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g-QUASI-FROBENIUS LIE ALGEBRAS

David N. Pham

Abstract. A Lie version of Turaev’s G-Frobenius algebras from 2-dimensional
homotopy quantum field theory is proposed. The foundation for this Lie version
is a structure we call a g-quasi-Frobenius Lie algebra for g a finite dimensional
Lie algebra. The latter consists of a quasi-Frobenius Lie algebra (q, β) together
with a left g-module structure which acts on q via derivations and for which
β is g-invariant. Geometrically, g-quasi-Frobenius Lie algebras are the Lie
algebra structures associated to symplectic Lie groups with an action by a
Lie group G which acts via symplectic Lie group automorphisms. In addition
to geometry, g-quasi-Frobenius Lie algebras can also be motivated from the
point of view of category theory. Specifically, g-quasi Frobenius Lie algebras
correspond to quasi Frobenius Lie objects in Rep(g). If g is now equipped
with a Lie bialgebra structure, then the categorical formulation of G-Frobenius
algebras given in [16] suggests that the Lie version of a G-Frobenius algebra
is a quasi-Frobenius Lie object in Rep(D(g)), where D(g) is the associated
(semiclassical) Drinfeld double. We show that if g is a quasitriangular Lie
bialgebra, then every g-quasi-Frobenius Lie algebra has an induced D(g)-action
which gives it the structure of a D(g)-quasi-Frobenius Lie algebra.

1. Introduction

Renewed interest in Frobenius algebras arose shortly after Witten’s introduction
of Topological Qunatum Field Theory (TQFT) in [28]. Shortly afterwards, Atiyah
proposed a set of axioms for TQFT [3], thus making Witten’s work more accessible
to the mathematical community. Working from Atiyah’s axioms, L. Abrams showed
that 2-dimensional TQFTs are classified by commutative Frobenius algebras [1].
Hence, in the 2-dimensional case, the algebraic structure of a TQFT is that of a
Frobenius algebra.

The notion of a (d+1)-dimensional TQFT was generalized to a (d+1)-dimensional
Homotopy Quantum Field Theory (HQFT) by V. Turaev in [25] by equipping closed
d-manifolds and (d+1)-dimensional cobordisms with homotopy classes of maps into
a target space X. In the special case when X is a K(G, 1)-space for G a finite group,
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one finds that the 2-dimensional HQFTs are classified by Frobenius algebras with
a G-grading and a G-action which satisfies a number of conditions [15, 25]. These
Frobenius algebras came to be called G-Frobenius algebras (or crossed G-algebras).

In [16], a categorical formulation of G-Frobenius algebras was presented where
G-Frobenius algebras were shown to correspond to certain types of Frobenius
objects in Rep(D(k[G])), the braided monoidal category of finite dimensional left
D(k[G])-modules, where D(k[G]) is the Drinfeld double of the group ring k[G]
with its usual Hopf structure. Now the semiclassical analogue of D(k[G]) (or more
generally D(H) for H a finite dimensional Hopf algebra) is D(g), the Drinfeld
double of a finite dimensional Lie bialgbera (g, γ) [7, 9, 10, 18]. The relationship
between G-Frobenius algebras and D(k[G]) in [16] motivates the following question:

With (g, γ) fixed, what structure plays the role of a G-Frobenius algebra for D(g)?

Since D(g) is the Lie version of D(k[G]), the structure in question should be the
Lie version of a G-Frobenius algebra. To answer the aforementioned question, we
introduce the notion of g-quasi-Frobenius Lie algebras for g a finite dimensional Lie
algebra. A g-quasi-Frobenius Lie algebra consists of a quasi-Frobenius Lie algebra
(q, β) together with a left g-module structure which acts on q via derivations and
for which β is g-invariant. Geometrically, g-quasi-Frobenius Lie algebras are the
Lie algebra structures of symplectic Lie groups with an action by a Lie group G
which acts via symplectic Lie group automorphisms. We call the aforementioned
structures G-symplectic Lie groups.

Interestingly, g-quasi-Frobenius Lie algebras have a categorical formulation. To
obtain this formulation, we introduce the notion of a quasi-Frobenius Lie object for
any additive symmetric monoidal category. The work of Goyvaerts and Vercuysse
on the categorification of Lie algebras [12] provides the foundation for defining
quasi-Frobenius Lie objects. The latter then yields an alternate (yet equivalent)
definition of a g-quasi-Frobenius Lie algebra: a g-quasi Frobenius Lie algebra is
simply a quasi Frobenius Lie object in Rep(g), where Rep(g) is the category of
finite dimensional representations of g. Using the categorical formulation of [16] as
motivation, we obtain the Lie version of a G-Frobenius algebra: for a fixed finite
dimensional Lie bialgebra (g, γ), the Lie version of a G-Frobenius algebra is a
quasi-Frobenius Lie object in Rep(D(g)). In other words, with respect to (g, γ), a
D(g)-quasi-Frobenius Lie algebra is the Lie version of a G-Frobenius algebra. The
definition of D(g) implies that a D(g)-quasi-Frobenius Lie algebra is equivalent to
a quasi-Frobenius Lie algebra (q, β) which is both a g and g∗-quasi-Frobenius Lie
algebra where the g and g∗ actions satisfy a certain compatibility condition.

The rest of the paper is organized as follows. In Section 2, we give a brief review
of quasi-Frobenius Lie algebras, symplectic Lie groups, Lie bialgebras, and the
Drinfeld double. In Section 3, we formally define g-quasi-Frobenius Lie algebras
and prove a general result for their construction. We conclude the section with the
categorical formulation of these structures. In Section 4, G-symplectic Lie groups
are introduced. We show that g-quasi-Frobenius Lie algebras are the Lie algebra
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structures of G-symplectic Lie groups. In addition, we show that the category
of finite dimensional g-quasi-Frobenius Lie algebras is equivalent to the category
of simply connected G-symplectic Lie groups where G is also simply connected.
In Section 5, we focus our attention on D(g)-quasi-Frobenius Lie algebras. We
show that if g is a quasitriangular Lie bialgebra, then every g-quasi-Frobenius Lie
algebra has an induced D(g)-action which extends the original g-action and gives
the underlying quasi-Frobenius Lie algebra the structure of a D(g)-quasi-Frobenius
Lie algebra. In particular, for any finite dimensional Lie algebra g (viewed as a
Lie bialgebra with co-bracket γ ≡ 0), every g-quasi-Frobenius Lie algebra is a
D(g)-quasi-Frobenius Lie algebra, where D(g) is the Drinfeld double of (g, 0).

2. Preliminaries

In this section, we briefly review some of the relevant background for the current
paper. Throughout this section, k is a field of characteristic zero.

2.1. Quasi-Frobenius Lie Algebras. The definition of a Frobenius Lie algebra
[22, 23] is modeled after the definition of a Frobenius algebra. Formally, a Frobenius
Lie algebra is defined as follows:

Definition 2.1. A Frobenius Lie algebra over k is a pair (g, α) where g is a Lie
algebra and α : g→ k is a linear map with the property that the skew-symmetric
bilinear form β on g defined by

β(x, y) := α([x, y]) ∀ x, y ∈ g

is nondegenerate.

As a consequence of the Jacobi identity, the skew-symmetric bilinear form β in
Definition 2.1 satisfies the following identity:

(2.1) β([x, y], z) + β([y, z], x) + β([z, x], y) = 0 , ∀ x, y, z ∈ g .

Equation (2.1) is equivalent to the statement that β is a 2-cocycle in the Lie algebra
cohomology of g with values in k (where g acts trivially on k). This motivates the
following generalization of Definition 2.1:

Definition 2.2. A quasi-Frobenius Lie algebra over k is a pair (g, β) where g is a
Lie algebra over k and β is a nondegenerate 2-cocycle in the Lie algebra cohomology
of g with values in k (where g acts trivially on k).

Remark 2.3. A quasi-Frobenius Lie algebra (g, β) is a Frobenius Lie algebra iff β
is exact, i.e., β(x, y) = (−δα)(x, y) := α([x, y]) for some linear map α : g→ k.

Proposition 2.4. Every 2-dimensional non-abelian Lie algebra admits the struc-
ture of a Frobenius Lie algebra. In particular, every 2-dimensional non-abelian
quasi-Frobenius Lie algebra is Frobenius.

Proof. Let g be a 2-dimensional non-abelian Lie algebra. Then g admits a basis
u1, u2 such that [u1, u2] = u2. Let α : g→ k be the linear map defined by α(u1) = 0
and α(u2) = 1. Then (g, α) is a Frobenius Lie algebra.
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If (g, β) is a quasi-Frobenius Lie algebra, set α(u1) = 0 and α(u2) = β(u1, u2).
Then it’s easy to see that β(x, y) = α([x, y]) for all x, y ∈ g. Hence, (g, β) is
Frobenius. �

Remark 2.5. Since every finite dimensional quasi-Frobenius Lie algebra (g, β) is
also a symplectic vector space, it follows that the dimension of g is necessarily even.

Proposition 2.6. Let g be a Lie algebra of dimension n over k and let e1, e2, . . . , en
be a basis of g. Then the following statements are equivalent:

(1) There exists α ∈ g∗ such that (g, α) is a Frobenius Lie algebra.
(2) There exists α ∈ g∗ such that det(α([ei, ej ])) 6= 0
(3) det([ei, ej ]) 6= 0, where [ei, ej ] ∈ g are viewed as elements of the symmetric

algebra S(g).

Proof. (1)⇔ (2) Immediate.
(2) ⇒ (3) Recall that S(g) is naturally isomorphic to the polynomial ring in

n-variables where the variables are taken to be the basis e1, e2, . . . , en. Extend the
linear map α : g→ k to a unit preserving algebra map α : S(g)→ k via

α(v1v2 · · · vr) := α(v1)α(v2) · · ·α(vr)

for v1, . . . , vr ∈ g. Then

α(det([ei, ej ])) = det(α([ei, ej ])) 6= 0 ,

which implies that det([ei, ej ]) 6= 0.
(2) ⇐ (3) Let p = det([ei, ej ]) ∈ S(g). Since p = p(e1, . . . , en) 6= 0 and k is

infinite, there exists λi ∈ k such that p(λ1, . . . , λn) 6= 0 (see Theorem 3.76 of [26]).
Let α : g→ k be the linear map defined by α(ei) = λi for i = 1, . . . , n. As before,
extend α : g→ k to an algebra map α : S(g)→ k. Then

det(α([ei, ej ])) = α
(

det([ei, ej ])
)

= α
(
p(e1, . . . , en)

)
= p
(
α(e1), . . . , α(en)

)
= p(λ1, . . . , λn)
6= 0 .

�

We now recall two examples. The first is Frobenius and the second is quasi-Frobenius
but not Frobenius [6, 22].

Example 2.7. Let g be the 4-dimensional Lie algebra with basis {x1, . . . , x4} and
non-zero commutator relations:

[x1, x2] = 1
2x2 + x3, [x1, x3] = 1

2x3, [x1, x4] = x4, [x2, x3] = x4 .

Then det([xi, xj ]) = (x4)4 6= 0, where [xi, xj ] are regarded as elements of the
symmetric algebra S(g). By Proposition 2.6, there exists a linear map α : g→ k
for which (g, α) is a Frobenius Lie algebra.
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Example 2.8. Let q be the 4-dimensional Lie algebra with basis {x1, . . . , x4} and
non-zero commutator relations:

[x1, x2] = x3, [x1, x3] = x4 .

Since det([xi, xj ]) = 0, q cannot be Frobenius by Proposition 2.6. However, it does
admit the structure of a quasi-Frobenius Lie algebra. As an example of this, let β
be the nondegenerate, skew-symmetric bilinear form given by

β = x∗1 ∧ x∗4 + x∗2 ∧ x∗3
where {x∗1, . . . , x∗4} is the dual basis. A direct calculation shows that β satisfies the
2-cocycle condition. Hence, (q, β) is quasi-Frobenius.

Definition 2.9. Let (g1, β1) and (g2, β2) be quasi-Frobenius Lie algebras. A
quasi-Frobenius Lie algebra homomorphism from (g1, β1) to (g2, β2) is a Lie algebra
homomorphism ϕ : g1 → g2 such that ϕ∗β2 = β1, that is,

(2.2) β1(u, v) = β2
(
ϕ(u), ϕ(v)

)
, ∀ u, v ∈ g1 .

If ϕ : g1 → g2 satisfies (2.2) and is also a Lie algebra isomorphism, then ϕ is an
isomorphism of quasi-Frobenius Lie algebras.

Proposition 2.10. Let ϕ : (g1, β1) → (g2, β2) be a quasi-Frobenius Lie algebra
map. If dim g1 = dim g2 < ∞, then ϕ is an isomorphism of quasi-Frobenius Lie
algebras.

Proof. Since dim g1 = dim g2 < ∞, it suffices to show that ϕ is injective. Let
u ∈ g1 be any nonzero element. Since β is nondegenerate, there exists v ∈ g1 such
that β(u, v) 6= 0. Hence,

β2
(
ϕ(u), ϕ(v)

)
= β1(u, v) 6= 0 ,

which implies that ϕ(u) 6= 0. This completes the proof. �

2.2. Symplectic Lie Groups. In this section, we recall the correspondence bet-
ween symplectic Lie groups [4, 8] and quasi-Frobenius Lie algebras.

Definition 2.11. A symplectic Lie group is a pair (G,ω) where G is a Lie group
and ω is a left-invariant symplectic form on G.

The next result shows that the Lie algebra of a symplectic Lie group is naturally
a quasi-Frobenius Lie algebra.

Proposition 2.12. Let (G,ω) be a symplectic Lie group. Then (g, ωe) is a quasi-Fro-
benius Lie algebra.

Proof. Let Xl(G) denote the space of left-invariant vector fields on G and endow
g := TeG with the Lie algebra structure of Xl(G). Also, let x̃ denote the left-invariant
vector field associated with x ∈ g. We now show that (g, ωe) is a quasi-Frobenius
Lie algebra. Since ωg|TgG is nondegenerate for all g ∈ G (in particular for g = e),
it only remains to show that ωe is a 2-cocycle of g with values in R (where g acts
trivially on R).



238 D. N. PHAM

First, note that for any x, y ∈ g, ω(x̃, ỹ) is a constant function on G. Indeed,
for g ∈ G (

ω(x̃, ỹ)
)
(g) := ωg(x̃g, ỹg)

= ωg((lg)∗x, (lg)∗y)
= (l∗gω)e(x, y)
= ωe(x, y)

where the last equality follows from the fact that ω is left-invariant. This fact along
with the fact the ω is closed implies that ωe ∈ Z2(g; R):

0 = dω(x̃, ỹ, z̃)
= x̃

(
ω(ỹ, z̃)

)
− ỹ
(
ω(x̃, z̃)

)
+ z̃
(
ω(x̃, ỹ)

)
− ω([x̃, ỹ], z̃) + ω([x̃, z̃], ỹ)− ω([ỹ, z̃], x̃)

= −ω([x̃, ỹ], z̃)− ω([z̃, x̃], ỹ)− ω([ỹ, z̃], x̃) .
Evaluating the last equality at e ∈ G and multiplying by −1 gives the 2-cocycle
condition on ωe:

ωe([x, y], z) + ωe([z, x], y) + ωe([y, z], x) = 0 .
Hence, (g, ωe) is a quasi-Frobenius Lie algebra. �

Proposition 2.13. Let G be a Lie group whose Lie algebra g carries the structure
of a quasi-Frobenius Lie algebra with 2-cocycle β. Define β̃ ∈ Ω2(G) by

β̃g := (lg−1)∗β ∈ ∧2T ∗gG, ∀ g ∈ G

where lg : G → G is left translation by g. Then (G, β̃) is a symplectic Lie group
whose associated quasi-Frobenius Lie algebra is (g, β̃e) = (g, β).

Proof. It follows immediately from the definition that β̃ is left-invariant, that
is, (lg)∗β̃ = β̃ for all g ∈ G. Moreover, since β is nondegenerate, β̃ must be
nondegenerate as well. To see that dβ̃ = 0, it suffices to show that dβ̃(x̃, ỹ, z̃) = 0
for all left-invariant vector fields x̃, ỹ, and z̃. Since β̃ is left-invariant, it follows
that β̃(x̃, ỹ) = β̃e(x, y) = β(x, y) is a constant function on G for all left-invariant
vector fields x̃ and ỹ, where x̃e = x and ỹe = y. In particular,

β̃([x̃, ỹ], z̃) = β([x, y], z) .

The proof of Proposition 2.12 shows that if β̃ is left-invariant, we have
dβ̃(x̃, ỹ, z̃) = −β̃([x̃, ỹ], z̃)− β̃([z̃, x̃], ỹ)− β̃([ỹ, z̃], x̃)

= −β([x, y], z)− β([z, x], y)− β([y, z], x) .

Since β ∈ Z2(g; R), the last equality must be zero. Hence, (G, β̃) is a symplectic
Lie group. �

Definition 2.14. Let (G,ω) and (H,σ) be symplectic Lie groups. A homomor-
phism of symplectic Lie groups is a Lie group homomorphism ϕ : G→ H such that
ϕ∗σ = ω.
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Lemma 2.15. Let (G,ω) and (H,σ) be symplectic Lie groups and let ϕ : G→H
be a Lie group homomorphism. Then ϕ∗σ = ω iff (ϕ∗σ)e = ωe.

Proof. (⇒) Suppose (ϕ∗σ) = ω. By definition, (ϕ∗σ)g = ωg for all g ∈ G. In
particular, the equality holds for g = e.

(⇐) Now suppose (ϕ∗σ)e = ωe. Let g ∈ G and x, y ∈ TgG. Then
(ϕ∗σ)g(x, y) = σϕ(g)

(
ϕ∗,g(x), ϕ∗,g(y)

)
= [(lϕ(g−1))∗σe]

(
ϕ∗,g(x), ϕ∗,g(y)

)
= σe

(
(lϕ(g−1) ◦ ϕ)∗,g(x), (lϕ(g−1) ◦ ϕ)∗,g(y)

)
= σe

(
(ϕ ◦ lg−1)∗,g(x), (ϕ ◦ lg−1)∗,g(y)

)
= (ϕ∗σ)e

(
(lg−1)∗,g(x), (lg−1)∗,g(y)

)
= ωe

(
(lg−1)∗,g(x), (lg−1)∗,g(y)

)
= [(lg−1)∗ωe](x, y)
= ωg(x, y),

where the second and last equalities follow from the left-invariance of σ and
ω respectively and the fourth equality follows from the fact that ϕ is a group
homomorphism. This completes the proof. �

Proposition 2.16. Let ϕ : (G,ω)→ (H,σ) be a homomorphism of symplectic Lie
groups. Then

ϕ∗,e : (g, ωe)→ (h, σe)
is a homomorphism of quasi-Frobenius Lie algebras.

Proof. This follows immediately from the properties of ϕ. �

Proposition 2.17. Let ψ : (g, β)→ (h, σ) be a homomorphism of quasi-Frobenius
Lie algebras. Let G be the simply connected Lie group whose Lie algebra is g and let
H be any Lie group whose Lie algebra is h. Let (G, β̃) and (H, σ̃) be the symplectic
Lie groups associated to (g, β) and (h, σ) respectively (see Proposition 2.13). Then
there exists a unique symplectic Lie group homomorphism

ψ̂ : (G, β̃)→ (H, σ̃)

such that ψ̂∗,e = ψ.

Proof. Since G is simply connected, there exists a unique Lie group homomorphism
ψ̂ : G→ H such that ψ̂∗,e = ψ. It only remains to show that ψ̂∗σ̃ = β̃. By Lemma
2.15, it suffices to show that (ψ̂∗σ̃)e = β̃e = β. To do this, let x, y ∈ g. Then

(ψ̂∗σ̃)e(x, y) = σ̃
ψ̂(e)

(
ψ̂∗,e(x), ψ̂∗,e(y)

)
= σ̃e

(
ψ(x), ψ(y)

)
= σ

(
ψ(x), ψ(y)

)
= (ψ∗σ)(x, y)
= β(x, y) .
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This completes the proof. �

Theorem 2.18. Let SCSLG be the category of simply connected symplectic Lie
groups and let qFLA be the category of finite dimensional quasi-Frobenius Lie
algberas. Let F be the functor from SCSLG to qFLA which sends (G,ω) to (g, ωe)
and ϕ : (G,ω) → (H,σ) to ϕ∗,e : (g, ωe) → (h, σe). Then F is an equivalence of
categories.

Proof. Theorem 2.18 follows from the well known correspondence between simply
connected Lie groups and finite dimensional Lie algebras combined with Proposition
2.12, Proposition 2.13, Proposition 2.16, and Proposition 2.17. �

As an example, we now recall the symplectic Lie group structure on the affine
Lie group A(n,R) (c.f., [2, 21, 22]).

Example 2.19. Recall that A(n,R) is the Lie group consisting of (n+ 1)× (n+ 1)
matrices of the form

A(n,R) =
{(

A v
0 1

) ∣∣ A ∈ GL(n,R), v ∈ Rn
}
.

The associated Lie algebra is then

a(n,R) =
{(

A v
0 0

) ∣∣ A ∈ gl(n,R), v ∈ Rn
}
.

From the definition of A(n,R), we see that A(n,R) is even dimensional with
dim A(n,R) = dim a(n,R) = n2 + n = n(n + 1). Let Eij denote the (n + 1) ×
(n+ 1) matrix with 1 in the (i, j)-component and all other components zero. Then
{Eij}1≤i≤n, 1≤j≤n+1 is a basis on a(n,R). Let {E∗ij}1≤i≤n, 1≤j≤n+1 denote the
corresponding dual basis. Define

α = E∗12 + E∗23 + · · ·+ E∗n,n+1

and β(X,Y ) := −δα(X,Y ) = α([X,Y ]) for all X,Y ∈ a(n,R). Since

[Eij , Ekl] = δjkEil − δliEkj ,

we see that

(2.3) β(Eij , Ekl) = δjkδl,i+1 − δliδj,k+1 .

Careful consideration of (2.3) shows that β := −δα ∈ Z2(a(n,R); R) is nondegene-
rate. Hence, (a(n,R), α) is a Frobenius Lie algebra. (In particular, (a(n,R), β) is a
quasi-Frobenius Lie algebra.) Let β̃ ∈ Ω2(A(n,R)) be the left-invariant 2-form on
A(n,R) associated to β. Then (A(n,R), β̃) is a symplectic Lie group. Furthermore,
since β := −δα, it follows that β̃ is exact. Specifically,

β̃ = −dα̃

where α̃ ∈ Ω1(A(n,R)) is the left-invariant 1-form on A(n,R) associated to α.
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2.3. Lie bialgebras & the Drinfeld Double.

Definition 2.20. A Lie bialgebra over a field k is a pair (g, γ) where g is a Lie
algebra over k and γ : g→ g ∧ g ⊂ g⊗ g is a skew-symmetric linear map such that

(1) γ∗ : g∗⊗ g∗ → g∗ is a Lie bracket on g∗, where the dual map γ∗ is restricted
to g∗ ⊗ g∗ ⊂ (g⊗ g)∗;

(2) γ is a 1-cocycle on g with values in g ⊗ g, where g acts on g ⊗ g via the
adjoint action.

γ is called the cobracket or co-commutator.

Condition 2 in Definition 2.20 is equivalent to the condition

γ([x, y]) = ad(2)
x γ(y)− ad(2)

y γ(x) , ∀ x, y ∈ g

where the linear map ad(2)
x : g⊗ g→ g⊗ g is the adjoint action of x ∈ g on g⊗ g.

Explicitly, ad(2)
x is defined via

ad(2)
x (y ⊗ z) = adx(y)⊗ z + y ⊗ adx(z) = [x, y]⊗ z + y ⊗ [x, z]

for y, z ∈ g.

Definition 2.21. Let (g, γg) and (h, γh) be Lie bialgebras. A Lie bialgebra homo-
morphism from (g, γg) to (h, γh) is a Lie algebra map ϕ : g→ h such that

(ϕ⊗ ϕ) ◦ γg = γh ◦ ϕ .

Example 2.22. Any Lie algebra g can be turned into a Lie bialgebra by taking
the cobracket γ ≡ 0. (g, 0) is the trivial Lie bialgebra structure on g.

The next result shows that the notion of a Lie bialgebra is self-dual for the finite
dimensional case.

Proposition 2.23. Let (g, γg) be a finite dimensional Lie bialgebra and let γg∗ : g∗ →
g∗ ⊗ g∗ be the dual of the Lie bracket on g. Then (g∗, γg∗) is a Lie bialgebra, where
the Lie bracket on g∗ is given by the dual of γg.

For a Lie algebra g, the simplest way to obtain an element of Z1
ad(g; g⊗ g) is to

turn to the 0-cochains and take their coboundaries. This raises the following natural
question: given r ∈ g ⊗ g, when does δr ∈ Z1

ad(g; g ⊗ g) define a Lie bialgebra
structure on g? To answer this question, let

r =
∑
i

ai ⊗ bi ,

and define

(2.4) [[r, r]] := [r12, r13] + [r12, r23] + [r13, r23] ,
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where
[r12, r13] :=

∑
i,j

[ai, aj ]⊗ bi ⊗ bj ,(2.5)

[r12, r23] :=
∑
i,j

ai ⊗ [bi, aj ]⊗ bj ,(2.6)

[r13, r23] :=
∑
i,j

= ai ⊗ aj ⊗ [bi, bj ] .(2.7)

Definition 2.24. A coboundary Lie bialgebra is a Lie bialgebra (g, γ) such that
γ = δr for some r ∈ g⊗ g. The element r is called the r-matrix.

The next result provides a necessary and sufficient condition for an element
r ∈ g⊗ g to define a Lie bialgebra structure on g.

Proposition 2.25. Let g be a Lie algebra. Then (g, δr) is a Lie bialgebra iff
(i) r+σ(r) is invariant under the adjoint action of g on g⊗g, where σ : g⊗g→

g⊗ g is the unique linear map defined by x⊗ y 7→ y ⊗ x for x, y ∈ g;
(ii) [[r, r]] is invariant under the adjoint action of g on g⊗ g⊗ g.

Proof. See pp. 51–54 of [7]. �

The simplest way to ensure that condition (ii) of Proposition 2.25 is satisfied is
to demand that
(2.8) [[r, r]] = 0 .
Equation 2.8 is called the classical Yang-Baxter equation (CYBE). The CYBE
motivates the following definition:

Definition 2.26. A coboundary Lie bialgebra (g, δr) is quasitriangular if r is a
solution of the CYBE. Furthermore, if r is skew-symmetric, that is, r ∈ g∧g ⊂ g⊗g,
then (g, δr) is said to be triangular.

Example 2.27. Let g be the two dimensional Lie algebra with basis x, y and
commutator relation [x, y] = x. Define r = y ∧ x. Then (g, δr) is a triangular Lie
bialgebra, where γ := δr is given explicitly by

γ(x) = 0 , γ(y) = x ∧ y .

Before turning to the Drinfeld double, we recall the following notion:

Definition 2.28. Let g be a Lie algebra and let 〈·, ·〉 be a bilinear form on g.
g is ad-invariant with respect to 〈·, ·〉 if
(2.9) 〈[x, y], z〉 = 〈x, [y, z]〉 , ∀ x, y, z ∈ g .

Now let (g, γg) be a finite dimensional Lie bialgebra and let (g∗, γg∗) be the
associated dual Lie bialgebra. Consider the direct sum

g⊕ g∗

and equip it with the symmetric, nondegenerate bilinear form 〈·, ·〉 defined by
〈x+ ξ, y + η〉 = ξ(y) + η(x) ,
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where we write x+ ξ and y + η for (x, ξ), (y, η) ∈ g⊕ g∗. The Drinfeld double of
(g, γg), denoted by D(g), is the unique quasitriangular Lie bialgebra which satisfies
the following condtions:

(1) As a vector space,
D(g) = g⊕ g∗ .

(2) As a Lie algebra, D(g) is ad-invariant with respect to the inner product 〈·, ·〉
and contains g and g∗ as Lie subalgebras.

(3) The cobracket on D(g) is defined by γD := γg − γg∗ .
Let [·, ·]D, [·, ·]g, and [·, ·]g∗ denote the Lie brackets on D(g), g, and g∗ respectively.
Condition (2) implies that

[x, y]D = [x, y]g, [ξ, η]D = [ξ, η]g∗ , [x, ξ]D = ad∗xξ − ad∗ξx

for all x, y ∈ g and ξ, η ∈ g∗, where ad∗ denotes the coadjoint action of g on g∗

and g∗ on g. Explicitly, ad∗x : g∗ → g∗ and ad∗ξ : g→ g are defined by ad∗x := − adtx
and ad∗ξ := − adtξ where adtx and adtξ are the ordinary duals of adx : g → g and
adξ : g∗ → g∗. In dealing with the Drinfeld double, we will drop the “D”, “g”, and
“g∗” that appear as subscripts in the Lie brackets of D(g), g, and g∗ respectively.
Condition (2) implies that the triple (D(g), g, g∗) is a Manin triple with respect to
the inner product 〈·, ·〉. In fact, there is a one to one correspondence between finite
dimensional Lie bialgebras and Manin triples (see [7]).

Lastly, condition (3) implies that D(g) is quasitriangular with r-matrix

r =
∑
i

ei ⊗ e∗i

where e1, . . . , en is any basis on g and e∗1, . . . , e
∗
n is the corresponding dual basis.

Example 2.29. Let (g, γ) be the 2-dimensional Lie bialgebra with basis x, y
satisfying [x, y] = x and cobracket γ(x) = 0 and γ(y) = x ∧ y. Let x∗, y∗ denote
the corresponding dual basis. The commutator relations on D(g) are

[x, y] = x , [x∗, y∗] = y∗ , [x, x∗] = −y∗, [x, y∗] = 0
[y, x∗] = x∗ + y , [y, y∗] = −x .

The r-matrix is r = x⊗ x∗ + y ⊗ y∗.

3. g-quasi-Frobenius Lie Algebras

We begin with the formal definition:

Definition 3.1. A g-quasi-Frobenius Lie algebra is a triple (q, β, ρ) such that
(q, β) is a quasi-Frobenius Lie algebra and ρ : g→ gl(q), x 7→ ρx is a left g-module
structure on q such that

(i) ρx is a derivation on q for all x ∈ g,
(ii) β(ρx(u), v) + β(u, ρx(v)) = 0 for all x ∈ g, u, v ∈ q (g-invariance).

In this section, we prove a result for the general construction of g-quasi-Frobenius
Lie algebras. Before doing so, we make the following observation:
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Proposition 3.2. Let (q, β) be a quasi-Frobenius Lie algebra and let Aut(q, β) be
the automorphism group of (q, β). Then Aut(q, β) is an embedded Lie subgroup of
GL(q).

Proof. As a set, Aut(q, β) = Aut(q) ∩ Sp(q, β) where Aut(q) is the group of
automorphisms of the Lie algebra q and Sp(q, β) is the group of linear symplec-
tomorphisms of (q, β), where the latter is regarded as a symplectic vector space.
Since Aut(q) and Sp(q, β) are both closed subgroups of GL(q), each being the zero
set of a collection of polynomials, Aut(q, β) is also a closed subgroup of GL(q).
By the closed subgroup theorem [27], Aut(q, β) is an embedded Lie subgroup of
GL(q). �

Proposition 3.3. Let (q, β) be a quasi-Frobenius Lie algebra and let

ρ : G→ Aut(q, β) ⊂ GL(q) , g 7→ ρg

be a Lie group homomorphism. Define

ρ′ := ρ∗,e : g→ gl(q), x 7→ ρ′x .

Then (q, β, ρ′) is a g-quasi-Frobenius Lie algebra. In particular, if G is any Lie
subgroup of Aut(q, β), then (q, β) admits the structure of a g-quasi-Frobenius Lie
algebra.

Proof. Since ρ is a Lie group homomorphism, it immediately follows that ρ′ : g→
gl(q) is a representation of g on q. We now show that

(3.1) ρx([u, v]) = [ρx(u), v] + [u, ρx(v)]

and

(3.2) β(ρx(u), v) + β
(
u, ρx(v)

)
= 0

for all x ∈ g and u, v ∈ q. To do this, fix a basis e1, e2, . . . , en on q. Since
ρexp(tx)(u), ρexp(tx)(v) ∈ q, we have

(3.3) ρexp(tx)(u) =
∑
i

ai(t)ei, ρexp(tx)(v) =
∑
i

bi(t)ei

for some smooth functions ai(t), bi(t), i = 1, . . . , n. Hence,

(3.4) ρ′x(u) =
∑
i

ȧi(0)ei , ρ′x(v) =
∑
i

ḃi(0)ei .

Since ρg ∈ Aut(q, β) for all g ∈ G, we have

ρexp(tx)([u, v]) = [ρexp(tx)(u), ρexp(tx)(v)] .(3.5)
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Substituting (3.3) into the right side of (3.5) and applying d
dt |t=0 to both sides of

(3.5) gives

ρ′x([u, v]) = d

dt

∣∣
t=0[ρexp(tx)(u), ρexp(tx)(v)]

= d

dt

∣∣
t=0

∑
i,j

ai(t)bj(t)[ei, ej ]

=
∑
i,j

(ȧi(0)bj(0)[ei, ej ] + ai(0)ḃj(0)[ei, ej ])

= [ρ′x(u), v] + [u, ρ′x(v)] ,(3.6)

which proves (3.1).
For equation (3.2), note that

(3.7) β(ρexp(tx)(u), ρexp(tx)(v)) = β(u, v)

since ρg ∈ Aut(q, β) for all g ∈ G. Substituting (3.3) into the left side of (3.7) and
applying d

dt

∣∣
t=0 to both sides of (3.7) gives

β(ρ′x(u), v) + β
(
u, ρ′x(v)

)
= 0 .

This completes the proof. �

A trivial example of a g-quasi-Frobenius Lie algebra is obtained by equipping
any quasi-Frobenius Lie algebra with the trivial g-action. We now consider a more
interesting example which is an application of Proposition 3.3.

Example 3.4. Let q be the 4-dimensional Lie algebra {e1, e2, e3, e4} whose
non-zero commutator relations are given by [6]:

[e1, e2] = e2 , [e1, e3] = e3 , [e1, e4] = 2e4 , [e2, e3] = e4 .

Let α : q→ R be the linear map defined by α(ei) = 0 for i = 1, 2, 3 and α(e4) = 1.
Define β(u, v) := α([u, v]) for all u, v ∈ q. Then the matrix representation of β with
respect to the basis {e1, e2, e3, e4} is

(βij) =


0 0 0 2
0 0 1 0
0 −1 0 0
−2 0 0 0

 .

Hence, β is nondegenerate which shows that (q, α) is a Frobenius Lie algbera. Let
G be the set of linear isomorphisms on q whose matrix representations with respect
to {e1, e2, e3, e4} is given by

(3.8)




1 0 0 0
0 b c 0
0 0 1/b 0
a 0 0 1

 ∣∣∣ a, c ∈ R, b > 0

 .

A direct calculation shows that G is a 3-dimensional non-abelian, connected Lie
subgroup of Aut(q, β). Let ρ : G→ Aut(q, β) ⊂ GL(q) be the inclusion map (which
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is clearly a Lie group homomorphism). Proposition 3.3 implies that (q, β, ρ′) is a
g-quasi-Frobenius Lie algebra, where ρ′ := ρ∗,e. As a Lie algebra, g has basis
(3.9)

x1 :=


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , x2 :=


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , x3 :=


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

where we have identified G with its matrix represenations in (3.8). The non-zero
commutator relations are

[x2, x3] = 2x3.

Let a = a1x1 + a2x2 + a3x3 ∈ g. Since ρ : G → Aut(q, β) ⊂ GL(q) is just the
inclusion map, it follows that the matrix representation of ρ′a : q→ q with respect
to the basis {e1, e2, e3, e4} is simply

(3.10) ρ′a =


0 0 0 0
0 a2 a3 0
0 0 −a2 0
a1 0 0 0

 .

Since (q, β, ρ′) is a g-quasi-Frobenius Lie algebra by Proposition 3.3, ρ′a acts on q
via derivations and satisfies

β(ρ′a(u), v) + β
(
u, ρ′a(v)

)
= 0

for all u, v ∈ q.

For later use, we conclude this section with the following natural definition:

Definition 3.5. Let (q, β, φ) and (r, σ, µ) be g-quasi-Frobenius Lie algebras.
A homomorphism from (q, β, φ) to (r, σ, µ) is a homomorphism

ψ : (q, β)→ (r, σ)

of quasi-Frobenius Lie algebras which is also g-equivariant, that is,

ψ ◦ φx = µx ◦ ψ

for all x ∈ g.

3.1. Categorical Formulation. In this section, we apply the idea of categori-
fication to quasi-Frobenius Lie algebras. The upshot of this is the notion of a
quasi-Frobenius Lie object, which can be viewed as the analogue of a Frobenius
object in the current setting. The starting point for this particular step is the
categorification of Lie algebra due to Goyvaerts and Vercruysse [12]:

Definition 3.6. A Lie object in an additive symmetric monoidal category (C,⊗, I,
Φ, l, r, c) is a pair (L, b) where L is an object of C and b : L⊗L→ L is a morphism
such that

(i) b+ b ◦ c = 0L⊗L,L,
(ii) b ◦ (idL⊗b) ◦ (idL⊗(L⊗L) +cL⊗L,L ◦Φ−1

L,L,L + ΦL,L,L ◦ cL,L⊗L) = 0L⊗(L⊗L),L.
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Remark 3.7. With regard to the notation in Definition 3.6, ⊗ is the monoidal
product; I is the unit object; Φ is the associator; l and r are the left and right unit
maps respectively; and c is the braiding.

Example 3.8. Let Vectk be the symmetric monoidal additive category of finite
dimensional vector spaces over k. It follows readily from Definition 3.6 that a Lie
object (L, b) in Vectk is precisely a finite dimensional Lie algebra L over k with
Lie bracket [x, y] := b(x, y).

Definition 3.9. A quasi-Frobenius Lie object in an additive symmetric monoidal
category (C,⊗, I,Φ, l, r, c) is a triple (L, b, β) such that

(1) (L, b) is a Lie object.
(2) L has a left dual object L∗ (where ε : L∗⊗L→ I and η : I → L⊗L∗ denote

the evaluation and coevaluation morphisms respectively).
(3) β : L ∼→ L∗ is an isomorphism such that the induced morphism

β := ε ◦ (β ⊗ idL) : L⊗ L→ I ,

satisfies
β + β ◦ cL,L = 0L⊗L,I

and
β ◦ (b⊗ idL) ◦ [id(L⊗L)⊗L +Φ−1

L,L,L ◦ cL⊗L,L + cL,L⊗L ◦ ΦL,L,L] = 0(L⊗L)⊗L,I .

If there exists a morphism α : L→ I such that β = α ◦ b, then (L, b, β) is called a
Frobenius Lie object.

Example 3.10. Let (L, b, β) be a quasi-Frobenius Lie object in Vectk. Then
its easy to see that L is a quasi-Frobenius Lie algebra over k with Lie bracket
[x, y] := b(x, y) and β : L ⊗ L → k (as defined in (3) of Definition 3.9) is the
nondegenerate 2-cocycle in the Lie algebra cohomology of L. Likewise, a Frobenius
Lie object in Vectk is just a Frobenius Lie algebra.

Proposition 3.11. The category Rep(g) of finite dimensional left g-modules over
k is an additive symmetric monoidal category where every object has a left dual
and

(i) the monoidal product is the usual tensor product of left g-modules and
g-linear maps;

(ii) the unit object is k with the trivial g-action;
(iii) the associator Φ is the trivial one;
(iv) for any object (V, ρ) in Rep(g), the left and right morphisms lV : k⊗V ∼→ V

and rV : V ⊗ k ∼→ V are the trivial ones;
(v) for objects (V, ρ), (W,φ) in Rep(g), the braiding cV,W : V ⊗W ∼→W ⊗ V

is simply the linear map that sends v ⊗ w ∈ V ⊗W to w ⊗ v ∈W ⊗ V ;
(vi) the left dual of an object (V, ρ) in Rep(g) is the dual representation (V ∗, ρ∗)

(i.e., ρ∗x := −ρtx : V ∗ → V ∗ for x ∈ g, where ρtx is the dual or transpose of
ρx : V → V );
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(vii) the evaluation morphism is ε : V ∗ ⊗ V → k, ε(ξ, v) := ξ(v) and the coeva-
luation morphism is η : k → V ⊗ V ∗, 1 7→

∑
i ei ⊗ δi where ei is any basis

of V and δi is the corresponding dual basis.

Proof. It is an easy exercise to verify that (Rep(g),⊗, k,Φ, l, r, c) satisfies all the
axioms of an additive symmetric monoidal category. �

The next result establishes the categorical formulation of g-quasi-Frobenius Lie
algberas.

Proposition 3.12. A quasi-Frobenius Lie object in Rep(g) is a g-quasi-Frobenius
Lie algebra.

Proof. By definition, a quasi-Frobenius Lie object in Rep(g) consists of a repre-
sentation (q, ρ) of g together with g-linear maps

b : q⊗ q→ q , β : q
∼→ q∗ ,

which satisfy conditions (1) and (3) of Definition 3.9.
We begin by verifying that (q, β) is a quasi-Frobenius Lie algebra. To start, note

that condition (1) of Definition 3.9 implies that q is a Lie algebra with Lie bracket
[u, v] := b(u, v). From Definition 3.9, the morphism β : q⊗ q→ k is given explicitly
as

β(u, v) = ε(β(u), v) = β(u)(v) .

Condition (3) of Definition 3.9 implies that β is a 2-cocycle of q with values in k

(where q acts trivially on k). Furthermore, since β : q
∼→ q∗ is an isomorphism, it

follows that β is nondegenerate. Hence, (q, β) is a quasi-Frobenius Lie algebra.
Since β is g-linear (being a morphism of Rep(g)), we have

β(ρx(u))(v) = ρ∗x(β(u))(v) = −β(u)(ρx(v)) , ∀ u, v ∈ q(3.11)

where we recall that ρ∗x := −ρtx. Expressing the left and right most sides of (3.11)
in terms of β gives

β(ρx(u), v) = −β(u, ρx(v)) ,

which proves the g-invariance of β, that is, β(ρx(u), v) + β(u, ρx(v)) = 0.
Since b is also g-linear, we also have

ρx([u, v]) = ρx(b(u⊗ v))
= b(ρx(u⊗ v))
= b(ρx(u)⊗ v) + b(u⊗ ρx(v))
= [ρx(u), v] + [u, ρx(v)] ,

where ρx in the second equality denotes the induced left g-module structure on
q⊗ q. Hence, (q, β, ρ) is a g-quasi-Frobenius Lie algebra. �
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4. The Geometry of g-quasi-Frobenius Lie algebras

4.1. G-Symplectic Lie groups.

Definition 4.1. Let G be a Lie group. A G-symplectic Lie group is a triple (Q,ω, ϕ)
where (Q,ω) is a symplectic Lie group and

ϕ : G×Q→ Q , (g, q) 7→ ϕg(q) := ϕ(g, q)

is a smooth left action on Q such that ϕg : (Q,ω)→ (Q,ω) is an isomorphism of
symplectic Lie groups.

Notation 4.2. When dealing with multiple Lie groups, we will denote the identity
element of each group simply as e as opposed to eG for G, eQ for Q, and so on
when there is no risk of confusion.

Proposition 4.3. Let (Q,ω, ϕ) be a G-symplectic Lie group with action

ϕ : G×Q→ Q , (g, q) 7→ ϕg(q) := ϕ(g, q) .

Define

ϕ′ : G→ GL(q) , g 7→ ϕ′g := (ϕg)∗,e : q→ q

ϕ′′ : g→ gl(q) , x 7→ ϕ′′x := (ϕ′)∗,e(x) : q→ q .

Then
(i) ϕ′ is a representation of G on q such that ϕ′g ∈ Aut(q, ωe) for all g ∈ G.
(ii) (q, ωe, ϕ′′) is a g-quasi-Frobenius Lie algebra.

Proof. Since ϕ is a left action of G on Q and ϕg(e) = e for all g ∈ G, we have

ϕ′g ◦ ϕ′h = (ϕg)∗,e ◦ (ϕh)∗,e
= (ϕg ◦ ϕh)∗,e
= (ϕgh)∗,e = ϕ′gh .

Hence, ϕ′ is a representation of G on q. Furthermore, since ϕg : Q→ Q is both a
Lie group isomorphism and a symplectomorphism, it follows that ϕ′g : q→ q is a
Lie algebra isomorphism and

ωe(u, v) =
(
(ϕg)∗ω

)
e
(u, v) = ωe

(
(ϕg)∗,e(u), (ϕg)∗,e(v)

)
= ωe

(
ϕ′g(u), ϕ′g(v)

)
,

which shows that ϕ′g ∈ Aut(q, ωe) for all g ∈ G. This proves (i).
Statement (ii) follows from an application of Proposition 3.3 to the quasi-Frobenius

Lie algebra (q, ωe) with Lie group homomorphism ϕ′ : G → Aut(q, ωe) ⊂ GL(q).
This completes the proof. �

Remark 4.4. We will refer to (q, ωe, ϕ′′) in Proposition 4.3 as the g-quasi-Frobenius
Lie algebra associated to the G-symplectic Lie group (Q,ω, ϕ).

The next result provides a means of constructing G-symplectic Lie groups.
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Proposition 4.5. Let (Q,ω) be a simply connected symplectic Lie group, let G be
a Lie group, and let ρ : G → Aut(q, ωe), g 7→ ρg be a Lie group homomorphism.
Then there exists a unique smooth left-G action

ρ̂ : G×Q→ Q , (g, q) 7→ ρ̂g(q) ,

such that (Q,ω, ρ̂) is a G-symplectic Lie group and (ρ̂g)∗,e = ρg. In particular, if
G is any Lie subgroup of Aut(q, ωe) and G 6= {e}, then (Q,ω) admits the structure
of a G-symplectic Lie group with a nontrivial G-action.

Proof. Let ρ : G → Aut(q, ωe), g 7→ ρg be a Lie group homomorphism. Since Q
is simply connected and ρg ∈ Aut(q, ωe) for all g ∈ G, it follows from Proposition
2.17 that there exists a unique homomorphism of symplectic Lie groups

ρ̂g : (Q,ω)→ (Q,ω)

such that (ρ̂g)∗,e = ρg for all g ∈ G. Furthermore, for g, h ∈ G, we have

(ρ̂g ◦ ρ̂h)∗,e = (ρ̂g)∗,e ◦ (ρ̂h)∗,e
= ρg ◦ ρh = ρgh = (ρ̂gh)∗,e .(4.1)

Since ρ̂g ◦ ρ̂h and ρ̂gh are Lie group homomorphisms and Q is connected, equation
(4.1) implies that

(4.2) ρ̂g ◦ ρ̂h = ρ̂gh .

Hence,
ρ̂ : G×Q→ Q , (g, q) 7→ ρ̂g(q)

is a left (not necessarily smooth) G-action. We now show that ρ̂ is smooth. To do
this, set ρ̂(g, q) = ρ̂g(q) for g ∈ G, q ∈ Q and let U be an open neighborhood of
0 ∈ q such that

exp |U : U ∼→ exp(U)

is a diffeomorphism. The naturality of the exponential map implies that

(4.3) ρ̂(g, q) = exp ◦ρg ◦ (exp |U )−1(q) , ∀ (g, q) ∈ G× exp(U) .

Since the right side of (4.3) is smooth on G× exp(U), it follows that ρ̂ |G×exp(U)
is also smooth. Now fix an arbitrary element q0 of Q and define

f : G→ Q , g 7→ ρ̂(g, q0) .

We now show that f is smooth. Since Q is connected, exp(U) generates Q. Hence,
there exists q0,1, . . . , q0,k ∈ exp(U) such that

q0 = q0,1q0,2 . . . q0,k .

Since ρ̂g : Q→ Q is a Lie group homomorphism for all g ∈ G, we have

(4.4) f(g) := ρ̂(g, q0) = ρ̂(g, q0,1)ρ̂(g, q0,2) . . . ρ̂(g, q0,k) ∈ Q .
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Since (g, q0,i) ∈ G× exp(U) for i = 1, . . . , k, it follows that the right side of (4.4)
depends smoothly on g. Hence, f is smooth. Now, for all (g, q) ∈ G× (q0 exp(U)),
we have

ρ̂(g, q) = ρ̂(g, q0q
−1
0 q)

= ρ̂(g, q0)ρ̂(g, q−1
0 q)

= f(g)[(ρ̂|G×exp(U)) ◦ (idG×lq−1
0

)(g, q)] ,(4.5)

where lq−1
0

: Q → Q is left translation by q−1
0 . Since f and ρ̂|G×exp(U) are both

smooth, it follows that the right side of (4.5) is smooth on G× (q0 exp(U)). Hence,
ρ̂ |G×(q0 exp(U)) is smooth. Since q0 ∈ Q is arbitrary, it follows that ρ̂ is smooth on
G×Q. This completes the proof. �

We now illustrate Proposition 4.5 with a simple example:

Example 4.6. Let Q be the 2-dimensional non-abelian Lie group

(4.6) Q =
{(

a b
0 1

) ∣∣ a > 0, b ∈ R
}
.

Note that Q is simply connected, being diffeomorphic to R+ × R. The associated
Lie algebra is

(4.7) q =
{(

a b
0 0

) ∣∣ a, b ∈ R
}
.

A convenient basis for q is then

(4.8) e1 =
(

1 0
0 0

)
, e2 =

(
0 1
0 0

)
,

where we note that

(4.9) [e1, e2] = e2 .

Let α : q→ R be the linear map defined by α(e1) = 0 and α(e2) = 1. Then (q, α) is
a Frobenius Lie algebra. Let β̃ be the left-invariant symplectic form on Q defined
by β̃e = β, where β(u, v) := α([u, v]) for u, v ∈ q.

For λ ∈ R, let ρλ : q→ q be the linear isomorphism defined by

ρλ(e1) := e1 + λe2 , ρλ(e2) := e2 .

Then it is a straightforward exercise to show that ρλ ∈ Aut(q, ωe) and

ρ : R ∼→ Aut(q, ωe) , λ 7→ ρλ

is a Lie group isomorphism. Proposition 4.5 implies that (Q,ω) admits the structure
of an R-symplectic Lie group with unique action ρ̂ : R×Q→ Q satisfying (ρ̂λ)∗,e =
ρλ.

We now compute the action ρ̂ explicitly. Let u ∈ q. Then

(4.10) u = ae1 + be2 =
(
a b
0 0

)
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for some a, b ∈ R. Using the naturality of the exponential map, we have
(4.11) ρ̂λ ◦ exp(u) = exp ◦ ρλ(u) .
A direct calculation shows that

(4.12) exp(u) =
(
ea µ(a)b
0 1

)
,

where µ : R → R+ is the nonzero smooth function given by µ(t) = 1
t (e

t − 1) for
t 6= 0 and µ(0) = 1. Note that every element of Q is in the image of the exponential
map. Indeed, given

q =
(
a b
0 1

)
for a > 0, b ∈ R, one simply sets a = ln a and b = b/µ(ln a) in (4.12) to obtain
exp(u) = q. The left side of (4.11) is

(4.13) exp ◦ ρλ(u) = exp
(
a λa+ b
0 0

)
=
(
ea µ(a)(λa+ b)
0 1

)
.

Hence,

(4.14) ρ̂λ

(
ea µ(a)b
0 1

)
=
(
ea µ(a)(λa+ b)
0 1

)
.

Setting a = ln a and b = b/µ(ln a) for a > 0 and b ∈ R, we obtain

(4.15) ρ̂λ

(
a b
0 1

)
=
(
a λ(a− 1) + b
0 1

)
.

Since (Q,ω, ϕ) is an R-symplectic Lie group by Proposition 4.5, ρ̂λ is both a Lie
group isomorphism and a symplectomorphism of (Q,ω) which satisfies (ρ̂λ)∗,e = ρλ.

In anticipation of the next section, we introduce the following definition:

Definition 4.7. Let (Q,ω, ϕ) and (R, τ, χ) be G-symplectic Lie groups. A homo-
morphism of G-symplectic Lie groups from (Q,ω, ϕ) to (R, τ, χ) is a homomorphism

Ψ: (Q,ω)→ (R, τ)
of symplectic Lie groups which is also G-equivariant, that is, Ψ(ϕg(q)) = χg(Ψ(q))
for all g ∈ G and q ∈ Q.

4.2. The Equivalence. In this section, we show that the category of finite di-
mensional g-quasi-Frobenius Lie algebras is equivalent to the category of simply
connected G-symplectic Lie groups, where G is also simply connected. We begin
with the following result.

Proposition 4.8. Let Ψ: (Q,ω, ϕ)→ (R, τ, χ) be a homomorphism of G-symplectic
Lie groups. Then

Ψ∗,e : (q, ωe, ϕ′′)→ (r, τe, χ′′)
is a homomorphism of g-quasi-Frobenius Lie algebras, where ϕ′′ and χ′′ are defined
as in Proposition 4.3.
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Proof. By definition, Ψ: (Q,ω) → (R, τ) is a homomorphism of symplectic Lie
groups. This implies that

Ψ∗,e : (q, ωe)→ (r, τe)
is a homomorphism of quasi-Frobenius Lie algebras. It only remains to show that
Ψ∗,e is g-equivariant. Since Ψ is G-equivariant, we have

Ψ ◦ ϕg = χg ◦Ψ , ∀ g ∈ G .
This in turn implies that
(4.16) Ψ∗,e ◦ ϕ′g = χ′g ◦Ψ∗,e , ∀ g ∈ G ,
where ϕ′g := (ϕg)∗,e : q→ q and χ′g := (χg)∗,e : r→ r. Let x ∈ g and set g = exp(tx)
in (4.17). Applying d

dt |t=0 to both sides then gives
(4.17) Ψ∗,e ◦ ϕ′′x = χ′′x ◦Ψ∗,e .
This in turn completes the proof. �

Lemma 4.9. Let (q, β, φ) be a g-quasi-Frobenius Lie algebra and let G be the
simply connected Lie group whose Lie algebra is g. Then there exists a unique Lie
group homomorphism f : G→ GL(q), g 7→ fg such that f∗,e = φ and fg ∈ Aut(q, β)
for all g ∈ G.

Proof. Since G is simply connected and φ : g→ gl(q) is a Lie algebra map, there
exists a unique Lie group homomorphism f : G→ GL(q) such that f∗,e = φ. We
now show that fg ∈ Aut(q, β) for all g ∈ G. Fix x ∈ g. To simplify notation, let
(4.18) ft := fexp(tx) : q→ q .

Define A : R× q× q→ R by
(4.19) A(t, u, v) := β(ft(u), ft(v))− β(u, v) .
Since f∗,e = φ and (q, β, φ) is a g-quasi-Frobenius Lie algebra, we have

(4.20) d

dt
|t=0 A(t, u, v) = β(φx(u), v) + β(u, φx(v)) = 0 , ∀ u, v ∈ q .

Furthermore, since f is a group homomorphism and
exp((t+ s)x) = exp(tx) exp(sx) ,

we have
(4.21) A(t+ s, u, v) = A(t, fs(u), fs(v)) +A(s, u, v) , ∀ u, v ∈ q .

Equations (4.20) and (4.21) imply

(4.22) d

dt
|t=s A(t, u, v) = d

dt
|t=0 A(t+ s, u, v) = 0 + 0 = 0 .

Hence, for fixed u, v ∈ q, A(t, u, v) is a constant. Since A(0, u, v) = 0, it follows
that A(t, u, v) = 0 for all t ∈ R. Hence,
(4.23) β

(
ft(u), ft(v)

)
= β(u, v) , ∀ t ∈ R .

In particular,
(4.24) β

(
fexp(x)(u), fexp(x)(v)

)
= β(u, v) .
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Now define B : R× q× q× q→ q by

(4.25) B(t, u, v, w) = β
(
[ft(u), ft(v)]− ft([u, v]), ft(w)

)
.

Equation (4.23) implies that

(4.26) B(t, u, v, w) = β
(
[ft(u), ft(v)], ft(w)

)
− β([u, v], w) .

Using (4.26) and the fact that (q, β, φ) is a g-quasi-Frobenius Lie algebra, we have
d

dt

∣∣
t=0B(t, u, v, w) = β([φx(u), v], w) + β([u, φx(v)], w) + β

(
[u, v], φx(w)

)
= β(φx([u, v]), w) + β

(
[u, v], φx(w)

)
= 0 , ∀ u, v, w .(4.27)

From (4.26), we also have

B(t+ s, u, v, w) = β
(
[ft(fs(u)), ft(fs(v))], ft(fs(w))

)
− β([u, v], w)(4.28)

= B
(
t, fs(u), fs(v), fs(w)

)
+ β

(
[fs(u), fs(v)], fs(w)

)
− β([u, v], w

)
Equations (4.27) and (4.28) now imply

(4.29) d

dt
|t=s B(t, u, v, w) = d

dt
|t=0 B(t+ s, u, v, w) = 0 + 0 + 0 = 0 .

From (4.29), it follows that for fixed u, v, w, B(t, u, v, w) is a constant for all t ∈ R.
Hence, B(t, u, v, w) = B(0, u, v, w) = 0 for all t ∈ R and u, v, w ∈ q. In particular,

(4.30) B(1, u, v, w) = β
(
[f1(u), f1(v)]− f1([u, v]), f1(w)

)
= 0 , ∀ u, v, w ∈ q .

Since β is non-degenerate and f1 := fexp(x) ∈ GL(q), it follows that

(4.31) fexp(x)([u, v]) = [fexp(x)(u), fexp(x)(v)] .

Since G is connected, x ∈ g is arbitrary, and f is a group homomorphism,
equations (4.24) and (4.31) imply that

β
(
fg(u), fg(v)

)
= β(u, v) , fg([u, v]) = [fg(u), fg(v)](4.32)

for all g ∈ G. Hence, fg ∈ Aut(q, β) for all g ∈ G. This completes the proof. �

Proposition 4.10. Let (q, β, φ) be a g-quasi-Frobenius Lie algebra. Let G and
Q be the simply connected Lie groups associated to g and q respectively and let
β̃ ∈ Ω2(Q) be the left-invariant 2-form associated to β. Then there exists a unique
left action φ : G ×Q → Q such that (Q, β̃, φ) is a G-symplectic Lie group whose
associated g-quasi-Frobenius Lie algebra is

(q, β̃e, φ
′′) = (q, β, φ) ,

where φ′′ is defined as in Proposition 4.3.

Proof. By Proposition 2.13, (Q, β̃) is a symplectic Lie group. Since G is simply
connected, Lemma 4.9 shows that there exists a unique Lie group homomorphism

f : G→ GL(q) , g 7→ fg
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such that f∗,e = φ : g→ gl(q) and fg ∈ Aut(q, β) for all g ∈ G. Since Q is simply
connected, Proposition 4.5 shows that there exists a unique smooth left G-action

φ : G×Q→ Q , (g, q) 7→ φg(q)

such that (Q, β̃, φ) is a G-symplectic Lie group and (φg)∗,e = fg. Setting φ
′
g :=

(φg)∗,e as in Proposition 4.3, we have

φ
′′ := φ

′
∗,e = f∗,e = φ .

This completes the proof. �

Proposition 4.11. Let ψ : (q, β, φ)→ (r, σ, µ) be a homomorphism of g-quasi-Fro-
benius Lie algebras. Let G be the simply connected Lie group whose Lie algebra is
g and let (Q, β̃, φ) and (R, σ̃, µ) be the simply connected G-symplectic Lie groups
associated to (q, β, φ) and (r, σ, µ) respectively by Proposition 4.10. Then there
exists a unique homomorphism of G-symplectic Lie groups

ψ̂ : (Q, β̃, φ)→ (R, σ̃, µ)

such that ψ̂∗,e = ψ.

Proof. By Proposition 2.17, there exists a unique homomorphism of symplectic
Lie groups ψ̂ : (Q, β̃) → (R, σ̃) such that ψ̂∗,e = ψ. We now verify that ψ̂ is
G-equivariant.

Let φ′ : G→ Aut(q, β), g 7→ φ
′
g and µ′ : G→ Aut(r, σ), g 7→ µ′g be defined as in

Proposition 4.3. Fix x ∈ g. To simplify notation, let

φ
′
t := φ

′
exp(tx) , µ′t := µ′exp(tx) .

Define B : R× q× r→ R by

B(t, u, v) := σ
(
ψ ◦ φ′t(u)− µ′t ◦ ψ(u), µ′t(v)

)
= σ

(
ψ ◦ φ′t(u), µ′t(v)

)
− σ

(
µ′t ◦ ψ(u), µ′t(v)

)
= σ

(
ψ ◦ φ′t(u), µ′t(v)

)
− σ(ψ(u), v) ,(4.33)

where the third equality follows from the fact that µ′t ∈ Aut(r, σ). Hence,
d

dt

∣∣
t=0B(t, u, v) = σ(ψ ◦ φx(u), v) + σ

(
ψ(u), µx(v)

)
= σ(µx ◦ ψ(u), v) + σ

(
ψ(u), µx(v)

)
= 0 , ∀ u ∈ q, v ∈ r(4.34)

where the second equality follows from the fact that ψ is g-equivariant (i.e., ψ ◦
φx = µx ◦ ψ) and the third equality follows from the fact that (r, σ, µ) is a
g-quasi-Frobenius Lie algebra with 2-cocycle σ and g-action µ. Next note that

B(t+ s, u, v) = B
(
t, φ
′
s(u), µ′s(v)

)
+ σ

(
ψ(φ′s(u)

)
, µ′s(v))− σ(ψ(u), v) .(4.35)

Hence,
d

dt

∣∣
t=sB(t, u, v) = d

dt

∣∣
t=0B(t+ s, u, v) = 0 + 0− 0 = 0 ,(4.36)
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where the first zero follows from (4.34). Hence,
(4.37) B(t, u, v) = B(0, u, v) = 0 , ∀t ∈ R , u ∈ q , v ∈ r .

In particular, B(1, u, v) = 0 for all u, v ∈ r. Since σ is nondegenerate and µ′t : r→ r
is also a linear isomorphism for all t, it follows that

(4.38) ψ ◦ φ′t = µ′t ◦ ψ , ∀t ∈ R .

In particular, we have

(4.39) ψ ◦ φ′exp(x) = µ′exp(x) ◦ ψ .

Since x ∈ g was arbitrary, (4.39) must hold for all x ∈ g. Since G is connected, every
element g ∈ G is of the form g = exp(x1) . . . exp(xk) for some xi ∈ g, i = 1, . . . , k.
It follows from this and the fact that φ′ and µ′ are group homomorphisms that

(4.40) ψ ◦ φ′g = µ′g ◦ ψ , ∀ g ∈ G .

Equation (4.40) combined with the fact that (1) Q is connected, (2) ψ̂ ◦ φg and
µg ◦ ψ̂ are both Lie group homomorphisms ∀ g ∈ G, and (3)

(4.41) (ψ̂ ◦ φg)∗,e = ψ ◦ φ′g = µ′g ◦ ψ = (µg ◦ ψ̂)∗,e, ∀ g ∈ G

imply that ψ̂ ◦ φg = µg ◦ ψ̂ for all g ∈ G. In other words, ψ̂ is G-equivariant and
this completes the proof. �

We conclude the paper with the following generalization of Theorem 2.18.

Theorem 4.12. Let G be a simply connected Lie group and let G-SCSLG be
the category of simply connected G-symplectic Lie groups and let g-qFLA be the
category of finite dimensional g-quasi-Frobenius Lie algebras. Let F̂ be the functor
from G-SCSLG to g-qFLA which sends the object (Q,ω, ϕ) to (q, ωe, ϕ′′), where
ϕ′′ is defined as in Proposition 4.3 and the morphism Ψ: (Q,ω, ϕ)→ (R, τ, χ) to

Ψ∗,e : (q, ωe, ϕ′′) 7→ (r, τe, χ′′) .

Then F̂ is an equivalence of categories.

Proof. Theorem 4.12 follows from Theorem 2.18, Proposition 4.3, Proposition 4.8,
Proposition 4.10, and Proposition 4.11. �

5. D(g)-quasi-Frobenius Lie algberas

Let (g, γ) be a finite dimensional Lie bialgebra. We begin with the following
observation:

Proposition 5.1. Let V be a vector space over k and let ρ : D(g) → gl(V ) be a
linear map (not necessarily a representation). Define

ϕ := ρ |g : g→ gl(V ), ψ := ρ |g∗ : g∗ → gl(V ).
The following statements are equivalent.

(i) ρ is a representation of D(g) on V .
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(ii) ϕ and ψ are representations of g and g∗ on V which satisfy
(5.1) ψad∗x ξ − ϕad∗

ξ
x = ϕx ◦ ψξ − ψξ ◦ ϕx , ∀ x ∈ g , ξ ∈ g∗ .

Proof. (i)⇒(ii) Since ρ is a representation of D(g) on V , it follows immediately
that ϕ and ψ must be representations of g and g∗ on V respectively. For (5.1), we
note that

[x, ξ] = ad∗x ξ − ad∗ξx ∀ x ∈ g, ξ ∈ g∗ .

Since ρ is a representation and ϕ := ρ |g and ψ := ρ |g∗ , we have
ψad∗x ξ − ϕad∗

ξ
x = ρ[x,ξ] = ρxρξ − ρξρx = ϕxψξ − ψξϕx ,

which proves (5.1).
(i)⇐(ii) Let a = x+ ξ ∈ D(g). Then

ρ[x+ξ,y+η] = ρ[x,y] + ρ[x,η] + ρ[ξ,y] + ρ[ξ,η]

= ϕ[x,y] + ψad∗xη − ϕad∗ηx + ϕad∗
ξ
y − ψad∗yξ + ψ[ξ,η]

= ϕx ◦ ϕy − ϕy ◦ ϕx + ϕx ◦ ψη − ψη ◦ ϕx
+ ψξ ◦ ϕy − ϕy ◦ ψξ + ψξ ◦ ψη − ψη ◦ ψξ

= (ϕx + ψξ) ◦ (ϕy + ψη)− (ϕy + ψη) ◦ (ϕx + ψξ)
= ρx+ξ ◦ ρy+η − ρy+η ◦ ρx+ξ .

This proves that ρ : D(g)→ gl(V ) is a representation of D(g) on V . �

Proposition 5.2. Let (q, β) be a quasi-Frobenius Lie algebra and let ρ : D(g)→
gl(q) be a linear map (not necessarily a representation). Define ϕ := ρ|g and
ψ := ρ|g∗ . Then (q, β, ρ) is a D(g)-quasi-Frobenius Lie algebra iff the following
conditions are satisfied:

(a) ψad∗xξ − ϕad∗ξx = ϕx ◦ ψξ − ψξ ◦ ϕx, ∀ x ∈ g, ξ ∈ g∗

(b) (q, β, ϕ) is a g-quasi-Frobenius Lie algebra.
(c) (q, β, ψ) is a g∗-quasi-Frobenius Lie algebra.

Proof. By Proposition 5.1, ρ is left D(g)-module structure on q iff ϕ and ψ
are left g and g∗-module structures on q respectively which satisfy condition (a).
Since D(g) = g ⊕ g∗ as a vector space, it follows that ρ : D(g) → gl(q) satisfies
conditions (i) and (ii) of Definition 3.1 iff φ : g → gl(q) and ψ : g∗ → gl(q) both
satisfy conditions (i) and (ii) of Definition 3.1. This completes the proof. �

Proposition 5.3. Let g be a finite dimensional quasitriangular Lie bialgebra with
r-matrix r =

∑
i ai ⊗ bi. Let ϕ : g→ gl(V ), x 7→ ϕ(x) be a representation of g on

V . Define ψ : g∗ → gl(V ), ξ 7→ ψ(ξ) by

(5.2) ψ(ξ) :=
∑
i

ξ(ai)ϕ(bi) , ∀ ξ ∈ g∗ .

Then ψ is a representation of g∗ on V .

Proof. We need to show that
(5.3) ψ([ξ, η]) = ψ(ξ)ψ(η)− ψ(η)ψ(ξ) .
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We now expand the left side of (5.3):

ψ([ξ, η]) =
∑
j

[ξ, η](aj)ϕ(bj)

=
∑
j

(ξ ⊗ η)((δr)(aj))ϕ(bj)

=
∑
i,j

ξ([aj , ai])η(bi)ϕ(bj) +
∑
i,j

ξ(ai)η([aj , bi])ϕ(bj) .(5.4)

The right side of (5.3) expands as

ψ(ξ)ψ(η)− ψ(η)ψ(ξ) =
∑
i,j

ξ(ai)η(aj)ϕ(bi)ϕ(bj)−
∑
i,j

η(aj)ξ(ai)ϕ(bj)ϕ(bi)

=
∑
i,j

ξ(ai)η(aj)ϕ([bi, bj ]).(5.5)

The CYBE can be rewritten as

(5.6)
∑
i,j

ai ⊗ aj ⊗ [bi, bj ] =
∑
i,j

[aj , ai]⊗ bi ⊗ bj +
∑
i,j

ai ⊗ [aj , bi]⊗ bj .

Applying ξ ⊗ η ⊗ ϕ to both sides of (5.6) gives
(5.7)∑

i,j

ξ(ai)η(aj)ϕ([bi, bj ]) =
∑
i,j

ξ([aj , ai])η(bi)ϕ(bj) +
∑
i,j

ξ(ai)η([aj , bi])ϕ(bj) .

Equations (5.4), (5.5), and (5.7) imply

ψ(ξ)ψ(η)− ψ(η)ψ(ξ) = ψ([ξ, η]) .

This completes the proof. �

Corollary 5.4. Let g be a finite dimensional quasitriangular Lie bialgebra with
r-matrix r =

∑
i ai ⊗ bj and let (q, β, ϕ) be a g-quasi-Frobenius Lie algebra. Define

ψ : g∗ → gl(q), ξ 7→ ψ(ξ) by

ψ(ξ) :=
∑
i

ξ(ai)ϕ(bi) ,

where ϕ(bi) := ϕbi : q→ q. Then (q, β, ψ) is a g∗-quasi-Frobenius Lie algebra.

Proof. Immediate. �

Proposition 5.5. Let g be a finite dimensional quasitriangular Lie bialgebra with
r-matrix r =

∑
i ai ⊗ bi. Let ϕ : g → gl(V ), x 7→ ϕ(x) be a representation of

g on V . Define ψ : g∗ → gl(V ), ξ 7→ ψ(ξ) according to Proposition 5.3. Define
ρ : D(g)→ gl(V ), a 7→ ρ(a) by

(5.8) ρ(x+ ξ) := ϕ(x) + ψ(ξ) , ∀ x ∈ g, ξ ∈ g∗ .

Then ρ is a representation of D(g) on V .
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Proof. By Proposition 5.1, it suffices to show that
(5.9) ψ(ad∗x ξ)− ϕ(ad∗ξ x) = ϕ(x)ψ(ξ)− ψ(ξ)ϕ(x) .
We begin by expanding the left side of (5.9). First,

ψ(ad∗x ξ) =
∑
i

(ad∗x ξ)(ai)ϕ(bi)

=
∑
i

ξ([ai, x])ϕ(bi) .(5.10)

By Proposition 2.25,
∑
i ai ⊗ bi +

∑
i bi ⊗ ai is invariant under the adjoint action

of g. Hence,

(5.11)
∑
i

[ai, x]⊗ bi =
∑
i

ai ⊗ [x, bi] +
∑
i

[x, bi]⊗ ai +
∑
i

bi ⊗ [x, ai] .

Equations (5.10) and (5.11) now imply

(5.12) ψ(ad∗x ξ) =
∑
i

ξ(ai)ϕ([x, bi]) +
∑
i

ξ([x, bi])ϕ(ai) +
∑
i

ξ(bi)ϕ([x, ai]) .

Next, we note that

ad∗ξ x =
∑
i

ξ(bi)[x, ai] +
∑
i

ξ([x, bi])ai .(5.13)

From (5.12) and (5.13), we have

(5.14) ψ(ad∗x ξ)− ϕ(ad∗ξ x) =
∑
i

ξ(ai)ϕ([x, bi]) .

For the right side of (5.9), we have

ϕ(x)ψ(ξ)− ψ(ξ)ϕ(x) =
∑
i

ξ(ai)ϕ(x)ϕ(bi)−
∑
i

ξ(ai)ϕ(bi)ϕ(x)

=
∑
i

ξ(ai)ϕ([x, bi])

= ψ(ad∗x ξ)− ϕ(ad∗ξ x) ,(5.15)
where the last equality follows from (5.14). This completes the proof. �

Theorem 5.6. Let g be a finite dimensional quasitriangular Lie bialgebra. Let
(q, β, ϕ) be any g-quasi-Frobenius Lie algebra. Then there exists a representation
ρ : D(g) → gl(q) such that ρ |g= ϕ and (q, β, ρ) is a D(g)-quasi-Frobenius Lie
algebra.
Proof. Let r ∈ g⊗ g be the r-matrix associated to g and let ψ : g∗ → gl(q) be the
representation of g∗ on q determined by ϕ and r according to Proposition 5.3. By
Corollary 5.4, (q, β, ψ) is a g∗-quasi-Frobenius Lie algebra. Define ρ : D(g)→ gl(q)
by

ρ(x+ ξ) := ϕ(x) + ψ(ξ) , ∀ x ∈ g, ξ ∈ g∗ .

By Proposition 5.5, ρ is a representation of D(g) on q. Since (q, β, ϕ) and (q, β, ψ)
are g and g∗-quasi-Frobenius Lie algebras and ρ |g= ϕ and ρ |g∗= ψ (by definition),
it follows that (q, β, ρ) is a D(g)-quasi-Frobenius Lie algebra. �
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Corollary 5.7. Let g be any finite dimensional Lie algebra and let (q, β, ϕ) be any
g-quasi-Frobenius Lie algbera. Let D(g) be the Drinfeld double of the Lie bialgebra
(g, γ) where γ ≡ 0. Define ρ : D(g)→ gl(q) by ρ(x+ ξ) = ϕ(x) for all x ∈ g, ξ ∈ g∗.
Then (q, β, ρ) is a D(g)-quasi-Frobenius Lie algebra.

Proof. (g, γ) is naturally a quasitriangular Lie bialgebra with r-matrix r ≡ 0 ∈ g⊗g.
Corollary 5.7 now follows as a special case of the proof of Theorem 5.6. �

We conclude the paper with an example.

Example 5.8. Let (q, β) be the 4-dimensional quasi-Frobenius Lie algebra from
Example 3.4. For convenience, we recall its structure: q has basis {e1, e2, e3, e4}
with non-zero commutator relations given by

[e1, e2] = e2 , [e1, e3] = e3 , [e1, e4] = 2e4 , [e2, e3] = e4 ,

and the matrix representation of β with respect to {e1, e2, e3, e4} is

(βij) =


0 0 0 2
0 0 1 0
0 −1 0 0
−2 0 0 0

 .

Let (g, δr) be the 2-dimensional triangular Lie bialgebra from Examples 2.27 and
2.29. Once again, we recall the structure for convenience. g has basis {x, y} with
commutator relation [x, y] = x and r-matrix r = y ∧ x. Let {x∗, y∗} denote the
corresponding dual basis. The commutator relations on D(g) are

[x, y] = x , [x∗, y∗] = y∗ , [x, x∗] = −y∗ , [x, y∗] = 0
[y, x∗] = x∗ + y , [y, y∗] = −x .

Let ϕ : g→ gl(q) be the linear map defined by

ϕx(e1) = 0 , ϕx(e2) = 0 , ϕx(e3) = e2 , ϕx(e4) = 0

ϕy(e1) = 0 , ϕy(e2) = −1
2e2 , ϕy(e3) = 1

2e3 , ϕy(e4) = 0 .

Consideration of Example 3.4 (or a direct calculation) shows that (q, β, ϕ) is
a g-quasi-Frobenius Lie algebra. By Theorem 5.6, there exists a representation
ρ : D(g) → gl(q) such that ρ |g= ϕ and (q, β, ρ) is a D(g)-quasi-Frobenius Lie
algebra. We now compute ρ explicitly. From the proof of Theorem 5.6, this amounts
to computing the representation ψ : g∗ → gl(q) which is determined by ϕ and
r = y ∧ x according to Proposition 5.3:

ψx∗ = −ϕy , ψy∗ = ϕx .

ρ is then uniquely defined by ρ |g= ϕ and ρ|g∗ = ψ.
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