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Abstract. A homothetic arithmetic function of ratio K is a function f : N → R such
that f(Kn) = f(n) for every n ∈ N. Periodic arithmetic funtions are always homothetic,
while the converse is not true in general. In this paper we study homothetic and periodic
arithmetic functions. In particular we give an upper bound for the number of elements
of f(N) in terms of the period and the ratio of f .
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1. Introduction

Throughout the paper R will denote any ring. Recall that an arithmetic function

f : N → R is said to be periodic of period T if f(n) = f(n + T ) for every n ∈ N

and T is minimal with this property. The class of periodic arithmetic functions has

received much attention in the literature [3], [6], [5], [7], [8].

Let f : N → R be a periodic function of period T and let K be an integer such

that K ≡ 1 (mod T ); i.e., K = αT + 1 for some α. Then, for every n ∈ N we have

that

f(Kn) = f((αT + 1)n) = f(n+ (αT )n) = f(n).

This fact motivates the following definition.

Definition 1.1. A function f : N → R is said to be homothetic of ratio K if

f(Kn) = f(n) for every n ∈ N.

With our notation we have just seen that periodic functions are always homothetic.

Nevertheless, the converse is trivially false as shown by the following easy example.
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E x am p l e 1.1. Consider the function f : N → R given by

f(n) =

{

1, if n is a power of 2,

0, otherwise.

Clearly f is homothetic of ratio any power of 2, while it is not periodic since there

is no T with the property that 2a + T is a power of 2 for every a.

A more interesting example of homothetic non-periodic sequence is given by the

following construction. Let p be any prime and let us denote by Sp(n) the last

nonzero digit of nn in base p. Then Sp(pn) = Sp(n) and Sp is not periodic [4].

Also Liouville’s function [1], given by λ(n) = (−1)r1+...+rs if n = pr11 . . . prss gives us

an example of homothetic non-periodic function, where any perfect square is a ratio

for λ.

Although we have seen that a periodic function with period T is always homothetic

of ratio T + 1, we can give examples of homothetic functions of ratio K such that

they are not periodic of period K − 1. Thus, if f is both periodic of period T and

homothetic of ratio K, the period T and the ratio K need not be related.

2. The range of a homothetic and periodic function

Clearly the range of a periodic function of period T has at most T different ele-

ments. In this section we are interested in giving a bound for the number of elements

of the range of a function which is both periodic of period T and homothetic of ra-

tio K.

A first easy result in this direction that motivates the general question is following

lemma.

Lemma 2.1. Let f : N → R be a periodic function of period T which is also

homothetic of ratio T . Then f is constant.

P r o o f. Given n ∈ N we have that

f(n) = f(Tn) = f(Tn+ T ) = f(T (n+ 1)) = f(n+ 1).

�

Let f be a function which is both periodic of period T and homothetic of ra-

tio K. We consider the homomorphism (an automorphism if K is coprime to T )

LK : Z/TZ → Z/TZ given by the multiplication by K; i.e., LK(n) = Kn. It is clear

that, in order to study the maximum number of elements of f(N), we have to study
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the orbits of the elements of Z/TZ under this homomorphism. This is because if

n = LK(n′), then clearly f(n) = f(n′).

Moreover, if T = pr11 . . . prss is the prime power decomposition of T , since Z/TZ
∼=

Z/pr11 Z× . . .×Z/prss Z we can restrict ourselves to the case when T is a prime power.

Before we proceed let us introduce some notation. Given n ∈ Z and p a prime

such that p does not divide n we will denote by ordpm(n) the order of n in Z/pmZ;

i.e., nordpm (n) ≡ 1 (mod pm) and ordpm(n) is minimal with this property.

Proposition 2.1. Let f : N → R be a periodic function of period pm which is

also homothetic of ratio K, with m > 0 and p a prime such that p | K. Under these

conditions, f is constant.

P r o o f. We can put K = pκK ′ with κ > 0 and we consider two cases:

If κ > m: Let n ∈ N. Then, in this case we have that

f(n) = f(Kn) = f(Kn+ pm) = f(Kn+ pmpκ−mK ′)

= f(K(n+ 1)) = f(n+ 1).

If κ < m: In this case we can find an integer r such that κr > m. Then we get

that
f(n) = f(Krn) = f(Krn+ pm) = f(Krn+ pmpκr−m(K ′)r)

= f(Kr(n+ 1)) = f(n+ 1).

Thus, in both cases f is constant and the proof is complete. �

R em a r k 2.1. Observe that Lemma 2.1 is just a particular case of the proposition

above.

Now we turn to the opposite case.

Proposition 2.2. Let f : N → R be a periodic function of period pm which is

also homothetic of ratio K, with m > 0 and p a prime such that p does not divide K.

Under these conditions,

#f(N) 6
pm−1(p− 1)

ordpm(K)
+ pm−1.

P r o o f. Let LK : Z/pmZ → Z/pmZ be the automorphism given by LK(n) = Kn.

This automorphism has at most pm − ϕ(pm) = pm−1 fixed points. The rest of

elements of Z/pmZ are grouped in orbits of length ordpm(K). Thus, there are

ϕ(pm)/ordpm(K) of such orbits.

Hence, we have seen that LK has exactly (p
m−1(p− 1))/ordpm(K)+pm−1 different

orbits, and the proof is complete. �
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These two propositions lead to the main result of the paper.

Teorem 2.1. Let f : N → R be a periodic function of period T which is also

homothetic of ratio K. Put T = pr11 . . . prss . Then:

#f(N) 6
∏

pi∤K

(pri−1
i (pi − 1)

ordpri
i
(K)

+ pri−1
i

)

.

R em a r k 2.2. Assume that f : N → R is periodic of period T . In this case

we already know that #f(N) 6 T . If, in addition, f is homothetic of ratio K and

T = pr11 . . . prss we have just seen that

#f(N) 6
∏

pi∤K

(pri−1
i (pi − 1)

ordpri
i
(K)

+ pri−1
i

)

6 K

Clearly, the equality holds if and only if ordpri
i
(K) = 1 for every i ∈ {1, . . . , s}; i.e.,

if and only if K ≡ 1 (mod T ). Note that this is the case (recall the Introduction)

when the ratio K comes from the period T .

We will conclude this section and the paper with two corollaries giving particular

cases. But before that we will introduce some notation. Recall that the Dedekind ψ

function [2] is given by

ψ(n) = n
∏

p|n

(

1 +
1

p

)

.

It can be easily seen that ψ(n) also admits the following expression:

ψ(n) =
n

rad(n)

∏

p|n

(p+ 1).

Corollary 2.1. Let f : N → R be a periodic function of period T which is also

homothetic of ratio T −1. If T is odd, then #f(N) 6 ψ(T )/2s where s is the number

of different prime factors of T .

P r o o f. If T = pr11 . . . prss it is clear that ordpri
i
(T −1) = 2. Moreover, pi does not

divide T −1 for any i ∈ {1, . . . , s}. With this in mind, an application of Theorem 2.1

gives:

#f(N) 6

s
∏

i=1

(pri−1
i (pi − 1)

2
+ pri−1

i

)

=

s
∏

i=1

pri−1
i (pi + 1)

2

=
T

2srad(T )

s
∏

i=1

(pi + 1) =
ψ(T )

2s
.

�
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Corollary 2.2. Let f : N → R be a periodic function of period T which is also

homothetic of ratio T − 1. If T is even, then #f(N) 6 1
3ψ(T )2

1−s where s is the

number of different prime factors of T .

P r o o f. The proof goes as in the previous corollary, but observe that in this case

pi = 2 for some i and ordpri
i
(T − 1) = 1. We give no further details. �
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