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PROJECTIVE STRUCTURE, S̃L(3,R) AND THE SYMPLECTIC
DIRAC OPERATOR

Marie Holíková, Libor Křižka, and Petr Somberg

Abstract. Inspired by the results on symmetries of the symplectic Dirac
operator, we realize symplectic spinor fields and the symplectic Dirac operator
in the framework of (the double cover of) homogeneous projective structure
in two real dimensions. The symmetry group of the homogeneous model of
the double cover of projective geometry in two real dimensions is S̃L(3,R).

Introduction

There are symplectic counterparts of the notions of the spinor field and the
Dirac operator on manifolds with metaplectic structure, see e.g. [6], [4]. The aim of
the present short article is to describe a realization of symplectic spinor fields and
the symplectic Dirac operator Ds in the framework of (the double covering of) the
geometry of projective structure in the real dimension two. An inspiration for this
development comes from the recent results on symmetries of the symplectic Dirac
operator, [2].

We shall briefly comment on the content of our article. In Section 1 we start with
a motivation for our work, namely the question of differential symmetries of the
symplectic Dirac operator in real dimension two. Some information on this structure
already appeared in [2], but its meaning and interpretation was not clear at that time.
Here we find a natural explanation in terms of the projective structure associated
to the Lie algebra sl(3,R) as an organizing principle for the symmetry algebra
of the solution space of Ds. In Section 2 we briefly review the procedure called
F-method, which is applied to produce the structure of singular vectors responsible
for the realization of the symplectic Dirac operator. In Section 3 we introduce the
homogeneous projective structure in the real dimension two and describe its basic
geometrical and representation theoretical properties. The techniques of Section 2
are then applied in the last Section 4 to the simple metaplectic components of the
Segal-Shale-Weil representation (twisted by a character of the central generator
of the Levi factor) as an inducing representation for generalized Verma modules
associated to the Lie algebra sl(3,R) and its maximal parabolic subalgebra. In
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this way we produce the symplectic Dirac operator as an S̃L(3,R)-equivariant
differential operator on the double covering of the real projective space RP2.

Let us highlight the meaning of the solution space for the symplectic Di-
rac operator Ds, regarded as an equivariant differential operator acting on the
S̃L(3,R)-principal series representation induced from the character twisted me-
taplectic representation of S̃L(2,R). The solution space of Ds on the symplectic
space R2 was already determined in [3], as a consequence of the metaplectic Howe
duality for the pair (mp(2,R), sl(2,R)). The underlying Harish-Chandra module
of kerDs for the Harish-Chandra pair (sl(3,R),SU(2)) with the maximal compact
subgroup SU(2) ⊂ S̃L(3,R) is a unitarizable irreducible representation, equivalent
to the exceptional representation of S̃L(3,R) which is associated with the minimal
coadjoint orbit, cf. [10], [12].

As for the notation used throughout the article, we consider the pair (G,P )
consisting of a connected real reductive Lie group G and its parabolic subgroup
P . In the Levi decomposition P = LU , L denotes the Levi subgroup and U the
unipotent subgroup of P . We write g(R), p(R), l(R), u(R) for the real Lie algebras
and g, p, l, u for the complexified Lie algebras of G, P , L, U , respectively. The
symbol U applied to a Lie algebra denotes its universal enveloping algebra, and
similarly ˜ applied to a Lie group denotes its double cover.

1. Symmetries of the symplectic Dirac operator

In the present section we start with a motivation for our further considerations.
Let (R2, ω) be the 2-dimensional symplectic vector space with the canonical sym-
plectic form ω = dx∧ dy, where (x, y) are the canonical linear coordinate functions
on R2. We denote by ∂x, ∂y the coordinate vector fields and by e1, e2 corresponding
symplectic frame fields acting on a symplectic spinor ϕ ∈ C[R2]⊗C S(R) by

e1 · ϕ = iqϕ, e2 · ϕ = ∂qϕ .(1.1)
Here S(R) is the Schwartz space of rapidly decreasing complex functions on R
equipped with the coordinate function q.

The basis elements {X,Y,H} of the metaplectic Lie algebra mp(2,R), the double
cover of the symplectic Lie algebra sp(2,R) ' sl(2,R), act on the function space
C[R2]⊗C S(R) by

X = −y∂x − i
2q

2, H = −x∂x + y∂y + q∂q + 1
2 , Y = −x∂y − i

2∂
2
q(1.2)

and satisfy the commutation relations
[H,X] = 2X , [X,Y ] = H , [H,Y ] = −2Y .(1.3)

The operators (1.2) preserve homogeneity in the variables x, y and imply the
mp(2,R)-equivariance of

Xs = y∂q + ixq , E = x∂x + y∂y + 1
2 , Ds = iq∂y − ∂x∂q .(1.4)

Here the key commutation relation reads [Xs, Ds] = i(x∂x + y∂y + 1), with Ds

termed the symplectic Dirac operator on R2. We also notice here a different notation
for the symbol E in the present article when compared to [2]. In [2], E is reserved
for the differential operator x∂x+y∂y, while in our article we follow the conventions
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of parabolic invariant theory so that E denotes x∂x + y∂y + 1
2 due to the presence

of weights. The subtle difference between these two differential operators comes
from their realization in two different algebras sl(2,R) and sl(3,R), respectively.

A differential operator P is called a symmetry of Ds provided there exists another
differential operator P ′ such that P ′Ds = DsP . Consequently, the symmetry
differential operators preserve the solution space of Ds. The vector space of first
order (in all variables x, y, q) symmetries was described in [2], and there is a Lie
algebra structure given by the commutator of two symmetry differential operators.
The commutators of elements in (1.2) with the symmetry differential operators
classified in [2] yield the following result, whose proof is a straightforward but
tedious computation.

Lemma 1.1. The solution space of the symplectic Dirac operator on R2 is preserved
by the following differential operators:

1) The couple of commuting differential operators

O1 = x2∂x + xy∂y − 1
2xq∂q + i

2y∂
2
q + 1

2x = − 1
2xH − yY + 1

2xE + 1
2x,(1.5)

O2 = xy∂x + y2∂y + 1
2yq∂q + i

2xq
2 + y = 1

2yH − xX + 1
2yE + 1

2y(1.6)

satisfies

(1.7) [Ds,O1] = 3
2xDs and [Ds,O2] = 3

2yDs,

which is equivalent to DsO1 =
(
O1 + 3

2x
)
Ds and DsO2 =

(
O2 + 3

2y
)
Ds,

respectively. The operators O1,O2 increase the homogeneity in the variables
x, y by one.

2) The couple of commuting differential operators

(1.8) ∂x and ∂y

commutes with Ds and decreases the homogeneity in the variables x, y by
one.

The operators O1,O2 turn out to be useful in the light of the following observa-
tion, whose proof is again straightforward and left to the reader.

Theorem 1.2. The first order symmetry differential operators

{∂x, ∂y, H,X, Y,E,O1,O2}(1.9)
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of the symplectic Dirac operator Ds fulfill the following non-trivial commutation
relations

[∂x,O2] = −X, [∂y,O1] = −Y,
[∂y,O2] = 1

2 (3E +H), [∂x,O1] = 1
2 (3E −H),

[O2, H] = −O2, [O1, H] = O1,
[O2, E] = −O2, [O1, E] = −O1,
[O2, Y ] = O1, [O1, X] = O2,
[∂x, H] = −∂x, [∂y, H] = ∂y,
[∂x, Y ] = −∂y, [∂y, X] = −∂x,
[∂x, E] = ∂x, [∂y, E] = ∂y,
[H,X] = 2X, [H,Y ] = −2Y,
[X,Y ] = H.

(1.10)

The homomorphism of Lie algebras

〈∂x, ∂y, H,X, Y,E,O1,O2〉 → sl(3,R)(1.11)

given by

−∂x 7→

0 0 0
1 0 0
0 0 0

, −∂y 7→

0 0 0
0 0 0
1 0 0

,
O1 7→

0 1 0
0 0 0
0 0 0

, O2 7→

0 0 1
0 0 0
0 0 0

,
X 7→

0 0 0
0 0 1
0 0 0

, H 7→

0 0 0
0 1 0
0 0 −1

, Y 7→

0 0 0
0 0 0
0 1 0

,
E 7→

 2
3 0 0
0 − 1

3 0
0 0 − 1

3



(1.12)

is an isomorphism of Lie algebras.

As will be proved in [11] by the techniques of tractor calculus, the operators (1.9)
in the variables x, y, q are in fact all first order symmetry differential operators of
Ds in the base variables x, y.

In the remaining part of our article we interpret the results of the present section
in the framework of (the double cover of) the projective structure in real dimension
2.

2. Generalized Verma modules and singular vectors

It is well-known that the G-equivariant differential operators acting on principal
series representations for G can be recognized in the study of homomorphisms
between generalized Verma modules for the Lie algebra g. The latter homomor-
phisms are determined by the image of the highest weight vectors, referred to as the
singular vectors and characterized as being annihilated by the positive nilradical u.
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An approach to find precise positions of singular vectors in the representation
space can be found in [5], [8], [9]. Let V denote a complex simple highest weight
L-module, extended to P -module by U acting trivially. We denote by V∗ the (res-
tricted) dual P -module to V. Any character λ ∈ HomP (p,C) yields a 1-dimensional
representation Cλ of p by

Xv = λ(X)v, X ∈ p, v ∈ C .(2.1)

Moreover, assuming that λ ∈ HomP (p,C) defines a group character eλ : P →
GL(1,C) of P and denoting by ρ ∈ HomP (p,C) the character

ρ(X) = 1
2 tru ad(X), X ∈ p ,(2.2)

we may introduce a twisted P -module Vλ+ρ ' V⊗C Cλ+ρ (with a twist λ+ρ) where
p ∈ P acts on v ∈ Vλ+ρ ' V (the isomorphism of vector spaces) by eλ+ρ(p)p.v. In
the rest of our article, V = S is one of the simple metaplectic submodules of the
Segal-Shale-Weil representation twisted by character of GL(1,R)+.

By abuse of notation, we call the highest weight modules induced from infinite-di-
mensional simple L-modules generalized Verma modules, though they are not the
objects of the parabolic BGG category Op because of the lack of L-finiteness
condition. However, most of structural results required in the present article carry
over to this class of modules, cf. [9].

In general, for a chosen principal series representation of G on the vector space
IndGP (Vλ+ρ) of smooth sections of the homogeneous vector bundle G×P Vλ+ρ →
G/P associated to a P -module Vλ+ρ, we compute the infinitesimal action

πλ : g→ D(Ue)⊗C End Vλ+ρ.(2.3)

Here D(Ue) denotes the C-algebra of smooth complex linear differential operators
on Ue = UP ⊂ G/P (U is the Lie group whose Lie algebra is the opposite nilradical
u(R) to u(R)), on the vector space C∞(Ue)⊗CVλ+ρ of Vλ+ρ-valued smooth functions
on Ue in the non-compact picture of the induced representation.

The dual vector space D′o(Ue) ⊗C Vλ+ρ of Vλ+ρ-valued distributions on Ue
supported on the unit coset o = eP ∈ G/P is D(Ue) ⊗C End Vλ+ρ-module, and
there is an U(g)-module isomorphism

Φλ : Mg
p (Vλ−ρ) ≡ U(g)⊗U(p)Vλ−ρ → D′o(Ue)⊗CVλ+ρ ' A

g
u/Ie ⊗CVλ+ρ .(2.4)

The exponential map allows to identify Ue with the nilpotent Lie algebra u(R). If
we denote by A

g
u the Weyl algebra of the complex vector space u, then the vector

space D′o(Ue) can be identified as an A
g
u-module with the quotient of A

g
u by the

left ideal Ie generated by all polynomials on u vanishing at the origin.
Let (x1, x2, . . . , xn) be the linear coordinate functions on u and (y1, y2, . . . , yn)

be the dual linear coordinate functions on u∗. Then the algebraic Fourier transform

F : A
g
u → A

g
u∗(2.5)

is given by

F(xi) = −∂yi , F(∂xi) = yi(2.6)
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for i = 1, 2, . . . , n, and leads to a vector space isomorphism

τ : A
g
u/Ie ' C[u∗] ∼−→ A

g
u∗/F(Ie) ' C[u∗],

Q mod Ie 7→ F(Q) mod F(Ie)
(2.7)

for Q ∈ A
g
u. The composition of (2.4) and (2.7) gives the vector space isomorphism

τ ◦ Φλ : U(g)⊗U(p)Vλ−ρ ∼−→ D′o(Ue)⊗CVλ+ρ
∼−→ C[u∗]⊗CVλ+ρ ,(2.8)

thereby inducing the g-module action π̂λ on C[u∗]⊗CVλ+ρ.

Definition 2.1. Let V be a complex simple highest weight L-module, extended to
a P -module by U acting trivially. We define the L-module

Mg
p (V)u = {v ∈Mg

p (V); Xv = 0 for all X ∈ u},(2.9)

which we call the vector space of singular vectors.

The vector space of singular vectors is for an infinite-dimensional complex simple
highest weight P -module V an infinite-dimensional L-module. In the case when
Mg

p (V)u is a completely reducible L-module, we denote by W one of its simple
L-submodule. Then we obtain the U(g)-module homomorphism from Mg

p (W) to
Mg

p (V), and moreover we have

Hom(g,P )(Mg
p (W),Mg

p (V)) ' HomL(W,Mg
p (V)u) .(2.10)

We introduce the L-module

(2.11) Sol(g, p; C[u∗]⊗CVλ+ρ)F =
{f ∈ C[u∗]⊗CVλ+ρ; π̂λ(X)f = 0 for all X ∈ u},

and by (2.8), there is an L-equivariant isomorphism

(2.12) τ ◦ Φλ : Mg
p (Vλ−ρ)u ∼−→ Sol(g, p; C[u∗]⊗CVλ+ρ)F .

The action of π̂λ(X) on C[u∗] ⊗C Vλ+ρ produces a system of partial differential
equations for the elements in Sol(g, p; C[u∗] ⊗C Vλ+ρ)F , which makes it possible
to describe its structure completely in particular cases of interest as the solution
space of the systems of partial differential equations.

The formulation above has the following classical dual statement (cf. [1] for the
standard formulation in the category of finite dimensional inducing P -modules,
or [9] for its extension to inducing modules with infinitesimal character), which
explains the relationship between the geometrical problem of finding G-equivariant
differential operators between induced representations and the algebraic problem
of finding homomorphisms between generalized Verma modules. Let V and W
be two simple highest weight P -modules. Then the vector space of G-equivariant
differential operators HomDiff(G)(IndGP (V), IndGP (W)) is isomorphic to the vector
space of (g, P )-homomorphisms Hom(g,P )(Mg

p (W∗),Mg
p (V∗)).
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3. The homogeneous projective structure in dimension 2

A projective structure on a smooth manifold M of real dimension n ≥ 2 is a
class [∇] of projectively equivalent torsion-free connections, which define the same
family of unparametrized geodesics. A connection is projectively flat if and only
if it is locally equivalent to a flat connection. Given any non-vanishing volume
form ω on M , there exists a unique connection in the projective class such that
∇ω = 0. In the case n > 2 (n = 2), the vanishing of the Weyl curvature tensor
(the Cotton curvature tensor) for ∇ is equivalent to the projective flatness of
[∇] and consequently, the existence of a local isomorphism with the flat model
of n-dimensional projective geometry on RPn equipped with the flat projective
structure given by the absolute parallelism.

The homogeneous (flat) model of projective geometry in the real dimension 2 is
RP2 ' G/P , where G is the connected simple real Lie group SL(3,R) and P ⊂ G
the parabolic subgroup stabilizing the line [v] ∈ R3 generated by a non-zero vector
v in the defining representation R3 of G. Although our construction of equivariant
differential operators is local, the passage to the generalized flag manifold and
sections of associated vector bundles induced from half integral modules (e.g., the
simple metaplectic submodules of the Segal-Shale-Weil representation) on G/P
requires the double (universal) cover G̃ = S̃L(3,R) and its parabolic subgroup P̃ .
The Lie group S̃L(3,R) acts transitively on S2 ' CP1, the double (universal) cover
of RP2, with parabolic stabilizer P̃ = (GL(1,R)+ × S̃L(2,R)) n R2. We notice that
the double (universal) cover S̃L(3,R)/P̃ ' S2 ' CP1 is a symplectic manifold,
while RP2 is non-orientable and hence not symplectic.

The questions discussed in our article can be treated by infinitesimal methods,
and so we introduce the complexified Lie algebra g = sl(3,C) of G and the Cartan
subalgebra h ⊂ g by

h = {diag(a1, a2, a3); a1 + a2 + a3 = 0, a1, a2, a3 ∈ C}.(3.1)

For i = 1, 2, 3, we define εi ∈ h∗ by εi(diag(a1, a2, a3)) = ai. The root system of
g with respect to h is ∆ = {±(εi − εj); 1 ≤ i < j ≤ 3}, the positive root system
is ∆+ = {εi − εj ; 1 ≤ i < j ≤ 3} with the subset of simple roots Π = {α1, α2},
α1 = ε1− ε2, α2 = ε2− ε3, and the fundamental weights are ω1 = ε1, ω2 = ε1 + ε2.
The subset Σ = {α2} of Π generates a root subsystem ∆Σ ⊂ h∗, and we associate
to Σ the standard parabolic subalgebra p of g with p = l⊕ u. The reductive Levi
subalgebra l of p is

l = h⊕
⊕
α∈∆Σ

gα,(3.2)

and the nilradical u of p and the opposite nilradical u are

u =
⊕

α∈∆+r∆+
Σ

gα, u =
⊕

α∈∆+r∆+
Σ

g−α ,(3.3)

respectively. The Σ-height htΣ(α) of a root α ∈ ∆ is defined by
htΣ(a1α1 + a2α2) = a1 ,(3.4)
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and g is a |1|-graded Lie algebra with respect to the grading given by gi =⊕
α∈∆, htΣ(α)=i gα for 0 6= i ∈ Z, and g0 = h⊕

⊕
α∈∆, htΣ(α)=0gα. In particular, we

have u = g1 ' C2, u = g−1 ' C2 and l = g0 ' C⊕ sl(2,C).
The basis {e1, e2} of the root spaces in the nilradical u is given by

e1 =

0 1 0
0 0 0
0 0 0

, e2 =

0 0 1
0 0 0
0 0 0

,(3.5)

the basis {f1, f2} of the root spaces in the opposite nilradical u is

f1 =

0 0 0
1 0 0
0 0 0

, f2 =

0 0 0
0 0 0
1 0 0

,(3.6)

and finally the basis {h0, h, e, f} of the Levi subalgebra l is

e =

0 0 0
0 0 1
0 0 0

, h =

0 0 0
0 1 0
0 0 −1

, f =

0 0 0
0 0 0
0 1 0

,
h0 =

1 0 0
0 − 1

2 0
0 0 − 1

2

,
(3.7)

where h0 generates a basis of the center z(l) of l.
Any character χ ∈ HomP (p,C) is given by

χ = λω̃1, λ ∈ C,(3.8)

where ω̃1 ∈ HomP (p,C) is equal to ω1 ∈ h∗ regarded as trivially extended to
p = h⊕ gα2 ⊕ g−α2 ⊕ u. Throughout the article we use the simplified notation λ
for λω̃1. The vector ρ ∈ HomP (p,C) defined by the formula (2.2) is then

ρ = 3
2 ω̃1.(3.9)

4. S̃L(3,R) and the symplectic Dirac operator

In this section we retain the notation in Section 3 and describe the class of
representations of g on the space of sections of vector bundles on G̃/P̃ associated
to the simple metaplectic submodules of the Segal-Shale-Weil representation Sλ+ρ
of P̃ twisted by characters λ+ ρ ∈ Hom

P̃
(p,C).

The induced representations in question are described in the non-compact
picture, given by restricting sections to the open Schubert cell Ue ⊂ G̃/P̃ which
is isomorphic by the exponential map to the opposite nilradical u(R). We denote
by (x̂, ŷ) the linear coordinate functions on u(R) with respect to the basis {f1, f2}
of u(R), and by (x, y) the dual linear coordinate functions on u∗(R). The Weyl
algebra A

g
u is generated by

{x̂, ŷ, ∂x̂, ∂ŷ}(4.1)
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and the Weyl algebra A
g
u∗ by

{x, y, ∂x, ∂y}.(4.2)

For a p-module (σ,V), σ : p → gl(V), the twisted p-module (σλ,Vλ), σλ : p →
gl(Vλ), with a twist λ ∈ Hom

P̃
(p,C) is defined by

σλ(X)v = σ(X)v + λ(X)v(4.3)

for all X ∈ p and v ∈ Vλ ' V (the isomorphism of vector spaces).
We use the following realization of the simple mp(2,C)-submodules of the

Segal-Shale-Weil representation. The Fock model is the unitarizable mp(2,C)-module
S = C[q]. Since the simple part of the Levi algebra l is ls ' mp(2,C), we realize the
simple metaplectic submodules of the Segal-Shale-Weil representation as the repre-
sentations of ls on the subspace of polynomials of even and odd degree, respectively.
The generators act as

σ(e) = i
2∂

2
q , σ(h) = −q∂q − 1

2 , σ(f) = i
2q

2.(4.4)

The scalar product 〈· , ·〉 : S ⊗C S → C on S is defined through the ls-equivariant
embedding into the space of Schwartz functions ι : S→ S(R),

〈p1, p2〉 =
∫

R
ι(p1)ι(p2) dq for all p1, p2 ∈ S.(4.5)

The representation of ls is then extended to a representation of p by the trivial
action of the center z(l) of l and by the trivial action of the nilradical u of p. We
retain the same notation σ : p → gl(S) for the extended action of the parabolic
subalgebra p of g. In what follows, we are interested in the twisted p-module
σλ : p→ gl(Sλ) with a twist λ ∈ Hom

P̃
(p,C).

Theorem 4.1. Let λ ∈ Hom
P̃

(p,C). Then the embedding of g into A
g
u⊗C End Sλ+ρ

and A
g
u∗⊗C End Sλ+ρ is given by

1)
πλ(f1) = −∂x̂, πλ(f2) = −∂ŷ,(4.6)
π̂λ(f1) = −x, π̂λ(f2) = −y;(4.7)

2)

πλ(e) = −ŷ∂x̂ + i
2∂

2
q , πλ(h) = −x̂∂x̂ + ŷ∂ŷ − q∂q − 1

2 , πλ(f) = −x̂∂ŷ + i
2q

2 ,

πλ(h0) = 3
2 (x̂∂x̂ + ŷ∂ŷ) + λ+ 3

2 ,(4.8)

π̂λ(e) = x∂y + i
2∂

2
q , π̂λ(h) = x∂x − y∂y − q∂q − 1

2 , π̂λ(f) = y∂x + i
2q

2 ,

π̂λ(h0) = − 3
2 (x∂x + y∂y) + λ− 3

2 ;(4.9)

3)

πλ(e1) = x̂(x̂∂x̂ + ŷ∂ŷ + λ+ 3
2 ) + 1

2 x̂
(
q∂q + 1

2
)
− i

2 ŷq
2,

πλ(e2) = ŷ(x̂∂x̂ + ŷ∂ŷ + λ+ 3
2 )− 1

2 ŷ
(
q∂q + 1

2
)
− i

2 x̂∂
2
q ,

(4.10)
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π̂λ(e1) = ∂x
(
x∂x + y∂y − λ+ 1

4
)

+ 1
2q(iq∂y − ∂x∂q),

π̂λ(e2) = ∂y
(
x∂x + y∂y − λ+ 1

4
)
− i

2∂q(iq∂y − ∂x∂q).
(4.11)

Proof. The proof of this claim for the trivial representation of p instead of the
simple metaplectic submodules of the Segal-Shale-Weil representation follows
from Theorem 1.3 in [8]. For the Segal-Shale-Weil representation it follows by a
straightforward verification of all commutation relations for the Lie algebra g.
Theorem 4.2. The space Sol(g, p; C[u∗]⊗C Sλ+ρ)F is for λ = 3

4 ω̃1 non-trivial and
contains the L-submodule XsSλ+ρ.

Proof. By Theorem (4.1), the sl(2,C)-algebra structure for the operators (1.4)
implies

π̂λ(e1)Xsv0 = ∂x
(
1− λ+ 1

4
)
Xsv0 + 1

2q[Ds, Xs]v0 =
( 5

4 − λ
)
[∂x, Xs]v0 − i

2qv0

=
( 5

4 − λ−
1
2
)
iqv0 = 0 ,

π̂λ(e2)Xsv0 = ∂y
(
1− λ+ 1

4
)
Xsv0 − 1

2 i∂q[Ds, Xs]v0 =
( 5

4 − λ
)
[∂y, Xs]v0 − 1

2∂qv0

=
( 5

4 − λ−
1
2
)
∂qv0 = 0

for all v0 ∈ Sλ+ρ, provided λ = 3
4 . The proof is complete.

Remark. We notice that the vectors Xk
s v for k > 1 are not singular vectors. For

example, a straightforward computation reveals

π̂λ(e1)Xk
s v0 =

(
k − λ+ 1

4
)(

ikqXk−1
s + ik(k−1)

2 yXk−2
s

)
v − ik(k−1)

4 qXk−1
s v,(4.12)

which is non-zero for all λ ∈ C.
It is not difficult to exploit the results in [3] in order to classify the complete set

of solutions of the system in Theorem 4.1, but the detailed analysis goes beyond
the scope of our article.

Theorem 4.2 has the following classical corollary, which explains the relationship
between the geometrical problem of finding G-equivariant differential operators
between induced representations and the algebraic problem of finding homomor-
phisms between generalized Verma modules, cf. [1], [9]. There is a double cover
P̃ = (GL(1,R)+ × S̃L(2,R)) n R2 of the maximal parabolic subgroup P of the
Lie group SL(3,R), which splits over the unipotent subgroup N ' R2 in the
Langlands-Iwasawa decomposition of P̃ , [13]. Let us note that the extension cocycle
splits over the field of complex numbers.

Theorem 4.3. Let G̃ = S̃L(3,R) and let P̃ = (GL(1,R)+× S̃L(2,R)) n R2

be the maximal parabolic subgroup of G̃, whose unipotent subgroup in the
Langlands-Iwasawa decomposition of P̃ is N ' R2. For V = Sλ we have V∗ '
S∗−λ. Then the singular vector constructed in Theorem 4.2 corresponds to the
G̃-equivariant differential operator, given in the non-compact picture of the induced
representations by

Ds : C∞(u(R),S∗3
4 ω̃1

)→ C∞(u(R),S∗9
4 ω̃1

) ,

ϕ 7→ (iq∂ŷ − ∂x̂∂q)ϕ .
(4.13)
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The infinitesimal intertwining property of Ds is
Dsπ

∗
− 3

4
(X) = π∗3

4
(X)Ds(4.14)

for all X ∈ sl(3,R). With abuse of notation we used the same symbol Ds and the
same terminology “the symplectic Dirac operator” as in (1.4) due to the coincidence
of (1.4) and (4.13).

Let us finally explain the notion of the dual representation S∗. Let us define a
non-degenerate pairing (· , ·) : S⊗C S→ C on S by the formula(

p1(q), p2(q)
)

= p1(∂q)p2(q)|q=0.(4.15)
Then we can identify the (restricted) dual space to S with S and the structure of
the dual p-module on S is given as follows: the generators of mp(2,C) act on S∗ by

σ∗(e) = − i
2q

2, σ∗(h) = q∂q + 1
2 , σ∗(f) = − i

2∂
2
q ,(4.16)

while the generator h0 of the center z(l) ⊂ l and of the nilradical u of p act trivially.
We notice that this representation is compatible with (1.2).
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