from (3.3) that

(3.9)
((

ωf ′(u),
∂u

∂t

))

−
((

∆ω,
∂u

∂t

))

=
1

2

d

dt

∫

Ω

ω2 dx,

we finally deduce from (3.7)–(3.9) that

(3.10)
d

dt

(

‖∇u‖2 + 2

∫

Ω

F (u) dx+ ‖ω‖2
)

+ 2
∥

∥

∥

∂u

∂t

∥

∥

∥

2

Hξ

= 0.

In particular, (3.10) yields that the free energy decreases along the trajectories as

expected.

We now multiply (3.1) by (−∆)−1ū, ū = u− 〈u〉, and find, owing to (3.6) that

(3.11)
1

2

d

dt
‖ū‖2

−1 +
ξ

2

d

dt
‖ū‖2 = −((µ, u)) + Vol(Ω)〈µ〉〈u0〉,

where, owing to (3.2),

(3.12) 〈µ〉 = 〈f(u)〉+ 〈ωf ′(u)〉.

Multiplying then (3.2) by u, we have, owing to (3.3),

(3.13) ((µ, u)) = ((f(u), u)) + ‖∇u‖2 + ((f(u)f ′(u), u)) + ‖∆u‖2

− ((∆f(u), u))− ((f ′(u)∆u, u)).

Noting that

((f ′(u)∆u, u)) = −((f ′(u)∇u,∇u))− ((uf ′′(u)∇u,∇u))

710



and

((∆f(u), u)) = −((f ′(u)∇u,∇u)),

we obtain

((µ, u)) = ‖∇u‖2+((f(u), u))+‖ω‖2+((uf ′′(u)∇u,∇u))+

∫

Ω

(uf(u)f ′(u)−f(u)2) dx

and we finally find, owing to (1.17), (1.18), (1.20), and (3.11),

(3.14)
d

dt
‖ū‖2Hξ

+ c

(

‖∇u‖2 + 2

∫

Ω

F (u) dx+ ‖ω‖2 + ‖f(u)‖2
)

6 2Vol(Ω)〈µ〉〈u0〉+ c′, c > 0.

We now assume that

(3.15) |〈u0〉| 6 M (hence, |〈u(t)〉| 6 M, t > 0), M > 0.

Therefore, owing to (1.19) and (3.12),

(3.16) |2Vol(Ω)〈µ〉〈u0〉| 6 cM (|〈f(u)〉|+ |〈ωf ′(u)〉|)

6
c

2

(
∫

Ω

ω2 dx+

∫

Ω

f(u)2 dx

)

+ c′M ,

where c is the constant appearing in (3.14), and we deduce from (3.14) and (3.16)

that

(3.17)
d

dt
‖ū‖2Hξ

+ c

(

‖∇u‖2 + 2

∫

Ω

F (u) dx+ ‖ω‖2
)

6 c′M , c > 0.

Combining (3.10) and (3.17), we have an inequality of the form

(3.18)
dE2,ξ

dt
+ c

(

E2,ξ + ‖
∂u

∂t
‖2Hξ

)

6 c′M , c > 0,

where

(3.19) E2,ξ = ‖ū‖2Hξ
+ 〈u〉2 + ‖∇u‖2 + 2

∫

Ω

F (u) dx+ ‖ω‖2.

In particular, we deduce from (3.18) and Gronwall’s lemma that

(3.20) E2,ξ(t) 6 E2,ξ(0)e
−ct + c′M , c > 0, t > 0.
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Noting that, owing to (1.16),

(3.21) ‖ω‖2 > ‖f(u)‖2 + ‖∆u‖2 − 2c0‖∇u‖2,

we finally deduce from (3.19)–(3.21) that

(3.22) ‖u(t)‖2H2(Ω) + ‖f(u)‖2 6 Q(‖u0‖H2(Ω))e
−ct + c′M , c > 0, t > 0.

We now multiply (3.1) by u, and integrating over Ω we have

(3.23)
1

2

d

dt
‖u‖2 +

ξ

2

d

dt
‖∇u‖2 = −((∇µ,∇u)).

Multiplying then (3.2) by −∆u, we obtain in view of (3.3)

(3.24) ((∇µ,∇u)) = ‖∆u‖2 + ((f ′(u)∇u,∇u))− ((ωf ′(u),∆u))

+ ((∆f(u),∆u)) + ‖∇∆u‖2.

Noting that, owing to the continuous embedding H2(Ω) ⊂ C(Ω) (here, n 6 3)

and (3.3),

|((f ′(u)∇u,∇u))|+ |((ωf ′(u),∆u))|+ |((∆f(u),∆u))| 6 Q(‖u0‖H2(Ω))

(indeed, it follows from (3.3) that ‖ω‖ 6 Q(‖u0‖H2(Ω))), we obtain

(3.25)
d

dt
‖u‖2Vξ

+ c‖u‖2H3(Ω) 6 Q(‖u‖H2(Ω)), c > 0.

We now multiply (3.1) by ∂u/∂t and integrate over Ω to get

(3.26)
∥

∥

∥

∂u

∂t

∥

∥

∥

2

+ ξ
∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

= −
((

∇µ,∇
∂u

∂t

))

.

Multiplying then (3.2) by −∆∂u/∂t, we obtain, in view of (3.3),

(3.27)
((

∇µ,∇
∂u

∂t

))

=
1

2

d

dt
‖∆u‖2 +

((

f ′(u)∇u,∇
∂u

∂t

))

+
((

∇(ωf ′(u)),∇
∂u

∂t

))

−
((

∇∆f(u),∇
∂u

∂t

))

+
1

2

d

dt
‖∇∆u‖2.

Substituting (3.27) in (3.26), we have

(3.28)
1

2

d

dt
(‖∆u‖2 + ‖∇∆u‖2) +

∥

∥

∥

∂u

∂t

∥

∥

∥

2

Vξ

+
((

f ′(u)∇u,∇
∂u

∂t

))

+
((

∇(ωf ′(u)),∇
∂u

∂t

))

−
((

∇∆f(u),∇
∂u

∂t

))

= 0.
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We have

(3.29)
∣

∣

∣

((

f ′(u)∇u,∇
∂u

∂t

))
∣

∣

∣
6 ‖f ′(u)‖L∞(Ω)‖∇u‖

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

6
1

4

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H2(Ω))‖∇u‖2,

(3.30)
∣

∣

∣

((

∇(ωf ′(u)),∇
∂u

∂t

))∣

∣

∣
6

∣

∣

∣

((

f ′(u)∇ω,∇
∂u

∂t

))∣

∣

∣
+
∣

∣

∣

((

ωf ′′(u)∇u,∇
∂u

∂t

))∣

∣

∣

6
1

4

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H2(Ω))(‖∇∆u‖2 + 1),

noting that it follows from (3.3)

‖∇ω‖ 6 Q(‖u‖H2(Ω)) + 2‖∇∆u‖2

and that, owing to Hölder’s inequality and proper Sobolev embeddings,

(3.31)
∣

∣

∣

((

∇∆f(u),∇
∂u

∂t

))
∣

∣

∣
6

∣

∣

∣

((

f ′′(u)∆u∇u,∇
∂u

∂t

))
∣

∣

∣
+
∣

∣

∣

((

f ′(u)∇∆u,∇
∂u

∂t

))
∣

∣

∣
,

∣

∣

∣

((

f ′′′(u)|∇u|2∇u,∇
∂u

∂t

))∣

∣

∣
+ 2

∣

∣

∣

((

f ′′(u)∇∇u · ∇u,∇
∂u

∂t

))∣

∣

∣

6
1

4

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

+Q(‖u‖H2(Ω))‖∇∆u‖2.

It thus follows from (3.28)–(3.31) that

(3.32)
d

dt
(‖∆u‖2 + ‖∇∆u‖2) +

∥

∥

∥

∂u

∂t

∥

∥

∥

2

Vξ

6 Q(‖u‖H2(Ω))(‖∇∆u‖2 + 1).

Rewriting (3.1) in the equivalent form

(3.33) µ = 〈µ〉 − ξ
∂u

∂t
− (−∆)−1 ∂u

∂t
,

we obtain

(3.34) ‖∇µ‖ 6 c
(∥

∥

∥

∂u

∂t

∥

∥

∥

−1
+ ξ

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

)

.

Noting that, proceeding as in (3.16),

|〈µ〉| 6 c(‖u‖2H2(Ω) + ‖f(u)‖2 + 1),
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we finally find

(3.35) ‖µ‖H1(Ω) 6 c
(
∥

∥

∥

∂u

∂t

∥

∥

∥

−1
+
∥

∥

∥

∂u

∂t

∥

∥

∥

Vξ

+ ‖u‖2H2(Ω) + ‖f(u)‖2 + 1
)

.

Having this, (1.19), (3.2), (3.3), and (3.35) yield

(3.36) ‖ω‖H2(Ω) 6 c
(∥

∥

∥

∂u

∂t

∥

∥

∥

−1
+
∥

∥

∥

∂u

∂t

∥

∥

∥

Vξ

+ ‖u‖2H2(Ω) + ‖f(u)‖2 + 1
)

.

3.2. The dissipative semigroup.

Theorem 3.1. We assume that (3.15) holds and that u0 ∈ H2(Ω) with

∂u0/∂ν = 0 on Γ. Then (3.1)–(3.5) possesses a unique (weak) solution such that for

all T ,

u ∈ L∞(R+;H2(Ω)) ∩ L2(0, T ;H3(Ω)),
∂u

∂t
∈ L2(0, T ;Hξ),

µ ∈ L2(0, T ;H1(Ω)), and ω ∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H2(Ω)).

P r o o f. a) Existence: The proof of existence of solutions is based on the a priori

estimates derived in the previous subsection and, e.g., a standard Galerkin scheme.

In particular, it follows from (3.18)–(3.19) and (3.22) that we can construct a se-

quence of solutions um to a proper approximated problem such that

um → u weak star in L∞(0, T ;H2(Ω)),

strongly in C([0, T ];H2−ε(Ω)) ∀ ε > 0, and a.e.,

∂um

∂t
→

∂u

∂t
weakly in L2(0, T ;Hξ),

µm → µ weakly in L2(0, T ;H1(Ω)),

ωm → ω weak star in L∞(0, T ;L2(Ω)) and weakly in L2(0, T ;H2(Ω)),

as m → ∞ for all T > 0.

The passage to the limit is then standard and can be done as in the previous

section.

Finally, it follows from (3.18)–(3.19) and (3.22) that u ∈ L∞(R+;H2(Ω)) and

consequently, ω ∈ L∞(R+;L2(Ω)).

b) Uniqueness: Let (u1, µ1, ω1) and (u2, µ2, ω2) be two solutions of (3.1)–(3.5) with

initial data u1,0 and u2,0, respectively, such that

(3.37) |〈ui,0〉| 6 M, i = 1, 2.
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We set (u, µ, ω) = (u1, µ1, ω1)− (u2, µ2, ω2) and u0 = u1,0 − u2,0. Then we have

∂

∂t
(u+ ξ(−∆)u) = ∆µ,(3.38)

µ = f(u1)− f(u2)−∆u+ ω1f
′(u1)− ω2f

′(u2)−∆ω,(3.39)

ω = f(u1)− f(u2)−∆u,(3.40)

∂u

∂ν
=

∂µ

∂ν
=

∂ω

∂ν
= 0 on Γ,(3.41)

u|t=0 = u0.(3.42)

We can rewrite (3.38) in the equivalent form

(3.43)
∂

∂t
(ū+ ξ(−∆)ū) = ∆µ

and then multiply (3.43) by (−∆)−1ū to get

(3.44)
1

2

d

dt
(‖ū‖2

−1 + ξ‖ū‖2) = −((µ, u)) + Vol(Ω)〈µ〉〈u〉.

Multiplying now (3.39) by u and integrating over Ω, we have

(3.45) ((µ, u)) = ‖∇u‖2 + ((f(u1)− f(u2), u)) + ((ω1f
′(u1)− ω2f

′(u2), u))

− ((f(u1)− f(u2),∆u)) + ‖∆u‖2.

We have

(3.46) ((f(u1)− f(u2), u)) > −c0‖u‖
2.

Furthermore,

(3.47) |((f(u1)− f(u2),∆u))| 6 ‖f(u1)− f(u2)‖L∞(Ω)‖∆u‖

6
1

8
‖∆u‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖u‖

2

and

(3.48)
∣

∣((ω1f
′(u1)− ω2f

′(u2), u))
∣

∣ 6 |((ω1(f
′(u1)− f ′(u2)), u))|+ |((ωf ′(u2), u))|

6 |((ω1(f
′(u1)− f ′(u2)), u))|+ |((f ′(u2)∆u, u))|

+ |((f ′(u2)(f(u1)− f(u2)), u))|

6 Q(‖u1,0‖H2
per(Ω), ‖u2,0‖H2(Ω))‖ω1‖H2(Ω)‖u‖

2

+
1

8
‖∆u‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖u‖

2

6
1

8
‖∆u‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))(‖ω1‖H2(Ω) + 1)‖u‖2.
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Similarly,

(3.49) |Vol(Ω)〈µ〉〈u〉| 6
1

4
‖∆u‖2

+Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))(‖ω1‖+ 1)(‖u‖2 + |〈u〉|2).

We finally deduce from (3.44)–(3.49) and the interpolation inequality

(3.50) ‖ū‖ 6 c‖ū‖
1/2
−1 ‖∇ū‖1/2 6 c‖ū‖

1/2
−1 ‖∆ū‖1/2

that

(3.51)
d

dt

(

‖ū‖2
−1 + |〈u〉|2 + ξ(‖ū‖2 + 〈u〉2)

)

+ ‖∆u‖2

6 Q(‖u0,1‖H2(Ω), ‖u0,2‖H2(Ω))(‖ω1‖
2 + ‖ω1‖

2
H2(Ω) + 1)(‖ū‖2

−1 + |〈u〉|2

+ ξ(‖ū‖2 + 〈u〉2)).

Gronwall’s lemma then yields, owing to (3.18), (3.22), and (3.36) (written for

(u1, µ1, ω1)),

(3.52) ‖u(t)‖2Hξ
6 cec

′t‖u0‖
2
Hξ

,

where c and c′ only depend on ‖u0,i‖H2(Ω), i = 1, 2, and M (and are, in particular,

independent of ξ).

This gives the uniqueness as well as the continuous dependence with respect to

the initial data in the Hξ-norm. �

It follows from the above results that we can define the semigroup

S(t) : ΦM → ΦM , u0 7→ u(t), t > 0

(i.e., S(0) = Id and S(t+ s) = S(t) ◦ S(s), t, s > 0), where

ΦM = {v ∈ H2(Ω): |〈v〉| 6 M}, M > 0.

Theorem 3.2. The semigroup S(t) is dissipative in ΦM in the sense that it

possesses a bounded absorbing set B2 ⊂ ΦM , i.e., for all B ⊂ ΦM bounded there

exists t0 = t0(B) such that t > t0 implies S(t)B ⊂ B2. Furthermore, we can choose

B2 such that B2 ⊂ H3(Ω).

P r o o f. The dissipativity in ΦM immediately follows from (3.22).
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We now (formally) differentiate (3.1)–(3.3) with respect to time and have, setting

(q, v, r) = (∂u/∂t, ∂µ/∂t, ∂ω/∂t),

∂q

∂t
+ ξ(−∆)

∂q

∂t
= ∆v,(3.53)

v = f ′(u)q −∆q + ωf ′′(u)q + rf ′(u)−∆r,(3.54)

r = f ′(u)q −∆q.(3.55)

We multiply (3.53) by (−∆)−1q and obtain

(3.56)
1

2

d

dt
‖q‖2

−1 +
ξ

2

d

dt
‖q‖2 = −((v, q)).

Multiplying then (3.54) by q, we find, owing to (3.55),

(3.57) ((v, q)) = ((f ′(u)q, q)) + ‖∇q‖2 + ((ωf ′′(u)q, q)) + ((f ′(u)2q, q))

− 2((f ′(u)q,∆q)) + ‖∆q‖2.

We thus deduce from (3.56)–(3.57) that

(3.58)
1

2

d

dt
(‖q‖2

−1 + ξ‖q‖2) + ‖∇q‖2 + ‖∆q‖2 + ((f ′(u)q, q)) + ((ωf ′′(u)q, q))

+ ((f ′(u)2q, q))− 2((f ′(u)q,∆q)) = 0.

Now, we have

((f ′(u)q, q)) > −c0‖q‖
2,(3.59)

|((ωf ′′(u)q, q))| 6 Q(‖u‖H2(Ω))‖ω‖H2(Ω)‖q‖
2,(3.60)

|((f ′(u)2q, q))| 6 Q(‖u‖H2(Ω))‖q‖
2,(3.61)

and

(3.62) |((f ′(u)q,∆q))| 6 ‖f ′(u)‖L∞(Ω)‖q‖ ‖∆q‖ 6 Q(‖u‖H2(Ω))‖q‖‖∆q‖.

It finally follows from (3.58)–(3.62) and the interpolation inequality (3.50) that

(3.63)
d

dt
(‖q‖2

−1 + ξ‖q‖2) + ‖∇q‖2 + ‖∆q‖2 6 Q(‖u‖H2(Ω))(‖ω‖
2
H2Ω + 1)‖q‖2

−1

6 Q(‖u‖H2(Ω))(‖ω‖
2
H2Ω + 1)(‖q‖2

−1 + ξ‖q‖2).

In the second step, we multiply (3.1) by q = ∂u/∂t and have

(3.64) ‖q‖2 + ξ‖∇q‖2 = −((∇µ,∇q)).
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Multiplying then (3.2) by −∆q = −∆∂u/∂t, we obtain, owing to (3.3),

(3.65) ((∇µ,∇q)) = − ((f(u),∆q)) +
1

2

d

dt
‖∆u‖2 − ((ωf ′(u),∆q))

+ ((∆f(u),∆q)) +
1

2

d

dt
‖∇∆u‖2.

We have

|((f(u),∆q))| 6 Q(‖u‖H2(Ω))‖∆q‖,(3.66)

|((ωf ′(u),∆q))| 6 Q(‖u‖H2(Ω))‖ω‖‖∆q‖,(3.67)

and

(3.68) |((∆f(u),∆q))| 6 Q(‖u‖H2(Ω))‖∆q‖.

We thus deduce from (3.64)–(3.68) that

(3.69)
d

dt
(‖∆u‖2 + ‖∇∆u‖2) 6 Q(‖u‖H2(Ω))(‖ω‖

2 + 1)(‖∆q‖2 + 1).

Let now B2 be a bounded absorbing set in ΦM . Let also B ⊂ ΦM be bounded and

t0 = t0(B) be such that t > t0 implies S(t)B ⊂ B2.

It follows from (3.18) and (3.22) that

(3.70)

∫ t+r

t

(
∥

∥

∥

∂u

∂t

∥

∥

∥

2

−1
+ ξ

∥

∥

∥

∂u

∂t

∥

∥

∥

2)

ds 6 C(r), t > 0, r > 0,

and from (3.25) we obtain

(3.71)

∫ t+r

t

‖u‖2H3(Ω) ds 6 C(r), t > t0, r > 0.

Then we get from (3.32) that

(3.72)

∫ t+r

t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

Vξ

ds 6 C(r), t > t0, r > 0.

Consequently, we deduce from (3.36) that

(3.73)

∫ t+r

t

‖ω‖2H2(Ω) ds 6 C(r), t > t0, r > 0.
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Applying the uniform Gronwall’s lemma to (3.63), we have

(3.74)
∥

∥

∥

∂u

∂t

∥

∥

∥

2

−1
+ ξ

∥

∥

∥
∇
∂u

∂t

∥

∥

∥

2

6 C(r), t > t0 + r, r > 0,

and

(3.75)

∫ t+r

t

‖q‖2H2(Ω) ds 6 C(r), t > t0 + r, r > 0.

Applying the uniform Gronwall lemma the second time, now to (3.69) (note that

‖ω‖2 6 Q(‖u‖H2(Ω))), we finally deduce that

(3.76) ‖u(t)‖H3(Ω) 6 C(r), t > t0 + 2r, r > 0,

which finishes the proof of the theorem. �

It follows from (3.76) that the semigroup S(t) possesses a bounded absorbing set

which is compact in H2(Ω) and bounded in H3(Ω). We thus deduce from standard

results the following theorem.

Theorem 3.3. The semigroup S(t) possesses the global attractor AM which is

compact in H2(Ω) and bounded in H3(Ω).

4. Numerical Simulations

We split the sixth-order (in space) equation into a system of three second-order

ones. Consequently, we use a P1-finite element for the space discretization together

with a semi-implicit Euler time discretization (i.e. implicit for the linear terms and

explicit for the nonlinear ones). The numerical simulations are performed with the

software FreeFem++ [20].

In the numerical results presented below, the domain Ω is the square (0, 1)×(0, 1).

The triangulation is obtained by dividing Ω into 130×130 rectangles and by dividing

every rectangle along the same diagonal. We take here f(s) = 4s3 − 6s2 + 2s.

In the figures below, the values of solutions between 0 and 1
2 are represented in

(light) yellow, while the values of solutions between 1
2 and 1 are represented in (dark)

red.
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4.1. Isotropic case with Willmore regularization. We consider the following

isotropic viscous Cahn-Hilliard equation defined by

∂u

∂t
+ ξ(−∆)

∂u

∂t
=

1

ε
∆µ,(4.1)

µ = −ε∆u+
1

ε
f(u) +

β

ε2
ωf ′(u)− β∆ω,(4.2)

ω =
1

ε
f(u)− ε∆u,(4.3)

u, µ, ω are Ω-periodic,(4.4)

u|t=0 = u0,(4.5)

where ε here defines the interface thickness and β defines a small regularization

parameter 0 6 β 6 1.

In Figure 2, we present numerical solutions corresponding to the initial datum u0

randomly distributed between 0 and 1, as shown in Figure 2(a), but with different

parameters ξ. Figure 2(b) corresponds to the case when ξ = 0, i.e. the non-viscous

isotropic one, while Figures 2(c), 2(d), and 2(e) correspond to the viscous isotropic

case with ξ = 0.01, ξ = 0.1, and ξ = 1, respectively. In these four cases, the step size

is 10−8, and we show the solution after 5 iterations (t = 5× 10−8). We can see that

when ξ is close to zero, the solutions evolve more rapidly. Figure 2(f) corresponds

to the case when ξ = 0, i.e. the non-viscous isotropic case, while Figures 2(g), 2(h),

and 2(i) correspond to the viscous isotropic case with ξ = 0.01, ξ = 0.1, and ξ = 1,

respectively. In these four cases, the step size is 10−8, and we show the solution after

200 iterations (t = 2× 10−6). We can see that when ξ is close to zero, the solutions

evolve more rapidly. In this test, ε = 0.05 and β = 0.001.

4.2. Anisotropic case with Willmore regularization. We consider in this

case the following anisotropic viscous Cahn-Hilliard problem

∂u

∂t
+ ξ(−∆)

∂u

∂t
=

1

ε
∆µ,(4.6)

µ = −ε div(g′(∇u)) +
1

ε
f(u) +

β

ε2
ωf ′(u)− β∆ω,(4.7)

ω =
1

ε
f(u)− ε∆u,(4.8)

u, µ, ω are Ω-periodic,(4.9)

u|t=0 = u0,(4.10)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Isotropic model: (a) Initial condition u0. (b) Solution at t = 5×10
−8 with ξ = 0.

(c) Solution at t = 5 × 10−8 with ξ = 0.01. (d) Solution at t = 5 × 10−8 with
ξ = 0.1. (e) Solution at t = 5×10−8 with ξ = 1. (f) Solution at t = 2×10−6 with
ξ = 0. (g) Solution at t = 2× 10−6 with ξ = 0.01. (h) Solution at t = 2× 10−6

with ξ = 0.1. (i) Solution at t = 2× 10−6 with ξ = 1.

where the anisotropic term g is defined by

g(s1, s2) =







1

2
γ2

( s1
|s|

,
s2
|s|

)

|s|2 for (s1, s2) 6= (0, 0),

0 for (s1, s2) = (0, 0),

where γ(n) describes the anisotropic function and n = ∇u/|∇u| is the outer normal

unit vector.
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The well-posedness of (4.6)–(4.10) in the two dimensional case for ξ = 0 has been

studied in [22], while in [21], the authors study the non-viscous anisotropic Cahn-

Hilliard model (i.e. for ξ = 0) but in the one-dimensional case and they prove the

existence and uniqueness of the solution.

We consider here the four-fold symmetric anisotropic function

(4.11) γ(n) = γ(n1, n2) = 1 + α cos(4θ) = 1 + α

(

4

2
∑

i=1

n4
i − 3

)

.

In this case, we have for ∇u 6= (0, 0)

(4.12) g(∇u) =
|∇u|2

2

[

1 + α
( 4

|∇u|4

[(∂u

∂x

)4

+
(∂u

∂y

)4]

− 3
)]2

.

To avoid the problem with |∇u| = 0, we use the square regularization, i.e. |∇u| is

replaced by
√

|∇u|2 + δ2.

In Figure 3, we present numerical solutions corresponding to the initial datum u0

randomly distributed between 0 and 1, as shown in Figure 3(a), but with different

parameters ξ. Figure 3(b) corresponds to the case when ξ = 0, i.e. the anisotropic

non-viscous case. Figures 3(c), 3(d), and 3(e) correspond to the anisotropic viscous

case with ξ = 0.01, ξ = 0.1, and ξ = 1, respectively. In these four cases, the step size

is 10−8, and we show the solution after 5 iterations (t = 5× 10−8). We can see that

when ξ is close to zero, the solutions evolve more rapidly. Figure 3(f) corresponds to

the case when ξ = 0, i.e. the anisotropic non-viscous case. Figures 3(g), 3(h), and

3(i) correspond to the anisotropic viscous case with ξ = 0.01, ξ = 0.1, and ξ = 1,

respectively. In these four cases, the step size is 10−8, and we show the solution after

200 iterations (t = 2× 10−6). We can see that when ξ is close to zero, the solutions

evolve more rapidly. In this test, ε = 0.05, α = 0.9, δ = 0.0001, and β = 0.001.

A c k n ow l e d gm e n t. The author wishes to thank A.Miranville, his supervisor,
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