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Abstract. A proper coloring c : V (G) → {1, 2, . . . , k}, k > 2 of a graph G is called a
graceful k-coloring if the induced edge coloring c′ : E(G) → {1, 2, . . . , k − 1} defined by
c′(uv) = |c(u) − c(v)| for each edge uv of G is also proper. The minimum integer k for
which G has a graceful k-coloring is the graceful chromatic number χg(G). It is known that
if T is a tree with maximum degree ∆, then χg(T ) 6 ⌈ 5

3
∆⌉ and this bound is best possible.

It is shown for each integer ∆ > 2 that there is an infinite class of trees T with maximum
degree ∆ such that χg(T ) = ⌈ 5

3
∆⌉. In particular, we investigate for each integer ∆ > 2 a

class of rooted trees T∆,h with maximum degree ∆ and height h. The graceful chromatic
number of T∆,h is determined for each integer ∆ > 2 when 1 6 h 6 4. Furthermore, it is
shown for each ∆ > 2 that lim

h→∞

χg(T∆,h) = ⌈ 5
3
∆⌉.
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1. Introduction

In 1967, Rosa in [7] introduced a vertex labeling of a graph that he called a

β-valuation. In 1972, Golomb in [5] referred to this labeling as a graceful labeling-

terminology that has become standard. As described in [4], graceful labelings, and

graph labelings in general, serve as useful models for a broad range of applica-

tions, such as coding theory, x-ray crystallography, radar, astronomy, circuit de-

sign, communication network addressing and database management. Let G be a

graph of order n and size m. A graceful labeling of G is a one-to-one function

f : V (G) → {0, 1, . . . ,m} that, in turn, assigns to each edge uv of G the label

f ′(uv) = |f(u)− f(v)| such that no two edges of G are labeled the same. Therefore,

if f is a graceful labeling of G, then the set of edge labels is {1, 2, . . . ,m}. A graph

possessing a graceful labeling is a graceful graph. A major problem in this area is

that of determining which graphs are graceful.
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Trees constitute one of the simplest yet most important classes of graphs. Trees

appeared implicitly in the 1847 work of the German physicist Gustav Kirchhoff in

his study of currents in electrical networks, see [6], while Arthur Cayley in [2] used

trees in 1857 to count certain types of chemical compounds. Trees are important to

the understanding of the structure of graphs and are used to systematically visit the

vertices of a graph. Trees and rooted trees are also widely used in computer science

as a means to organize and utilize data. One of the best known conjectures dealing

with graceful graphs involves trees and is due to Kotzig and Ringel, see [4].

The Graceful Tree Conjecture. Every nontrivial tree is graceful.

The gracefulness grac(G) of a graphG with V (G) = {v1, v2, . . . , vn} is the smallest

positive integer k for which it is possible to label the vertices of G with distinct

elements of the set {0, 1, 2, . . . , k} in such a way that distinct edges receive distinct

labels. The gracefulness of every such graph is defined, for if we label vi by 2i−1

for 1 6 i 6 n, then this vertex labeling has the desired property. Thus, if G is a

graph of order n and size m, then m 6 grac(G) 6 2n−1. If grac(G) = m, then G is

graceful. The gracefulness of a graph G can therefore be considered as a measure of

how close G is to being graceful—the closer the gracefulness of a graph G is to m,

the closer G is to being graceful. The exact value of grac(Kn) has been determined

for 1 6 n 6 10 (see [5]). For example, grac(K4) = 6 =
(

4

2

)

, grac(K5) = 11 =
(

5

2

)

+ 1

and grac(K6) = 17 =
(

6

2

)

+ 2. The exact value of χg(Kn) is not known in general,

however. On the other hand, Erdős showed that grac(Kn) ∼ n2 (see [5]).

Graceful labelings have also been looked at in terms of colorings. A rainbow vertex

coloring of a graph G of size m is an assignment f of distinct colors to the vertices

of G. If the colors are chosen from the set {0, 1, . . . ,m}, resulting in each edge uv of G

being colored f ′(uv) = |f(u)− f(v)| such that the colors assigned to the edges of G

are also distinct, then this rainbow vertex coloring induces a rainbow edge coloring

f ′ : E(G) → {1, 2, . . . ,m}. So, such a rainbow vertex coloring is a graceful labeling

of G.

The colorings of graphs that have received the most attention, however, are proper

vertex colorings and proper edge colorings. In such a coloring of a graph G, every

two adjacent vertices or every two adjacent edges are assigned distinct colors. The

minimum number of colors needed in a proper vertex coloring of G is its chromatic

number, denoted by χ(G), while the minimum number of colors needed in a proper

edge coloring of G is its chromatic index, denoted by χ′(G).

Inspired by graceful labelings, we considered vertex colorings that induce edge

colorings, both of which are proper rather than rainbow, see [1].

It is useful to describe notation for certain intervals of integers. For positive

integers a, b with a 6 b, let [a, b] = {a, a + 1, . . . , b} and [b] = [1, b]. A graceful
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k-coloring of a nonempty graph G is a proper vertex coloring c : V (G) → [k], where

k > 2, that induces a proper edge coloring c′ : E(G) → [k − 1] defined by c′(uv) =

|c(u)− c(v)|. A vertex coloring c of a graph G is a graceful coloring if c is a graceful

k-coloring for some k ∈ N. The minimum k for which G has a graceful k-coloring is

called the graceful chromatic number of G, denoted by χg(G). It was observed in [1]

that if G is a nonempty graph of order n, then χg(G) exists and

max
{

χ(G), χ′(G)
}

+ 1 6 χg(G) 6 grac(G) 6 2n−1.

For a graceful k-coloring c of a graphG, the complementary coloring c : V (G) → [k]

of G is a k-coloring defined by c(v) = k + 1− c(v) for each vertex v of G.

O b s e r v a t i o n 1.1 ([1]). The complementary coloring of a graceful coloring of

a graph is also graceful.

If c is a graceful k-coloring of a graph G, then the restriction of c to a subgraph H

of G is also a graceful coloring. Thus, we have the following observation.

O b s e r v a t i o n 1.2 ([1]). If H is a subgraph of a graphG, then χg(H) 6 χg(G).

A caterpillar is a tree T of order 3 or more, the removal of whose leaves produces

a path (called the spine of T ). The graceful chromatic numbers of all caterpillars

were determined in [1].

Theorem 1.3 ([1]). If T is a caterpillar with maximum degree ∆, then ∆+ 1 6

χg(T ) 6 ∆+2. Furthermore, χg(T ) = ∆+2 if and only if T has a vertex of degree ∆

that is adjacent to two vertices of degree ∆ in T .

Also in [1], an upper bound for the graceful chromatic number of a tree in terms

of its maximum degree was obtained. An example of a tree was given in [1] to show

that the upper bound can be attained.

Theorem 1.4 ([1]). If T is a nontrivial tree with maximum degree ∆, then

χg(T ) 6 ⌈ 5

3
∆⌉.

We refer to the book [3] for graph theory notation and terminology not described

in this paper.
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2. Rooted trees T∆,h for small h

We now describe a class of trees that will play a central role in this paper. For

each integer ∆ > 2, let T∆,1 be the star K1,∆. The central vertex of T∆,1 is denoted

by v. Thus, deg v = ∆ and all other vertices of T∆,1 have degree 1. For each integer

h > 2, let T∆,h be the tree obtained from T∆,h−1 by identifying each end-vertex with

the central vertex of the star K1,∆−1. The tree T∆,h is therefore a rooted tree (with

root v) having height h. The vertex v is then the central vertex of T∆,h. In T∆,h,

every vertex at distance less than h from v has degree ∆; while all remaining vertices

are leaves and are at distance h from v. Thus, T2,2 = P5 and T2,h is a nontrivial

path of odd order 2h+ 1, while T3,2 and T6,2 are shown in Figure 1.

v

v

Figure 1. The trees T3,2 and T6,2.

First, we determine the graceful chromatic number of T∆,2 for each integer ∆ > 2.

Theorem 2.1. For each integer ∆ > 2, χg(T∆,2) = ⌈ 1

2
(3∆ + 1)⌉.

P r o o f. Let T = T∆,2. Suppose that the central vertex of T is v and N(v) =

{v1, v2, . . . , v∆}. For i = 1, 2, . . . ,∆, let vi,1, vi,2, . . . , vi,∆−1 be the ∆−1 end-vertices

that are adjacent to vi in T . We first show that χg(T ) 6 ⌈ 1

2
(3∆ + 1)⌉. There are

two cases, according to whether ∆ is even or ∆ is odd.

Case 1 : ∆ is even. Then ∆ = 2k for some k ∈ N and so ⌈ 1

2
(3∆+1)⌉ = 3k+1. Let

[3k+1] = S1 ∪S2 ∪S3, where S1 = [k+1], S2 = [k+2, 2k] and S3 = [2k+1, 3k+1].

Thus, |S1| = |S3| = k+ 1 and |S2| = k − 1. Define a coloring c : V (T ) → [3k+ 1] by

c(v) = k+ 1, c(vi) = i for 1 6 i 6 k and c(vi) = i+ k+ 1 for k+ 1 6 i 6 2k. Hence,

{c′(vvi) : 1 6 i 6 2k} = [2k]. Next, for 1 6 i 6 k, let {c(vi,j) : 1 6 j 6 2k − 1} =

[i + 1, i + 2k] − {k + 1}; while for k + 1 6 i 6 2k, let {c(vi,j) : 1 6 j 6 2k − 1} =

[2k]− {k+ 1}. Thus, if 1 6 i 6 k, then c′(vvi) = k +1− i and c′(vivi,j) 6= k+ 1− i;

while if k + 1 6 i 6 2k, then c′(vvi) = i and c′(vivi,j) 6= i. Therefore, c is a graceful

coloring using the colors in [3k + 1] and so χg(T ) 6 3k + 1.

60



Case 2 : ∆ is odd. Then ∆ = 2k + 1 for some k ∈ N and so ⌈ 1

2
(3∆ + 1)⌉ =

3k + 2. Let [3k + 2] = S1 ∪ S2 ∪ S3, where S1 = [k + 1], S2 = [k + 2, 2k + 1] and

S3 = [2k + 2, 3k + 2]. Thus, |S1| = |S3| = k + 1 and |S2| = k. Define a coloring

c : V (T ) → [3k + 2] by c(v) = k + 1, c(vi) = i for 1 6 i 6 k and c(vi) = i+ k + 1 for

k+1 6 i 6 2k+1. Hence, {c′(vvi) : 1 6 i 6 2k+1} = [2k+1]. Next, for 1 6 i 6 k,

let {c(vi,j) : 1 6 j 6 2k} = [i+ 1, i+ 2k + 1]− {k + 1}; while for k + 1 6 i 6 2k, let

{c(vi,j) : 1 6 j 6 2k} = [2k+1]−{k+1}. Thus, if 1 6 i 6 k, then c′(vvi) = k+1− i

and c′(vivi,j) 6= k+1−i; while if k+1 6 i 6 2k+1, then c′(vvi) = i and c′(vivi,j) 6= i.

Therefore, c is a graceful coloring using the colors in [3k+2] and so χg(T ) 6 3k+2.

Next, we show that χg(T ) > ⌈ 1

2
(3∆+1)⌉. Again, we consider two cases, according

to whether ∆ is even or ∆ is odd.

Case 1 : ∆ is even. Then ∆ = 2k for some k ∈ N and so ⌈ 1

2
(3∆ + 1)⌉ = 3k + 1.

Assume, to the contrary, that there is graceful coloring c of T using colors from [3k].

Let [3k] = S1 ∪ S2 ∪ S3, where S1 = [k], S2 = [k + 1, 2k] and S3 = [2k + 1, 3k].

Thus, |S1| = |S2| = |S3| = k. We claim that no vertex having degree 2k can be

assigned a color in S2; for otherwise, let w ∈ N [v] such that c(w) ∈ S2. Then

k + 1 6 c(w) 6 2k. Since degw = 2k, there is an edge incident with w, say wx,

such that |c(w) − c(x)| > 2k. Hence, either c(x) − c(w) > 2k or c(w) − c(x) > 2k.

That is, either c(x) > 2k + c(w) > 3k + 1 or c(x) 6 c(w) − 2k 6 0, which is

impossible. Therefore, every vertex in N [v] must be assigned a color from S1 ∪ S3.

Since |N [v]| = 2k + 1 and |S1 ∪ S3| = 2k, a contradiction is produced.

Case 2 : ∆ is odd. Then ∆ = 2k+1 for some k ∈ N and so ⌈ 1

2
(3∆+ 1)⌉ = 3k+2.

Assume, to the contrary, that there is graceful coloring c of T using colors from

[3k + 1]. Let [3k + 1] = S1 ∪ S2 ∪ S3, where S1 = [k], S2 = [k + 1, 2k + 1] and

S3 = [2k + 2, 3k + 1]. Thus, |S1| = |S3| = k and |S2| = k + 1. We claim that

no vertex having degree 2k + 1 can be assigned a color in S2; for otherwise, let

w ∈ N [v] such that c(w) ∈ S2. Then k + 1 6 c(w) 6 2k + 1. Since degw = 2k + 1,

there is an edge wx such that |c(w) − c(x)| > 2k + 1. Hence, either c(x) − c(w) >

2k + 1 or c(w) − c(x) > 2k + 1. That is, either c(x) > 2k + 1 + c(w) > 3k + 2

or c(x) 6 c(w) − 2k − 1 6 0, which is impossible. Therefore, every vertex in N [v]

must be assigned a color from S1 ∪ S3. Since |N [v]| = 2k + 1 and |S1 ∪ S3| = 2k, a

contradiction is produced. �

Next, we determine the graceful chromatic number of T∆,3 for each integer ∆ > 2.

Theorem 2.2. For each integer ∆ > 2, χg(T∆,3) = ⌈ 1

8
(13∆ + 1)⌉.

P r o o f. First, observe that χg(P7) = 4 by Theorem 1.3. Thus, we may assume

that ∆ > 3. To simplify notation, let K = ⌈ 1

8
(13∆ + 1)⌉ and let T = T∆,3 whose

central vertex is v. Hence, 13

8
∆ < K < 2∆. Furthermore, 3K 6 5∆ + 2 and so
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2K − 1− 3∆ 6 2∆−K + 1. Since K > 1

8
(13∆ + 1) (or 8K > 13∆+ 1) and ∆ > 3,

it follows that

3K >
39∆+ 3

8
=

32∆

8
+

7∆+ 3

8
> 4∆ + 3

and so 2∆−K + 1 < 2K − 1− 2∆.

For each i = 0, 1, 2, 3, let Vi be the set of vertices at distance i from v in T . In

particular, V0 = {v} and V0 ∪ V1 = N [v]. Thus, V0 ∪ V1 ∪ V2 is the set of vertices of

degree ∆ in T and V3 is the set of end-vertices of T .

First, we show that χg(T ) > K. Assume, to the contrary, that T has a graceful

coloring c using colors from the set [K − 1] = {1, 2, . . . ,K − 1}. We first verify two

claims.

Claim 1. If w ∈ V0 ∪ V1 ∪ V2 (that is, if degT w = ∆), then c(w) /∈ [K −∆,∆].

P r o o f of Claim 1. As degT w = ∆, there is x ∈ N(w) such that |c(x)−c(w)| > ∆.

Thus, either c(x) − c(w) > ∆ or c(w) − c(x) > ∆. Since K − ∆ 6 c(w) 6 ∆, it

follows that either c(x) > ∆+ c(w) > K or c(x) 6 c(w) −∆ 6 0, both of which are

impossible. Hence, Claim 1 holds. �

Claim 2. If w ∈ V0 ∪ V1 = N [v] (and so each neighbor of w has degree ∆), then

(1) c(w) /∈ [2K − 1− 3∆, 2∆−K + 1] ∪ [2K − 1− 2∆, 3∆−K + 1].

P r o o f of Claim 2. Assume, to the contrary, that there is w ∈ N [v] such that (1)

is false, say c(w) ∈ [2K − 1− 3∆, 2∆−K + 1]. Now, consider the number of colors

available for the vertices in N [w].

⊲ There are at most K −∆ − 1 colors in [∆ + 1,K − 1] that are available for the

vertices in N [w].

⊲ Since c(w) ∈ [2K − 1− 3∆, 2∆−K + 1], it follows that

max{c(w),K −∆− c(w)} 6 2∆−K + 1.

Hence, there are at most 2∆−K + 1 colors in [K −∆+ 1] that are available for

the vertices in N [w].

Thus, there are at most (K −∆− 1) + (2∆−K + 1) = ∆ colors in [K − 1] that are

available for the vertices in N [w]. Since |N [w]| = ∆ + 1, this is impossible and so

Claim 2 holds. �

We now consider the number of colors available for the vertices in N [v]. By

Claims 1 and 2, if z ∈ N [v], then c(z) belongs to the set

S = [2K − 3∆− 2] ∪ [2∆−K + 2,K −∆− 1]

∪ [∆ + 1, 2K − 2∆− 2] ∪ [3∆−K + 2,K − 1].
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Since K = ⌈ 1

8
(13∆ + 1)⌉ < 1

8
(13∆ + 1) + 1, it follows that 8K < 13∆+ 9 and so

|S| = 8K − 12∆− 8 < ∆+ 1 = |N [v]|,

which is impossible. Therefore, there is no graceful coloring of T using colors from

the set [K − 1] and so χg(T ) > K.

Next, we show that T has a graceful coloring using colors from [K]. Let

S∗ = S1 ∪ S2 ∪ S3 ∪ S4,

where
S1 = [2K − 3∆],

S2 = [2∆−K + 1,K −∆],

S3 = [∆ + 1, 2K − 2∆],

S4 = [3∆−K + 1,K].

We first verify the following claim.

Claim 3. For each a ∈ S∗, there are at least ∆ distinct elements

a1, a2, . . . , a∆ ∈ ([K −∆] ∪ [∆ + 1,K])− {a}

such that all of the ∆ integers |a− a1|, |a− a2|, . . . , |a− a∆| are distinct.

P r o o f of Claim 3. By Observation 1.1, we may assume that a ∈ S1 ∪S2. There

are two cases.

Case 1 : a ∈ S1 = [2K − 3∆]. Observe that K −∆ < ∆ and

|[2K − 3∆+ 1,K −∆] ∪ [∆ + 1,K]| = ∆.

Let {a1, a2, . . . , a∆} = [2K − 3∆ + 1,K −∆] ∪ [∆ + 1,K]. Since a 6 2K − 3∆, it

follows that |a− a1|, |a− a2|, . . . , |a− a∆| are distinct.

Case 2 : a ∈ S2 = [2∆−K + 1,K −∆]. Observe that

(1) ∆+ 1− a > ∆+ 1− (K −∆) = 2∆−K + 1,

(2) |[a− (2∆−K), a− 1]| = 2∆−K > 1 and

(3) |[a− (2∆−K), a− 1] ∪ [∆ + 1,K]| = ∆.

Let {a1, a2, . . . , a∆} = [a− (2∆−K), a− 1] ∪ [∆ + 1,K]. It then follows by (1)–(3)

that all |a− a1|, |a− a2|, . . . , |a− a∆| are distinct.

Therefore, Claim 3 holds. �
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Observe that |S∗| = 8K−12∆ > (13∆+1)−12∆ = ∆+1. We now define a graceful

coloring c : V (T ) → [K] as follows. First, let c(v) = 1 and assign colors from S∗−{1}

to the vertices in V1 = N(v) such that vertices and edges of T [V0 ∪ V1] are properly

colored. For each w ∈ V1, since c(w) = a ∈ S∗, it follows by Claim 3 that there are

a1, a2, . . . , a∆ ∈ ([K −∆]∪ [∆+ 1,K])−{a} for which |a− a1|, |a− a2|, . . . , |a− a∆|

are distinct. Thus, we can color the vertices in V2 using colors from the set [K−∆]∪

[∆ + 1,K] such that vertices and edges of T [V0 ∪ V1 ∪ V2] are properly colored. It

remains to color the vertices in V3. For each x ∈ V2, either c(x) ∈ [K − ∆] or

c(x) ∈ [∆+1,K], say the former. Since there are ∆ colors in [K−∆+1,K] that are

available for the vertices in N(x), there are at least ∆ − 1 colors that are available

for the ∆− 1 children of x in V3.

Therefore, T has a graceful coloring using colors from [K] and so χg(T ) 6 K. �

Employing an approach similar to that used to verify Theorem 2.2, one can obtain

the following result.

Theorem 2.3. For each integer ∆ > 2, χg(T∆,4) = ⌈ 1

32
(53∆ + 1)⌉.

The results obtained in Theorems 2.1–2.3 suggest the following conjecture.

Conjecture 2.4. For an integer h > 2, let σh = 22h−3 +
h
∑

i=2

22i−4. Then

χg(T∆,h) =
⌈σh∆+ 1

22h−3

⌉

.

3. Rooted trees T∆,h for large h

In this section, we show that if ∆ > 2 and h > 2 + ⌊ 1

3
∆⌋, then χg(T∆,h) = ⌈ 5

3
∆⌉.

First, we present three lemmas.

Lemma 3.1. Let ∆ and h be integers with ∆ = 3k for some integer k > 2 and

2 6 h 6 k + 1 and let v be the central vertex of the tree T∆,h. If c is a graceful

(5k − 1)-coloring of T∆,h, then c(v) 6= k ± j and c(v) 6= 4k ± j for each j with

0 6 j 6 h− 2; that is,

c(v) /∈ [k − h+ 2, k + h− 2] ∪ [4k − h+ 2, 4k + h− 2].

64



P r o o f. We proceed by induction on h > 2. Consider the tree T∆,2 whose central

vertex is v. Assume, to the contrary, that there is a graceful (5k − 1)-coloring c

of T∆,2 such that c(v) ∈ {k, 4k}. By Observation 1.1, we may assume that c(v) = k.

First, we claim that

(2) if w is a vertex of T∆,2 such that degT∆,2
w = ∆, then c(w) /∈ [2k, 3k].

Suppose that (2) is false. Then there is a vertex w in T∆,2 such that degT∆,2
w = ∆

and 2k 6 c(w) 6 3k. Necessarily, there is x ∈ N(w) such that |c(w) − c(x)| > 3k.

Thus, either c(x) 6 c(w) − 3k 6 0 or c(x) > 3k + c(w) > 5k, both of which are

impossible. Thus, c(w) /∈ [2k, 3k] and, as claimed, (2) holds.

Next, we consider the number of colors that are available for the vertices in N(v).

If x ∈ N(v), then degT∆,2
x = ∆ and so by (2),

c(x) ∈ [2k − 1] ∪ [3k + 1, 5k − 1].

By symmetry, we may assume that c(x) ∈ [2k− 1]. Observe that |[3k+1, 5k− 1]| =

2k − 1. Since c(v) = k, there are at most

max{c(v)− 1, 2k − 1− c(v)} = max{k − 1, 2k − 1− k} = k − 1

colors in [2k−1] that are available for the vertices in N(v). Hence, there are at most

(2k − 1) + (k − 1) = 3k − 2 = ∆− 2 colors available for the vertices in N(v), which

is impossible. Thus, c(v) /∈ {k, 4k}, establishing the base step.

Next, assume for some integer h with 3 6 h 6 k + 1 that if c∗ is a graceful

(5k − 1)-coloring of the tree T∆,h−1 with central vertex v, then c∗(v) 6= k ± j and

c∗(v) 6= 4k ± j for each j with 0 6 j 6 h− 3; that is,

c∗(v) /∈ [k − h+ 3, k + h− 3] ∪ [4k − h+ 3, 4k + h− 3].

Suppose that c is a graceful (5k − 1)-coloring of T∆,h with central vertex v. We

show that c(v) 6= k ± j and c(v) 6= 4k ± j for each j with 0 6 j 6 h− 2. Since

(i) v is the center of the subtree T ′ = T∆,h−1 obtained by removing all leaves from

T∆,h and

(ii) the restriction of c to T ′ is a graceful (5k − 1)-coloring of T ′,

it follows by the induction hypothesis that c(v) 6= k ± j and c(v) 6= 4k ± j for

each j with 0 6 j 6 h − 3. Hence, it suffices to show that c(v) 6= k ± (h − 2)

and c(v) 6= 4k ± (h − 2). Furthermore, by Observation 1.1, it suffices to show that

c(v) 6= k ± (h− 2). We consider two cases, according to whether c(v) = k + h− 2 or

c(v) = k − h+ 2.
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Case 1 : c(v) = k+h− 2. Let x ∈ N(v). Since x is the center of a subtree of T∆,h

that is isomorphic to T∆,h−1, it follows by the induction hypothesis that

(3) c(x) /∈ [k − h+ 3, k + h− 3] ∪ [4k − h+ 3, 4k + h− 3].

It then follows by (2) and (3) that c(x) belongs to the set

S = [k − h+ 2] ∪ [k + h− 1, 2k − 1] ∪ [3k + 1, 4k − h+ 2] ∪ [4k + h− 2, 5k − 1].

Observe that

|[3k + 1, 4k − h+ 2] ∪ [4k + h− 2, 5k − 1]| = 2k − 2h+ 4.

Since h > 3, it follows that k+h−3 > k−h+1 and so |[k−h+3]| > |[k+h−1, 2k−1]|.

Because at most one of the two colors c(v)− t and c(v)+ t (1 6 t 6 k+h− 3) can be

used for a vertex in N(v), it follows that at most (2k−2h+4)+(k+h−3) = 3k−h+1

colors in [5k−1] are available for the vertices in N(v). However, 3k−h+1 < 3k−1 =

∆− 1 and |N(v)| = ∆, which is impossible.

Case 2 : c(v) = k − h + 2. Let x ∈ N(v). Since x is the center of a subtree

isomorphic to T∆,h−1, it follows by the induction hypothesis that c(x) satisfies (3).

Now by (2), c(x) belongs to

S = [k − h+ 1] ∪ [k + h− 2, 2k − 1] ∪ [3k + 1, 4k − h+ 2] ∪ [4k + h− 2, 5k − 1].

Observe that

|[3k + 1, 4k − h+ 2] ∪ [4k + h− 2, 5k − 1]| = 2k − 2h+ 4.

Since h > 3, it follows that k+h−3 > k−h+1 and so |[k−h+3, 2k−1]|> |[k−h+1]|.

Because at most one of the two colors c(v)− t and c(v)+ t (1 6 t 6 k+h− 3) can be

used for a vertex in N(v), it follows that at most (2k−2h+4)+(k+h−3) = 3k−h+1

colors in [5k−1] are available for the vertices in N(v). However, 3k−h+1 < 3k−1 =

∆− 1 and |N(v)| = ∆, which is impossible. �

Lemma 3.2. Let ∆ and h be integers with ∆ = 3k + 1 for some integer k > 2

and 2 6 h 6 k + 1 and let v be the central vertex of the tree T∆,h. If c is a graceful

(5k + 1)-coloring of T∆,h, then c(v) 6= k ± j and c(v) 6= 4k + 2 ± j for each j with

0 6 j 6 h− 2; that is,

c(v) /∈ [k − h+ 2, k + h− 2] ∪ [4k − h+ 4, 4k + h].
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P r o o f. We proceed by induction on h > 2. Consider the tree T∆,2 whose central

vertex is v. Assume, to the contrary, that there is a graceful (5k + 1)-coloring c

of T∆,2 such that c(v) ∈ {k, 4k + 2}. By Observation 1.1, we may assume that

c(v) = k. First, we claim that

(4) if w is a vertex of T∆,2 such that degT∆,2
w = ∆, then c(w) /∈ [2k + 1, 3k + 1].

Suppose that (4) is false. Then there is a vertex w in T∆,2 such that degT∆,2
w = ∆

and 2k+1 6 c(w) 6 3k+1. Necessarily, there is x ∈ N(w) such that |c(w)− c(x)| >

3k + 1. Thus, either c(x) 6 c(w)− (3k + 1) 6 0 or c(x) > (3k + 1) + c(w) > 5k + 2,

both of which are impossible. Thus, c(w) /∈ [2k+1, 3k+1] and, as claimed, (4) holds.

Next, we consider the number of colors that are available for the vertices in N(v).

If x ∈ N(v), then degT∆,2
x = ∆ and so by (4),

c(x) ∈ [2k] ∪ [3k + 2, 5k + 1].

Observe that |[3k + 2, 5k + 1]| = 2k and that at most

max{c(v)− 1, 2k − c(v)} = 2k − c(v) = k

colors in [2k] are available for the vertices in N(v). Hence, there are at most 2k+k =

3k = ∆ − 1 colors available for the vertices in N(v), which is impossible. Thus,

c(v) /∈ {k, 4k + 2}, establishing the base step.

Next, assume for some integer h with 3 6 h 6 k + 1 that if c∗ is a graceful

(5k + 1)-coloring of the tree T∆,h−1 with central vertex v, then c∗(v) 6= k ± j and

c∗(v) 6= 4k + 2± j for each j with 0 6 j 6 h− 3; that is,

c∗(v) /∈ [k − h+ 3, k + h− 3] ∪ [4k − h+ 5, 4k + h− 1].

Suppose that c is a graceful (5k + 1)-coloring of T∆,h with central vertex v. We

show that c(v) 6= k ± j and c(v) 6= 4k + 2± j for each j with 0 6 j 6 h− 2. Since

(i) v is the center of the subtree T ′ = T∆,h−1 obtained by removing all leaves from

T∆,h and

(ii) the restriction of c to T ′ is a graceful (5k + 1)-coloring of T ′,

it follows by the induction hypothesis that c(v) 6= k ± j and c(v) 6= 4k + 2 ± j for

each j with 0 6 j 6 h− 3; that is,

c(v) /∈ [k − h+ 3, k + h− 3] ∪ [4k − h+ 5, 4k + h− 1].

Hence, it suffices to show that c(v) 6= k ± (h − 2) and c(v) 6= 4k + 2 ± (h − 2).

Furthermore, by Observation 1.1, it suffices to show that c(v) 6= k ± (h − 2). We

consider two cases, according to whether c(v) = k + h− 2 or c(v) = k − h+ 2.
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Case 1 : c(v) = k + h − 2. Let x ∈ N(v). Since x is the center of a subtree

isomorphic to T∆,h−1, it follows by the induction hypothesis that

(5) c(x) /∈ [k − h+ 3, k + h− 3] ∪ [4k − h+ 5, 4k + h− 1].

It then follows by (4) and (5) that c(x) belongs to the set

S = [k − h+ 2] ∪ [k + h− 1, 2k] ∪ [3k + 2, 4k − h+ 4] ∪ [4k + h, 5k + 1].

Observe that

|[3k + 2, 4k − h+ 4] ∪ [4k + h, 5k + 1]| = 2k − 2h+ 5.

Since h > 3, it follows that k+h−3 > k−h+2 and so |[k−h+3]| > |[k+h−1, 2k]|.

Because at most one of the two colors c(v)− t and c(v)+ t (1 6 t 6 k+h− 3) can be

used for a vertex in N(v), it follows that at most (2k−2h+5)+(k+h−3) = 3k−h+2

colors in [5k + 1] are available for the vertices in N(v). However, 3k − h+ 2 < 3k =

∆− 1 and |N(v)| = ∆, which is impossible.

Case 2 : c(v) = k − h + 2. Let x ∈ N(v). Since x is the center of a subtree

isomorphic to T∆,h−1, it follows by the induction hypothesis that c(x) satisfies (5).

Now by (4), c(x) belongs to

S = [k − h+ 1] ∪ [k + h− 2, 2k] ∪ [3k + 2, 4k − h+ 4] ∪ [4k + h, 5k + 1].

Observe that

|[3k + 2, 4k − h+ 4] ∪ [4k + h, 5k + 1]| = 2k − 2h+ 5.

Since h > 3, it follows that k+h−2 > k−h+1 and so |[k−h+3, 2k]| > |[k+h−1]|.

Hence, at most (2k− 2h+5)+(k+h− 2) = 3k−h+3 colors in [5k+1] are available

for the vertices in N(v). However, 3k − h+ 3 6 3k = ∆− 1 and |N(v)| = ∆, which

is impossible. �

Lemma 3.3. Let ∆ and h be integers with ∆ = 3k + 2 for some integer k > 2

and 2 6 h 6 k + 1 and let v be the central vertex of the tree T∆,h. If c is a graceful

(5k + 3)-coloring of T∆,h, then c(v) 6= (k + 1)± j and c(v) 6= (4k+ 3)± j for each j

with 0 6 j 6 h− 2; that is,

c(v) /∈ [k − h+ 3, k + h− 1] ∪ [4k − h+ 5, 4k + h+ 1].
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P r o o f. We proceed by induction on h > 2. Consider the tree T∆,2 whose central

vertex is v. Assume, to the contrary, that there is a graceful (5k + 3)-coloring c

of T∆,2 such that c(v) ∈ {k + 1, 4k + 3}. By Observation 1.1, we may assume that

c(v) = k + 1. First, we claim that

(6) if w is a vertex of T∆,2 such that degT∆,2
w = ∆, then c(w) /∈ [2k + 2, 3k + 2].

Suppose that (6) is false. Then there is a vertex w in T∆,2 such that

degT∆,2
w = ∆ and 2k + 2 6 c(w) 6 3k + 2. Necessarily, there is x ∈ N(w)

such that |c(w) − c(x)| > 3k + 2. Thus, either c(x) 6 c(w) − (3k + 2) 6 0

or c(x) > (3k + 2) + c(w) > 5k + 4, both of which are impossible. Thus,

c(w) /∈ [2k + 2, 3k + 2] and, as claimed, (6) holds.

Next, we consider the number of colors that are available for the vertices in N(v).

If x ∈ N(v), then degT∆,2
x = ∆ and so by (6),

c(x) ∈ [2k + 1] ∪ [3k + 3, 5k + 3].

Observe that |[3k + 3, 5k + 3]| = 2k + 1 and that at most

max{c(v)− 1, 2k + 1− c(v)} = (2k + 1)− (k + 1) = k

colors in [2k + 1] are available for the vertices in N(v). Hence, there are at most

(2k + 1) + k = 3k + 1 = ∆ − 1 colors available for the vertices in N(v), which is

impossible. Thus, c(v) /∈ {k + 1, 4k + 3}, establishing the base step.

Next, assume for some integer h with 3 6 h 6 k + 1 that if c∗ is a graceful

(5k + 3)-coloring of the tree T∆,h−1 with central vertex v, then c∗(v) 6= (k + 1) ± j

and c∗(v) 6= (4k + 3)± j for each j with 0 6 j 6 h− 3; that is,

c∗(v) /∈ [k − h+ 4, k + h− 2] ∪ [4k − h+ 6, 4k + h].

Suppose that c is a graceful (5k + 3)-coloring of T∆,h with central vertex v. We

show that c(v) 6= (k + 1)± j and c(v) 6= (4k + 3)± j for each j with 0 6 j 6 h− 2.

Since

(i) v is the center of the subtree T ′ = T∆,h−1 obtained by removing all leaves from

T∆,h and

(ii) the restriction of c to T ′ is a graceful (5k + 3)-coloring of T ′,

it follows by the induction hypothesis that c(v) 6= (k+1)± j and c(v) 6= (4k+3)± j

for each j with 0 6 j 6 h− 3; that is,

c(v) /∈ [k − h+ 4, k + h− 2] ∪ [4k − h+ 6, 4k + h].
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Hence, it suffices to show that c(v) 6= (k+1)± (h− 2) and c(v) 6= (4k+3)± (h− 2).

Furthermore, by Observation 1.1, it suffices to show that c(v) 6= (k + 1) ± (h − 2).

We consider two cases, according to whether c(v) = k + h− 1 or c(v) = k − h+ 3.

Case 1 : c(v) = k + h − 1. Let x ∈ N(v). Since x is the center of a subtree

isomorphic to T∆,h−1, it follows by the induction hypothesis that

(7) c(x) /∈ [k − h+ 4, k + h− 2] ∪ [4k − h+ 6, 4k + h].

It then follows by (6) and (7) that c(x) belongs to the set

S = [k − h+ 3] ∪ [k + h, 2k + 1] ∪ [3k + 3, 4k − h+ 5] ∪ [4k + h+ 1, 5k + 3].

Observe that

|[3k + 3, 4k − h+ 5] ∪ [4k + h+ 1, 5k + 3]| = 2k − 2h+ 6.

Since h > 3, it follows that k+h−2 > k−h+2 and so |[k+h−2]| > |[k+h, 2k+1]|.

Hence, at most (2k− 2h+6)+(k+h− 2) = 3k−h+4 colors in [5k+3] are available

for the vertices in N(v). However, 3k − h + 4 = (3k + 1) − h + 3 6 ∆ − 1 and

|N(v)| = ∆, which is impossible.

Case 2 : c(v) = k − h + 3. Let x ∈ N(v). Since x is the center of a subtree

isomorphic to T∆,h−1, it follows by the induction hypothesis that c(x) satisfies (7).

Now by (6), c(x) belongs to

S = [k − h+ 2] ∪ [k + h− 1, 2k + 1] ∪ [3k + 3, 4k − h+ 5] ∪ [4k + h+ 1, 5k + 3].

Observe that

|[3k + 3, 4k − h+ 5] ∪ [4k + h+ 1, 5k + 3]| = 2k − 2h+ 6.

Since h > 3, it follows that k+h−2 > k−h+2 and so |[k−h+4, 2k+1]|> |[k−h+2]|.

Hence, at most (2k− 2h+6)+(k+h− 2) = 3k−h+4 colors in [5k+3] are available

for the vertices in N(v). However, 3k − h + 4 = (3k + 1) − h + 3 6 ∆ − 1 and

|N(v)| = ∆, which is impossible. �

We are now prepared to show that for every integer ∆ > 2, the graceful chromatic

number of the tree T∆,h is ⌈
5

3
∆⌉ if its height h is sufficiently large.

Theorem 3.4. Let∆ > 2 be an integer. If h is an integer such that h > 2+⌊ 1

3
∆⌋,

then

χg(T∆,h) =
⌈5∆

3

⌉

.
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P r o o f. By Theorems 2.1 and 2.2, we may assume that ∆ > 6. Furthermore, by

Theorem 1.4, it suffices to show that χg(T∆,h) > ⌈ 5

3
∆⌉. Let ∆ = 3k+r for integers k

and r where k > 3 and r = 0, 1, 2. Then 2+ ⌊ 1

3
∆⌋ = 2+k. Since h > 2+k, it follows

that T∆,2+k ⊆ T∆,h and so χg(T∆,h) > χg(T∆,2+k). Hence, it remains only to show

that χg(T∆,2+k) > ⌈ 5

3
∆⌉. Let T = T∆,2+k whose central vertex is v. We consider

three cases, according to the values of ∆ as integers modulo 3.

Case 1 : ∆ ≡ 0 (mod 3). Then ∆ = 3k for some integer k > 2 and ⌈ 5

3
∆⌉ = 5k.

We show that χg(T ) > 5k. Assume, to the contrary, that T has a graceful coloring c

whose colors are in the set [5k − 1]. By Lemma 3.1, it follows that c(v) /∈ [2k] ∪

[3k, 5k−1]. Furthermore, it follows by (2) in the proof of Lemma 3.1 that, in addition,

c(v) /∈ [2k, 3k] and so c(v) /∈ [5k − 1], a contradiction. Hence, χg(T∆,2+k) > 5k =

⌈ 5

3
∆⌉. Therefore, χg(T∆,h) = ⌈ 5

3
∆⌉ for all h > 2 + 1

3
∆ when ∆ ≡ 0 (mod 3).

Case 2 : ∆ ≡ 1 (mod 3). Then ∆ = 3k + 1 for some integer k > 2 and ⌈ 5

3
∆⌉ =

5k + 2. We show that χg(T ) > 5k + 2. Assume, to the contrary, that T has a

graceful coloring c whose colors are in the set [5k+1]. By Lemma 3.2, it follows that

c(v) /∈ [2k]∪ [3k+2, 5k+1]. Furthermore, it follows by (4) in the proof of Lemma 3.2

that, in addition, c(v) /∈ [2k+1, 3k+1] and so c(v) /∈ [5k+1], a contradiction. Hence,

χg(T∆,2+k) > 5k + 2 = ⌈ 5

3
∆⌉. Therefore, χg(T∆,h) = ⌈ 5

3
∆⌉ for all h > 2 + ⌊ 1

3
∆⌋

when ∆ ≡ 1 (mod 3).

Case 3 : ∆ ≡ 2 (mod 3). Then ∆ = 3k + 2 for some integer k > 2 and ⌈ 5

3
∆⌉ =

5k + 4. We show that χg(T ) > 5k + 4. Assume, to the contrary, that T has a

graceful coloring c whose colors are in the set [5k + 3]. By Lemma 3.3, it follows

that c(v) /∈ [2k + 1] ∪ [3k + 3, 5k + 3]. Furthermore, it follows by (6) in the proof

of Lemma 3.3 that, in addition, c(v) /∈ [2k + 2, 3k + 2] and so c(v) /∈ [5k + 3], a

contradiction. Hence, χg(T∆,2+k) > 5k + 4 = ⌈ 5

3
∆⌉. Therefore, χg(T∆,h) = ⌈ 5

3
∆⌉

for all h > 2 + ⌊ 1

3
∆⌋ when ∆ ≡ 2 (mod 3). �

The following two results are consequences of Theorem 3.4.

Corollary 3.5. For each integer ∆ > 2, lim
h→∞

χg(T∆,h) = ⌈ 5

3
∆⌉.

Corollary 3.6. If T is a tree with maximum degree ∆ > 2 containing a vertex v

such that every vertex of T within distance 2 + ⌊ 1

3
∆⌋ of v also has degree ∆, then

χg(T ) = ⌈ 5

3
∆⌉.

With the aid of Theorem 3.4, we present a lower bound for the graceful chromatic

number of a connected graph. For a vertex coloring c of a graph G and a set X of

vertices of G, denote the set of colors of the vertices of X by c(X) = {c(x) : x ∈ X}.

Corollary 3.7. If G is a connected graph with minimum degree δ > 2, then

χg(G) > ⌈ 5

3
δ⌉.
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P r o o f. Assume, to the contrary, that there is a connected graph G with δ(G) =

δ > 2 such that χg(G) 6 ⌈ 5

3
δ⌉ − 1 and so G has a graceful (⌈ 5

3
δ⌉ − 1)-coloring

c : V (G) → [⌈ 5

3
δ⌉ − 1]. By Theorem 3.4, there exists a tree T with ∆(T ) = δ such

that χg(T ) = ⌈ 5

3
δ⌉. Let v be the central vertex (or root) of T . For 0 6 i 6 e(v), let

Vi = {x ∈ V (T ) : d(v, x) = i}. Thus, V0 = {v} and V1 = NT (v). Furthermore, let u

be any vertex of G.

We now define a coloring cT : V (T ) → [⌈ 5

3
δ⌉− 1] of T from the graceful coloring c

of G as follows. First, let cT (v) = c(u). Since c is a graceful coloring of G and

|NT (v)| 6 ∆(T ) = δ = δ(G) 6 |c(NG(u))|,

we can assign the colors from the set c(NG(u)) ⊆ [⌈ 5

3
δ⌉− 1] to the vertices in NT (v)

such that the vertices and edges in the tree T1 = T [V0 ∪ V1] are properly colored.

Suppose then, for some integer i where 1 6 i < e(v), that the vertices in the tree

Ti = T
[ i
⋃

j=0

Vj

]

have been assigned colors from [⌈ 5

3
δ⌉ − 1] such that

(i) for each x ∈ V (Ti), there is ux ∈ V (G) for which cT (x) = c(ux) and

cT (NTi
(x)) ⊆ c(NG(ux)) and

(ii) all vertices and edges of Ti are properly colored.

Next, we define the colors of vertices in Vi+1. Let y ∈ Vi that is not an end-vertex

of T and let z ∈ Vi−1 such that yz ∈ E(T ). Then there is a vertex uy ∈ V (G)

such that cT (y) = c(uy) and cT (z) ∈ cT (NTi
(y)) ⊆ c(NG(uy)). Since c is a graceful

coloring and |NT (y) ∩ Vi+1| 6 δ − 1 6 |c(NG(uy)) − {cT (z)}|, we can assign the

colors from the set c(NG(uy))−{cT (z)} ⊆ [⌈ 5

3
δ⌉− 1] to the vertices in NT (y)∩ Vi+1

such that the vertices and edges of the tree Ti+1 = T
[i+1
⋃

j=0

Vj

]

are properly colored.

Therefore, cT is a graceful coloring of T using colors from the set [⌈
5

3
δ⌉−1]. However,

then χg(T ) 6 ⌈ 5

3
δ⌉ − 1, which is a contradiction. �

The lower bound for the graceful chromatic number of a graph presented in Corol-

lary 3.7 is best possible. For example, the graph G of Figure 2 has δ(G) = δ = 2 and

graceful chromatic number χg(G) = ⌈ 5

3
δ⌉ = 4. A graceful 4-coloring of G is shown

in the figure.

3 1

2

4

4

1

2

21
21

1

3

3

2

G:

Figure 2. A graph G with χg(G) = ⌈ 5
3
δ⌉.

A c k n ow l e d gm e n t. We greatly appreciate the valuable suggestions made by

the referee that resulted in an improved paper.
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