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Abstract. The local well-posedness for the Cauchy problem of the liquid crystals system

in the critical Besov space Bp n/p= 1([R”) X B"/p([R”) with n < p < 2n is established by using
the heat semigroup theory and the Littlewood- Paley theory. The global well-posedness for
the system is obtained with small initial datum by using the fixed point theorem. The
blow-up results for strong solutions to the system are also analysed.
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1. INTRODUCTION

We are concerned with the liquid crystals system

u+u-Vu—pAu+ VP =-V-(Vdo Vd), t>0, zeR",

) dy +u-Vd— Ad = |Vd|2d, t>0, z€R,
V-u=0, t>0,
u(0,2) = uo(x), d(0,z) = do(z), x € R™,

where 1 > 0 is a constant, u(t,x) = (u1(t,z),us(t,z),...,un(t,x)) is the veloc-

ity, d(t,z) = (d1(t,x),da(t, z),...,dn(t,z)) is the macroscopic average of molecular
arrangement, Vd ® Vd is a matrix (Vd)? Vd, whose (i, j)th entry is

Z 8dk t T 8dk(t (E)

0x; O0x;
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The elements u and d satisfy the far field behavior u — 0, d — dp as |z| — oo,
where dy is a constant vector with |do| = 1. The initial value satisfies |do(x)| = 1,
(uo,do) € B;/lpfl([R") X B;/lp([R”). The scalar function P(t,z) is the pressure.

Before stating the main results, we give a brief overview of several related works
in the literature. If d is a constant vector, system (1.1) becomes the classical incom-
pressible Navier-Stokes equation

ur+u-Vu—pAu+VP =0, t>0, ze€R"
(1.2) Vou=0, t>0,
u(0,x) = uo(x), x € R™.

If u(t,z) is a solution to problem (1.2) with initial datum wug(z), then wuy(t,z) =
Au(A\?t, A\z) is also a solution to problem (1.2) with initial datum ugy(x) = Aug(Az).
If the space norm is invariant under the scaling u(z) = Au(Az), A > 0, then it
is a critical space for problem (1.2) defined in [5]. In 1934, Leray established the
existence and uniqueness of global weak solutions to problem (1.2) in the critical
Sobolev space L?(R?) with finite energy. However, the uniqueness of solutions to
problem (1.2) in the Sobolev space L?(R™), n > 3, has not been proved. Fujita
and Kato in [12] obtained the uniqueness of solutions with uy € H"/2~1(R"). The
Sobolev space H("/2)~1(R™) is a critical space for problem (1.2), and s = (n/2) — 1 is
the lowest index for which the uniqueness of solutions has been proved in the Sobolev

space Hs.
For the density-dependent Navier-Stokes system with variable viscosity
ot +u-Vo=0, t>0, zeR",
(13) out + ou - Vu — div[2u(o)d] + VP =0, t >0, z € R,
V-u=0, t >0,
0(0,2) = go(x), w(0,2)=wuo(x), x € R™,

Abidi in [1] proved the global existence of solutions in the critical Besov space
B;/lp “H(R™) x Bg/lp (R™) in general space dimension n with small initial datum.
Danchin and Mucha in [9] proved the global well-posedness for system (1.3) with
w(e) = p > 0 in space dimension n in the critical space with small initial da-
tum (ug,00 — 1) € Bg/lp*l(ﬂ%”) X B;/lp([R”), 1 < p < 2n. For n = 2, Abidi and
Zhang in [3] studied system (1.3) in the critical Besov space with initial datum
(ug, 00 — 1) € B;/lp_l(Rz) X B;/lp([RQ), 1 < p < 4. They established the global well-
posedness for system (1.3) with weaker assumptions on initial datum as compared
with that in [15]. We note that the obtained solution u(¢,z) belongs to the critical
Besov space Bi/lpfl(RQ) with negative index when 2 < p < 4 in [3]. One may check
[3], [15], [24], [2] for more details in this direction and the references therein.
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Roughly speaking, system (1.1) is a strongly coupled system between the incom-
pressible Navier-Stokes equation and the transported heat flow of harmonic map.
It is a macroscopic continuum description of the time evolution of materials, which
are influenced by the flow field u(¢,z) and the orientation configurations of rod-like
liquid crystals d(t,x). The hydrodynamic theory of the nematic liquid crystals is
established by Ericksen in [11]. Lin in [18] studied a simple model for the liquid
crystals system. After that, many good results for the approximate liquid crys-
tals system were derived in [20], [21]. Hong in [14] proved the global existence of
solutions to the liquid crystals system with initial datum belonging to the space
L?*(R?) x H'(R?) by energy estimates. The solutions were regular except for a fi-
nite number of singular times. Wang in [25] established global well-posedness for
the heat flow of harmonic map in the space BMO(R™). Similarly to [25], Lin and
Ding in [22] studied system (1.1) in the critical space L"(R™) x W"(R") by us-
ing the contraction mapping theory. They obtained the local well-posedness for the
system and the global well-posedness with small initial datum. Xu and Zhang in
[27] established the global existence and regularity of weak solutions to system (1.1)
in space dimension n = 2 with large velocity. The uniqueness of weak solutions
was proved by using the Littlewood-Paley theory. Chen and Miao in [7] proved
the global well-posedness for the micropolar fluid system in the critical Besov space
B,?,/o%‘l(u%?’) X Bg,/o%(ﬂ%?’), 1 < p < 6, by making a suitable transformation of solutions
and using the Fourier localization method. Hao and Liu in [13] studied system (1.1)
in the critical Besov space 3571/2)71([]%”) X B;’/f([R") with n > 2. They established
the local well-posedness for the system and the global well-posedness with small
initial datum. They also presented the blow-up criterion of solutions. For system
(1.1) without the term |Vd|*d, Zhao, Liu and Cui in [28] established the local well-
posedness for the system in the critical Besov space By/” ' (R") x B/P(R") with
2 < p < 2n. The global well-posedness for the system was obtained with small initial
datum. They also derived the blow-up criterion of solutions. Here we note that the
obtained solution u(t, z) belongs to the Besov space B,%p ! (R™) with negative index
when n < p < 2n. Xu, Hao and Yuan in [26] studied the well-posedness for the
density-dependent incompressible flow of liquid crystals in the critical Besov space
B;L,/Tp(R”) X B;f’ﬁp_l(ﬂ%") X BK/TP(R”), n > 2, with negative regularity indices. They
established the local well-posedness for the system with large initial velocity field
and director field under the condition that the initial density was close to a positive
constant. The global well-posedness for the system was obtained with small initial
datum. We note that the blow-up criteria of solutions to the system have not been
discussed yet. Jiang, Jiang and Wang in [16] considered a simplified Ericksen-Leslie
system of the two dimensional compressible flow of nematic liquid crystals. They
established the global existence of weak solutions under a restriction imposed on the

39



initial energy including the case of small initial energy. For other methods of estab-
lishing the local well-posedness for the incompressible flow of liquid crystals systems
and global existence of solutions, the reader is referred to [23], [10], [19], [6], [17] and
the references therein.

For system (1.1), we introduce the scaling transformation

(1.4)  ua(t,z) = (N2t \x),  da(t,z) = d(N*t, Ax), Pa(t,z) = A2P(N\%t, \x),

where (u, d, P) is a solution to system (1.1). It follows that (uy,dy, Py) still satisfies
system (1.1) with initial data ugy = Aug(Ax) and dpy = do(Az). In this paper, we
mainly consider the homogeneous Besov space B;r(R”). We find

lux(t; @)l /o1 = ult, )| gr/o-s, [[dr(E; )]

" " B;’/lp = Hd(t’x)||B;/1p

The norm in Bg/lp “H(R") x Bg/lp (R™) is invariant under the scaling transforma-
tion (1.4). Motivated by [3], [13], [28], we study system (1.1) in the critical Besov
space 327/11171([!%") X B;/lp([R"). In addition, we suppose |d(t,z)| = 1 and note that
B;/lp([R”) < L®(R"). Let R be the usual Riesz transform. The Riesz trans-
form R maps continuously from the homogeneous Besov space B, .(R") to B; ,.(R™)
with the operator norm ”RHL(BQWBE,T) < Cp. We denote @ = V(A™1)V- and let
P = 1 — Q be the Leray projection operator on the space of divergence free vector
fields. Then the operator P maps continuously from the homogeneous Besov space
B;T(R") to B;T(R”). Using the operator P, we project the first equation in sys-
tem (1.1) onto the divergence free vector field. Then the term VP can be eliminated.
Let 7(t,z) = d(t,z) — dy, we have

ug — pAu = —Plu-Vu+ V- (VT O VT)], t>0, 2R
T — AT = —u - V7 + |V7|>1 + |V7|2dy, t>0, zeR™,
V-u=0, t>0,

uli=0 = uo(z), Tl=o = 10(2), xr € R,

(1.5)

with conditions d(0, x) = do(x), 7o(x) = do(x) — do, |do(z)| = 1, |7 +do| = 1 and the
far behaviors u — 0, 7 — 0 as |z| — co. Motivated by the papers [23], [3], [25], [27],
[13], [28], [26], we study the Cauchy problem for system (1.5) in the critical Besov
space Bg7/1p71(R”) X B;/lp(ﬂ%”) with negative index when n < p < 2n. This problem
is meaningful and it has not been discussed yet. Because of the presence of nonlinear
term |V7|27 and the low regularity of the space, the conservation law of system (1.5)
which plays an important role in studying the global well-posedness for system (1.5)
in previous papers [14], [27], here is useless. However, this difficulty has been solved

by using the Bony’s paraproduct method.
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Notation. Let [A;B] = AB — BA be the commutator between the operators
A and B. By a < b we mean that there exists a uniform constant C, which may
be different on different lines, such that a < Cb. Since functions in all the spaces
are over R™, for simplicity, we drop R™ in our symbols if there is no ambiguity.
We have LgB;, = Le([0,T]; By,), LBy, = Le([0,00); By,) and Lf, . Bj, =
Le([1y, To); By ).

The main results of this paper are stated as follows.

Theorem 1.1. Let n > 2, n < p < 2n, (ug,70) € Bgﬁ/lpfl X BZ’/IP and § =
Juoll
(I) [Local well-posedness.] There exists T > 0 such that system (1.5) has
a unique local solution (u,7) € C([0,T]; Bz/lp—l)leTBg/lpH x C([0,T7; Bz/lp)ﬂ
~ n/pt2
LLB)*2.
(IT) [Global well-posedness.] There exists dg > 0 such that if § < dg, then sys-
tem (1.5) has a unique global solution (u,7) € C([0,00); B~ ﬁLlBZ’/lpH X

p,1
C([0,00); BYP) N L' BY/PF2.

B + HT()HB:/IP. Then

Remark 1.1. After having concluded the proof of Theorem 1.1 presented in this
paper, we found that the paper [26], which was concerned with the well-posedness
for the density-dependent incompressible flow of liquid crystals in the critical Besov
spaces B;/lp([R”) X Bg/lp*l([R") N B;ﬁp(R"), 1 < p < 2n, n > 2, has been published
recently. The system studied in [26] containes the density variable. For the case in
which the density is a constant, we prove that the solution w(t,x) to system (1.5)

n

belongs to the Besov space Bp/lp 71([R") with negative index when n < p < 2n by
establishing suitable a-priori estimates and using the heat semigroup theory. Thus,
the proof procedure for the existence of solutions to the system is simplified signifi-
cantly. We only present the main points of the proof of Theorem 1.1 for simplicity.
We note that the blow-up mechanism of solutions to the system was not investigated
in [26]. Moreover, the blow-up criteria of solutions to system (1.5) are also analysed

in the present paper.
We obtain a blow-up result of solutions to system (1.5).
Theorem 1.2. Let n > 2, n < p < 2n and 2 < g1, 92 < 00, n/p+ 2/01 > 3,

n/p + 2/02 > 2. Assume (ug,70) € B;;/lp*l X Bg/lp and let T* be the maximal
existence time of solutions to system (1.5). If T* < oo, then

(1.6) tl_lg}* [HUHZ?*Bi/)Q;C*l + ”THZ?*Bi/,Q& + HT”Z% Bgy/o'f:ﬂ/gl] = .
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Remark 1.2. We obtain the blow-up mechanism of the solutions to system (1.5)
under the condition that ug(x) € B;/lpfl(ﬂ%”) with negative index when n < p < 2n.
Theorem 1.2 improves the results in [13], where p = 2, p < n. Theorem 1.1 also
improves the results in [28], where the nonlinear term |Vd|?d was omitted in the
system. It is worth pointing out that for the case 2 < p < n, the proof is similar
o [13], hence we omit it.

The remainder of this paper is organized as follows. In Section 2, the definition
and some properties of the Besov space are reviewed. Section 3 is devoted to the
proof of Theorem 1.1. The proof of Theorem 1.2 is presented in Section 4.

2. PRELIMINARY

We recall some basic facts related to the Besov spaces. One may check [4], [5] for
more details.
We write the definition of Besov spaces.

Definition 2.1 ([4]). Let s € R, (p,7) € [1,00]2, u € S} (R") and we give the
definition of the Besov spaces as follows:

o 1/r
(Z Q”SIAijIEp) , r<oo,
j=—o0

/]

B, (R") = >
sup 27°[|A; fl v, T = 00.
j€z

The properties of Besov spaces are presented as follows.

Proposition 2.1 ([4]). Let s € R, (p,7,p1,p2,71,72,0) € [1,00]". Then:

(1) By, ., = BZ;?z(l/pl_l/M), if p1 <p2, 71 <712 By, — Byl is locally compact
if S1 < S92.

(2) For all s > 0, B;’T N L* is an algebra. B;’T is an algebra < B;’T — L® & s>
n/pors>=n/p,r=1.

S 1/r

) Mg, = [ IAus07] " and Iulzgs < iligs;, i 0 <

lullzg i, > Nollg g, i 0>

We present Bony’s paraproduct decomposition in the homogeneous Besov spaces.

. j—1 . . . .
We define Sju = 37 Agqu, Tov = 3 Sj—1udjv, R(u,v) = 3 Ajulyv. For
q==00 jez li—3"1<1
u,v € Sy (R"™), uv = Tyv + Tyu+ R(u, v). The terms Ty,v, Tou, R(u,v) are estimated
by the following two lemmas.
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Lemma 2.1 ([4]). There exists a constant C' such that for any couple of real
numbers (s,0) with ¢ > 0 and (p,r,r1,72) € [1,00]*, 1/r = min{1,1/r1 + 1/ra},
n n
T oyps g V<O, s<— or s=—, r=1;
Tl ey 5. : :

n n
B;_a)gc, s—o<— or s—o=—, r=1.
o

HTH[j(Bx T1><B P P

p,T2°

Lemma 2.2 ([4]). There exists a constant C' such that for any couple of real
numbers (s1,s2) and (p,p1,p2,7,71,72) € [1,00]% with s1 +s2 > 0, 1/p < 1/p1 +
1/po <1, 1/r<1/ri+1/ra<1l,0—n/p=s1 —n/p1+ s2 —n/pa, we have

||R||L‘, B )SC, O'<ﬁ or (J':E7 r=1.
p

p

Bplim XBPQ rai

For the heat equation

u —alAu = f(t,z), t>0, z € R",
1) {t f(t,x)

ult—o = up(x), r e R"”,

we have the following two lemmas.

Lemma 2.3 ([4]). Let T > 0, s € R, (o,p,7) € [1,00]®. Assume ug € Bp -

fe LnggHQ/gl) ®. Then system (2.1) has a unique solution u € L%OB;T LITB;;CQ
satisfying
al/gHUHz%B;ﬁ?/e < C(fluoll g, | + al/glfl||f||zng;’+r2/gl-z), 1< 0 < o< o0

In addition, if 1 < r < oo, then u € C([0,T1; B;T)

Lemma 2.4 ([13]). Let u(t) = e*®uq, ug € Bp 1, (p,0) € [1,0]?, s € R and let

€o be a constant. Assume ||u0||B; < ¢o. Then, for any small g > 0, there exists
p,

To > 0 such that the estimate ||u||ng potale < €0, 0 < T < Tpy holds; for any small

constant €1 > 0 there exists §; such that if ||u0HB§ < 61, then ||lul|;, get2/0 < €1
p,1

Lemma 2.5 ([4]). Let (s,p,r) € (0,00) x [1,00]?. Then there exists a constant C
depending only on the dimension n, such that

[wollgs < Clllullzellvligs  +llullp [lvllze).
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Lemma 2.6 ([5]). Let X be a Banach space with the norm ||-||x and let B: X x
X — X be a bilinear operator, n > 0. For any x1, x2 € X we have ||B(x1,z2)|x <
nllz1||x||x2l|x. Then for any xy € X and ||zo|lx < 1/(4n), the equation x = xg +
B(z,x) has a solution x € X. In particular, the solution x satisfies ||x||x < 2||zo| x
and x is the unique solution satisfying ||z||x < 1/(2n).

Lemma 2.7 ([4])‘ Let (P;(Jatha(hﬂ") € [1700]5’ 51 < n/p) S2 < n/p) S$1+ s2 > 0
and 1/q = 1/q1 + 1/q2. Then there exists a constant C' > 0 depending only on
P,4q,91,92,7,51,52,1 such that

el g o rsea—nre < Cllullza s, 072 -

3. THE PROOF OF THEOREM 1.1

3.1. Local well-posedness. In order to prove Theorem 1.1, we use a standard
iterative process to construct the approximate solutions to system (1.5). Assume
i € N* and let uy(t) = e*Pug, 7 (t) = e?7m for i = 1. Then ui|—0 = uo,
T1|t=0 = 70. For i > 2, we define by induction a sequence of smooth functions
(ui, Ti)ie N+ satisfying the system

Oyu; — pAu; = Gy, t>0, zeR",
&m—An:Gg, t>0, (EER”,
(3.1)
V-u; =0, t>0,
Uily=0 = U0, Tilt=0 =70, x € R",
where

G = —IP[ui_l -Vu;—1+ V- (VTi—l © VTi—l)]7
Go = —uij—1-VTi_1 + |V7i_1|*Tic1 + |V7io1 [ do.
First step: Uniform boundedness. We claim that the following estimates hold
for some T' > 0 and there exists an absolute constant C' such that
(3.2) ||Ui||E%Brrtqp71/2 + ||Ti||Z4TBn/1p+1/2 < (C + ey,
(33) I17:ll 00 < (C+ 1)
By induction, for i = 1, u; = e**®uq, 71 = 7. Using Lemma 2.4, we deduce that
(3.2) and (3.3) hold for ¢ = 1. Now we assume that (3.2) and (3.3) hold for ¢ — 1,

ie.,
||ui71||Z%B;L)/1pfl/2 + ”Ti*lHZ“TB:/lerl/z < (C + 1)60,

”’7—1'71“2%03;)/1? < (C+1)6.
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Applying Lemma 2.3 to the second equation in (3.1) and taking o = oo, s = n/p,
01 = 2 yields

(3.9 17l g7 S Il g + Gt 2l 75 s
Using Minkowski’s inequality, we derive

(3.5) 1G22 o1 < Mlwima - Vricallgg s + |||VTz'—1|27i—1||ngB;/1p—l

+ |||VTi—1|QCZO||E2 pre—t =11 + I+ I.
T p,1
From Bony’s paraproduct decomposition, we have
(3.6) L = || — Uj_q - VTi_1||ZQTBLL’/1p71 < ||ui_1||E%B:1/lpf1/2||Ti_1||Z4TB;L’/1p+1/2.
Similarly to the derivation of (3.6), one gets
_ ) 2,
(37) b = Vi Pricallz oo
5 ||Ti—1||g%o]-3;’/lp||Ti—1||Z4TB;’/lp+1/2||Ti—1||E%B;/1p+1/2;
where we have used Lemma 2.5. From (3.7) we obtain
(38) Is= |||V7i71|2d_0||z2TB;;)/1p—1 S lmicillps groveralmioallps griesa-
One deduces from (3.4)—(3.8) that

(39) il zee e < Imoll gre + Nwicallps griorr2ll7izallzy g2

+ ||Ti—1||E%OB:1/1PHT’i—1”%47‘3;’/1?-%-1/2 + ||Ti_1||%47'35,/1p+1/2

S OO+ [(C+1)eg)® 4 (C + 1)8[(C + 1)eo]® + [(C + 1)e)?.

Taking €9 < ((C' +1)y/C +1+2/6)7" yields ||7i]| 7. gn/r < (C 4 1)4.
T p,1
We turn to present the estimates for |[7i||z4 gn/p+1/2. Applying Lemma 2.3 and
T p,1

taking o = 4, s =n/p, 01 = 2, we obtain

(3.10) I17illzs privssrz S lmoll grie + 1G2llgz gnm
S lI7oll gnso + [(C + Deo]?
+(C+ 1)8[(C + 1)eo)? + [(C + 1)e0)?.
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Now we present the estimates for ”ui”Z4 pn/r—1/2. Applying Lemma 2.3 and taking
T p,1

0=4,s=n/p—1, p1 =2, we obtain

(3.11) ||ui||Z%B;}L’/lpfl/2 S ||U()| B;}L’/lpfl + ||G1||ZQTBLL’/1;;72.

It follows that

(312) ||G1||Z%‘BZ,/1P_2 5 ||’LL7;_1 . Vui_1||E%B;,1/1p—2 + ||V7'i—1 @ vTi—1||E%B;1,1/1p—l

= I, + I

Using Lemmas 2.1 and 2.2, we have

(3'13) Iy 5 Hui—l"%%B;ﬁP—l/?
and
(3.14) I5 5 ||Ti_1||Z%ﬂB:1/lp+1/2||Ti_1||Z%ﬂB:1/lp+1/2.

From (3.11)—(3.14) we obtain

Bt + ||Ui_1||%§1"3;j,/1p_1/2 + ||Ti_1||%§1"BZ,/1p+l/2

(315)  uillzy grro-1s2 < lluol

< ||U()| B/t + [(C + 1)60]2 + [(C + 1)60]2,

which together with (3.10) gives

(3.16) Hui”i‘* Bﬂ,/p—l/2+||Ti||Z4 Br/p+1/2 < C€0+4(C+1)2E(2)+(C+1)3E(2)5 < (C+1)€0,
T7p,1 Tp,1

where g9 < min(((C +1)\/C +1+2/5)"1 ((C+1)%[4+ (C+1)8])Y).
In what follows we turn to prove the inequality

(3.17) uill g o=z e + 1Till e prreczs e < C(0).

Bearing in mind that ||7;[|; . gn/» < C(d) has been proved, we only need to prove
T p,1

(3.18) ||ui||E%oB:1/1pfl, ||ui||E;B;L1/1p+l7 ||T7;||Z1TBLL’/1;;+2 < 0(5)

By induction and Lemma 2.4 we obtain that (3.18) holds for ¢ = 1. Assume that
(3.18) holds for i — 1, i.e.,

(319 luistlgggrers Tuictllzy oo lriotllzy gopee < CG).
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Applying Lemma 2.3 and taking ¢ = 1, s = n/p, g1 = 1, we obtain

(3.20)

17ill gy gniv+e < limol

From Lemmas 2.1 and 2.2 we have

(3.21)

B;:L,/lp + HGQHE;B:’/IP'

|lwwi—1 - VT%'—lHZlTB;/lp < C(9).

Simple calculations give rise to

|||VT7;_1|2Ti_1||Z1TBvL/1p S 0(5) and |||VT1'_1|2J0
P

A

Combining this with (3.20), we deduce ||7;[|7, gn/r+2 < C(9).
T p,1
Using Lemma 2.3 and taking o = 0o, s =n/p—1, p; =1 yields

(3.22)

lualge oo S ol

It follows by some calculations that

(3.23)

B;)Qp—l + ||G1||Z%B;)/1p—1.

il g g1 < C(6).

Using Lemma 2.3 and taking o1 =1, s =n/p—1, o = 1, we derive

(3.24)

il gy et S ol

Thanks to (3.22) and (3.23), we have

||ui||Z§B:/1p+1 S 0(5)

Consequently, (3.17) is true.

B;}L’/lp—l + ||G1||Z%BZ’/1P_1'

Second step: Convergence. We demonstrate that (u;,7;);en+ is a Cauchy

sequence in E%"B;/lp_l(R”) X E%"B;/lp([l%") From system (3.1) we have

(3.25)

(Or — pA) (Uit j11 — uig1) = G,
(O = A)(Titjr1 — Tit1) = Ga,
Vetigj1 =0, V-ui1 =0,
(Wit j+1 — Uit1)]t=0 = 0,

(Titj+1 — Ti+1)|t=0 = 0,

t>0, zeR",
t>0, zeR",
t>0,
x € R™,
r € R™,
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where

Gz = —Pluiy; - Vuir; —u;-Vu; +V - (V1 , ©V7, )=V - (VT, 0 VT,)],

itJ
G4 = _(ui+j . VTi+j — U * VTZ‘) + |V7’Z‘+j|27’¢+j — |V7’i|27}‘ + |VTi+j|2d_0 — |V7’i|2d_0.

Using the heat semigroup theory, we obtain

t

(3.26) (Uisgin —uiss)(t,7) = / A (5. 7) ds,
0
t

(3.27) (Tivji1 — Tig1)(t, z) = / =92 Gy (s, x) ds.
0

We denote

t

(3.28) Li(t,x) = — [ e 98Plusy ;- Vuiyj — ui - V] ds,

S— —

(329) L(t,x)=— [ e"DAPV (V1 0Vr,,)— V- (Vr, ®@Vr)]ds,

itJ

t
(330) Ig(f,, J)) = — e(tfs)A[qu . VTH_j — Uy 'VTfL'] dS,
0

(3.31) Iy(t,x) = / IRV Prigy — |Vmi|*m] ds,
0

&

t
(3.32) Is(t,x) z/ e(tis)A[|v7'i+j|2d70 — |VTi|2Ci0] ds.
0

Using Lemma 2.3 in the first equation of (3.25) and taking ¢ = oo, s = n/p — 1,
01 = 2, we obtain

witj1 — witr ”Z;oB';/f*l

S llwigg - Vi —ui - Vu; +V - (V1,0 V7, )=V (V7,0 V7))

itg

=5 n/p—2
|22 0t

H (Vg = V1) © Vrijllgz gros + IV © (VTigy = V7i) 52 gr/vs.
Using Lemmas 2.1 and 2.2, we have
(3:33) Mt @)z prrv—2 S Ming = till oo o (ltinsll g2 i + lluill g2 o)
and

(339) B0 53 s S e = Tillp gt (17wl gogees + 7illza gogoen).
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Applying Lemma 2.3 to the second equation in (3.25) and taking ¢ = oo, s = n/p,
01 = 2, we derive

(3.35) [1Titjt1 — Ti+1||z%c3;/lp S ||G4||Z2TB;Y/1P*1'
Simple calculations give rise to

(336) stz g S Wiy = 7illz g el g
iy = willgee griv-1l7ill g2 e
Similarly, we have
(331) Mat,2) I g
$ies = 7l s Orisall g goimss + il g sl g

+ ||T’i+j - Ti”Z%OB:)/lp||Ti||2i‘7{]'3;/1”+1/2
and
838) ()l g S Iries = il g (sl govms + 7l i)

Now we have obtained the estimates for I (¢, z) — I5(¢,2). We deduce that there
exists 6 € (0,1) such that

(3.39) luitier = tivillpee priv—r + ITivs41 = Tivallpee grv

< Off|luity — Ui||z%ogg)/1p—1 + [|7ivs — Ti||z%oggy/lp]

by choosing £y small enough. Hence, (u;,7;);en+ is a Cauchy sequence in the space
L%OBZ’/lp_l X L%OBZ’/IP. Let u; — u in L%"B;ﬁp_l and 7; — 7 in L%OBZ’/IP as i — 00.
Then (u,7) is a solution to system (1.5) on [0,7] x R™. For r < oo and using
Lemma 2.3, we have (u,7) € C([0,T]); B™*™") x C([0,T]; B"/F). From (3.17), we

p,1 p,1
deduce (u,7) € LlTBg/lpH X LlTB;,/lpH. Therefore, (u,7) € C([O,T];B;/f)*l) N
LLBIT % O(10,T); BYy) n Ly BT,

Third step: Uniqueness. Let (u1,71), (u2,72) be two solutions to system (1.5),
91 = u1 — ug and 02 = 71 — 7». Using the procedure of proving that (u;,7;)ien= is
a Cauchy sequence in the second step on the time interval [0, Tp], where Tp is a small
positive constant, we deduce d; = 0, § = 0. (]
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3.2. Global well-posedness. We prove the global well-posedness for sys-
tem (1.5). We rewrite system (1.5) into the form

ug + Plu- Vu] — pAu = =PV - (VT ©VT)], t>0, x € R",

7 +u- VT — AT = |V7|?7 + |V7|2do, t>0, zeR",
(3.40)

V-u=0, t>0,

uw(0,x) = uo(x), 7li=0 = T0(), xr € R"™.

Applying the operator A; to the first equation in (3.40), noting that Pu = u and
using a standard commutator’s process, we derive

(3.41) 9 Aju+u-VAju—pAAju=—A;P[V - (V7O V7)] - [AjP;u- Vu.
Taking L?(R™) inner product of (3.41) with |A;u[P~2Au, we obtain
1d . e Ty
(3.42) ];aHAjuHLP + Rnu -VAulAjulP7*Ajude — p R7LAAju|Aju| Ajude
:/ (—A,P[V - (Vr © V)] = [A,P; u - V]w)|AyulP~2A u da.
Integrating by parts and using the condition V - u = 0, we get
/ u- VAju|lAjulP2Ajudz = 0.
[Rn
Applying Lemmas 2.5 and A.5 in [8] yields

—u [ AAulAjuP?Ajude > 2% || Ajullb,, ¢>0,
[R’!L

which together with (3.42), Holder’s inequality and Minkowski’s inequality gives
d . o . .
(3.43) aHAJUHL'J + 0223||Aju|\Lp <NAPIV - (VT o VT)|lee + |[A;P;u - V]u||zr.

Integrating both sides of (3.43) with respect to time from 0 to ¢ and applying Defi-
nition 2.1, Proposition 2.1, we deduce for n < p < 2n and t € [0,T*], T* < oo,

(349)  lullze goyp-s + cllullzy gopes < ol

+|IP[V - (VT ©VT)]

B;L)/lpfl + ||[AJIP,’LL . V]U”Z}B:/lp—l
A YE
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Using the commutator estimates, we obtain

(3.45) el s + el e
S ||u0||3;;)/1p—1 + ||u||z%3;;)/1p+1 ”u”ZfB;'Y/l”‘l
e o N7l 7y g
For the second equation in (3.40), using a similar process, we deduce

(346)  rllgm g + el gy

S0l gnge + ll g3 s 17l e

2

I o7 g+ I e o T 2y e

From (3.45), (3.46) and Lemma 2.6 we deduce that if ¢ is small enough, then the
corresponding solution (u,T) exists globally and is also unique. We note that we
only obtain a partial answer to the uniqueness of solutions. Meanwhile, if the initial
value is in the ball B, (0), then the solution of system (1.5) is unique in the ball
Bse, (0). We need to get rid of this restrictive condition. Let (u1,71), (u2,72) be two
solutions to system (1.5) and du = w1 — ue2, 7 = 71 — 72. From the second step in
Subsection 3.1, if we choose T7 > 0 sufficiently small for all ¢ € [0,73] we have

||(5’LL||Z?OB;L/1;;—1 + ||5T||Z?°B;1/1" = 0.

Repeating the above procedure on time intervals [0, 7T1], [T1, 271], [2T4, 3T4),. .. en-
ables us to deduce

||(5’LL||Z?OBZ/1;,71 + ||5T||Z§°B;1/1" = 0,

which implies du = 0, §7 = 0. 0

4. BLOW-UP

Proof of Theorem 1.2.  Applying Lemma 2.3 to the first equation and the
second equation in system (1.5), respectively, we have

(A1) Nullz g S ol gogos + u- Fut V- (V7 0 V1)l o s roaren -2,
(4.2) ||T||E7°§B7z/p < ||7'0||B;,,Y/1p + |lu- VT + |V7’|27— + |VT|2d_O||E5)—?B;:/1p+2/QQ—2.

p,1

Using Lemma 2.7, we deduce
(4.3) flu- VUHE? B;"Y/ll”_l‘*'Q/Ql—Q S HUHE?BZf’;C_l ||U||E’1°"CB:Y/1P_1.

o1



For the term

(4'4) ”V (VTQVT)” n/p 1+2/e1-2 < ||VT@VTHL91 n/p+2/01 2

LB

we have

ITorVllze gysrn— SIVTlzg 2o IVl gy
N HT”Z;I B2ey ||T||Z%OB':1/1P)
||R(VT7 VT)”E;’} B;ry/lp+2/91—2 SJ ||T||f§113§<ff’o£ ”T”Z%OB;'Y/J”

which combined with (4.4) gives

(4'5) ||V ’ (VT © VT)HE? B;}L,/1p71+2/9172 < ”THE? BLL,/;;H/QI ||T||E%OB;L’/1P'

It follows from some calculations that

(4.6) Jw- VT”E? Br/pte/en 2 S ”u”E%cB;)/lp—l HT”E?Bi/f"&'

Similarly to (4.5), we deduce

(4.7) [ |V7—|27—”z§2 Br/pte/ea=? S ”VTT”Z?B%%* ”THE?BZQP'

Applying Lemma 2.5 and the embedding properties in Besov space, we have

(4.8) IVTT ge p2rea—1 S NTTN pez p2rea ST oo prio Tl e p2sea
L2 B2 L2 LE B 2B

which together with (4.7) gives

(4.9) | |VT|2T||g;2]-3;ry/lp+<2/gg>—2 < ”T”E?Bi/f-’a% ”THE%CB:AP ||T||g7a§3;)/lp'

Similarly to (4.7), we obtain

(110) Vol gogrsre—2 5 17z g Il

Thus, we have

(411) ||u||E%OBZ/1p—1 5 ||U:O||Bs/lp—1 + ||U||Z§}Bg{£g>_1 ||u||Z%OB;/IP_1
+ ”THZ“B"/PM/M ||T||ZOOB”/,,,
(4.12) ||7—||L°°B"/T’ ~ ”7—0”3”/" + ||u||LooB’L/P 1||T||L9232/92

Iz saree 1Tz e I zse e + 17N ge 2ren Il ze -
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From Theorem 1.1 one deduces (u,7) € C([0,T7; Bz/lp_l) x C([0,T7; Bz/lp). In order
to prove Theorem 1.2, it suffices to prove that if

(4.13) ||U||Z§1* BYe? + ”7”5;2* B2 + ”T”Z?*B;ﬁ/g“/“ =¢e3 <0,

then T* > T. Now for all ¢ € [0, T] we take (u(t,z),7(¢,x)) as a new initial value of
system (1.5) and split u = up + u; so that

’LAL(t7§) = a1‘§‘>2N1 (taf) + a1‘§‘<2N1 (taf) = ﬁh + ﬁl.

Similarly, we split 7 = 7, + 7. From Lemma 2.4 we deduce that there exists a suffi-
ciently large constant N7 € N such that

3
(414) ”(uh’Th)||]'3:1/1”71><]'3:/1” 5 5

We denote I = [t,t + T.] and M = [|(u(t),7(t))|| gn/p—1, gr/». Choosing Ty >t and
a suitable constant g such that Ty — t < [¢(Co2't2M1/e M) =1 = T., we deduce

tA, A €
(4'15) H(e ug, € Tl)”Z?l]’3:1/1!'*1+2/91*2XE;}zB:’/lp+2/92*2 ,S 5
From (4.11), (4.12) and (4.14), one gets
@16) Nl g+ Il g Il s + IO 00

+ H[HUHZ?oBZ’/IP—l + HT”E?"B;A”]’

where 6 € (0, 1) providing 3 small enough in (4.13). Then we have

(@17) Nl + Wl S @l + 170

p B;)L,/lp ’

Therefore, from (4.17) we find a constant T, depending only on £ and M such that
system (1.5) has a solution on the time interval [¢,¢ 4+ T¢] for all ¢ € [0,7]. From
the uniqueness we deduce that all solutions obtained in this way coincide in their
existence interval. Thus, the solution can be extended to the time interval [0, T+ T].
This implies T* > T', which completes the proof of Theorem 1.2. O
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