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Abstract. This paper is devoted to the study of matrix elements of irreducible repre-
sentations of the enveloping deformed Heisenberg algebra with reflection, motivated by
recurrence relations satisfied by hypergeometric functions. It is shown that the matrix el-
ements of a suitable operator given as a product of exponential functions are expressed in
terms of d-orthogonal polynomials, which are reduced to the orthogonal Meixner polyno-
mials when d = 1. The underlying algebraic framework allowed a systematic derivation of
the recurrence relations, difference equation, lowering and rising operators and generating
functions which these polynomials satisfy.

Keywords: d-orthogonal polynomials; matrix element; coherent state; hypergeometric
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1. Introduction

Let (Pn)n>0 be a polynomial sequence with complex coefficients of n-th degree

(i.e. degPn = n) and (un)n>0 the corresponding dual sequence defined by

〈un, Pm〉 = δnm, n,m = 0, 1, . . .

where 〈u, f〉 is the effect of a linear functional u on a polynomial f and δnm is the
Kronecker symbol.

For a positive integer d, the polynomials Pn(x) are called d-orthogonal with respect

to the linear d-dimensional functional vector U = t(u0, u1, . . . , ud−1) (see [10], [14])
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if they realize the vector orthogonality relations
{

〈uk, PmPn〉 = 0, n > md+ k + 1,

〈uk, PmPn〉 6= 0, n = md+ k,

for each integer k ∈ {0, 1, . . . , d− 1}.
When d = 1, we return to the well known notion of orthogonality.

Recall that the polynomials Pn(x) are d-orthogonal if and only if they satisfy

a recurrence relation of order d+ 1 of the type

(1.1) xPn(x) =

d+1∑

k=0

γk,nPn+1−k(x),

where γ0,nγd+1,n 6= 0, with the convention P−n = 0, n > 1. The result for d = 1 is

reduced to the so-called Favard theorem.

During the last three decades, numerous explicit examples of d-orthogonal polyno-

mials and multiple orthogonal polynomials have been intensively studied and devel-

oped by many authors (see [1], [2], [4], [9], [13], [14]). However, only in the past few

years, some works dealing with the connection between d-orthogonal polynomials,

multiple orthogonal polynomials and Lie algebras appeared. Indeed, by means of

an algebraic approach, multivariate Charlier and Meixner polynomials, d-orthogonal

Charlier, Al-Salam Carlitz and Krawtchook polynomials appeared as matrix ele-

ments of operators in Lie algebras (see [5], [7], [6], [15]). In the present paper, we

shall identify and study some d-orthogonal polynomials generalizing the Meixner

polynomials, which are presented as matrix elements of a suitable operator of the

deformed Heisenberg algebra with reflection.

The paper is structured as follows. In Section 2, we recall basic facts about the

deformed Heisenberg algebra with reflection and define the associated coherent states

which we need below. Section 3 is devoted to introducing an operator S that shall

be studied along with the associated matrix elements which will be expressed in

terms of d-orthogonal polynomials. When d = 1, the results obtained are reduced

to the Meixner polynomials. An algebraic approach allows us to derive a generating

function and a recurrence relation. In Section 4, we focus our study on a family

of d-orthogonal polynomials of Meixner type that will be expressed in terms of hy-

pergeometric functions and we determine explicitly a linear d-dimensional functional

vector ensuring the d-orthogonality of the polynomials involved.

In the following, we need some definitions and results.

The hypergeometric function is denoted and defined by

rFs

(
a1, . . . , ar

b1, . . . , bs

∣
∣
∣
∣
z

)

=

∞∑

n=0

(a1)n . . . (ar)n
(b1)n . . . (bs)n

zn

n!
,
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where we have used the common notation for the Pochhammer symbol

(a)n = a(a+ 1) . . . (a+ n− 1), (a)0 = 1.

The binomial theorem is

(1.2) (1 − t)α =

∞∑

n=0

(−α)n
n!

tn = 1F0

(−α
−

∣
∣
∣t
)

.

For every non-negative integers m, r, i we have

(1.3)







(β)mr+i = (β)i! r
mr

r−1∏

s=0

(β + i+ s

r

)

m
,

(mr + i)! = i! rmr

r−1∏

s=0

(s+ i+ 1

r

)

m
.

If we denote by ∆1 the difference operator defined by ∆1f(x) = f(x+ 1)− f(x),

we have for every polynomial f

(1.4) f(x) =

∞∑

n=0

(−1)n

n!
∆n

1f(0)(−x)n and ∆n
1 f(0) =

n∑

k=0

(−1)n−k

(
n

k

)

f(k),

with
(
n
k

)
= n!/k!(n− k)!.

2. The deformed Heisenberg algebra with reflection

The deformed Heisenberg algebra with reflection (see [11]) is defined as the asso-

ciative algebra R generated by the elements a, a+, R and 1 subject to the defining
relations

(2.1) [a, a+] = 1 + 2µR, {a,R} = {a+, R} = 0, R2 = 1,

where

[A,B] = AB −BA, {A,B} = AB +BA,

and satisfying the involution relations

a∗+ = a−, R∗ = R.
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2.1. Fock representation. In a Hilbert space H with orthonormal basis |n〉, we
construct the Fock representation of R as follows:

(2.2)







a|n〉 = √
n+ 2µεn |n− 1〉,

a+|n〉 =
√
n+ 1 + 2µεn+1 |n+ 1〉,

R|n〉 = (−1)n|n〉,

where

εn =

{

0, if n = 2p,

1, if n = 2p+ 1.

The action by powers on the basis |n〉 is given by

(2.3)







ai|n〉 =
√

γn
γn−i

∣
∣
∣n− i

〉

, i 6 n,

ai|n〉 = 0, i > n,

an+|m〉 =
√
γm+n

γm

∣
∣
∣m+ n

〉

,

where γn is the sequence defined by

(2.4) γn :=

n∏

k=1

(k + 2µεk), γ0 = 1.

It is obvious to see that

(2.5)
an+|0〉√
γn

= |n〉.

By induction on n and involution we show according to (2.1) that

(2.6) [a2n, a+] = 2na2n−1, [a2n+ , a] = −2na2n−1
+ , n ∈ N

∗.

Hence if f is an entire function then

(2.7) [f(a2), a+] = 2af ′(a2), [f(a2), a+] = −2a+f
′(a2+),

and if f is also invertible (i.e. f(0) 6= 0), then

(2.8)

{

f(a2)a+f(a
2)−1 = a+ + 2af ′(a2)f(a2)−1,

f(a2+)af(a
2
+)

−1 = a− 2a+f
′(a2+)f(a

2
+)

−1.

2.2. Coherent states. In our work, we introduce the notion of coherent states

associated with the algebra R as an algebraic tool which will be exploited in order to
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establish the basic properties of some d-orthogonal polynomials. Let z be a complex

number. By |z〉 we denote the coherent state defined as

(2.9) |z〉 :=
∞∑

n=0

zn√
γn

∣
∣
∣n
〉

.

Its expansion coefficients are 〈n|z〉 = zn/
√
γn.

From (2.5) we get

|z〉 =
∞∑

n=0

(za+)
n

γn

∣
∣
∣0
〉

= eµ(za+)|0〉,

where

eµ(z) =

∞∑

n=0

zn

γn
= 0F1

( −
µ+ 1

2

∣
∣
∣
∣
− z2

4

)

+
z

2µ+ 1
0F1

( −
µ+ 3

2

∣
∣
∣
∣
− z2

4

)

.

Since the generalized Hermite polynomials Hµ
n (x) (see [12]) are generated by

∞∑

n=0

Hµ
n (z)

2nn!
tn = e−t2/4eµ(zt),

|z〉 can be expressed as

(2.10) |z〉 = ea
2
+/4

∞∑

n=0

Hµ
n (z)

2nn!
an+|0〉.

In addition, it is easy to see that |z〉 is an eigenstate of the operator a,

a|z〉 = z|z〉.

For any entire function f we have

(2.11) f(a)|z〉 = f(z)|z〉.

For coherent states |z1〉 and |z2〉, the inner product is

〈z1|z2〉 = eµ(z1z2).
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3. Matrix elements of an operator and d-orthogonal polynomials

Let r, d be two positive integers such that d = 2r − 1 and let Q be a polynomial

with complex coefficients of degree r with Q(0) = 0. The operator S and its matrix

elements which will be the subject of our study in the rest of the paper are defined

by

(3.1) S = e−a2
+/4eQ(a2), ψn,k = 〈k|S|n〉.

It is clear that S is invertible and S−1 = e−Q(a2)ea
2
+/4. According to (2.8)

(3.2) S−1a+S = a+ − 2aQ′(a2) and S−1aS = a− 1
2a+ + aQ′(a2).

3.1. Generating function. In order to calculate the (formal) generating func-

tion F (z, k) of the matrix elements ψn,k defined by F (z, k) :=
∞∑

n=0
ψn,kz

n/
√
γn, we

consider the expression of 〈k|S|z〉.
We have from (2.9)

(3.3) 〈k|S|z〉 =
〈

k|S
∣
∣
∣
∣

∞∑

n=0

zn√
γn

∣
∣
∣
∣
n

〉〉

=

∞∑

n=0

ψn,k
zn√
γn
.

On the other hand, taking into account (2.5), (2.10), (2.11) and (3.1), we get succes-

sively

〈k|S|z〉 = 〈k|e−a2
+/4eQ(a2)|z〉

= eQ(z2)〈k|e−a2
+/4eµ(za+)|0〉

= eQ(z2)
∞∑

m=0

Hµ
m(z)

2mm!
〈k|am+ |0〉

= eQ(z2)
∞∑

m=0

√
γm

2mm!
Hµ

m(z)〈k|m〉

= eQ(z2)

√
γk

2kk!
Hµ

k (z).

It follows by virtue of (3.3) that the matrix elements ψn,k are generated by

(3.4)

∞∑

n=0

ψn,k
zn√
γn

= eQ(z2)

√
γk

2kk!
Hµ

k (z).
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Replacing in (3.4) k by 2k or 2k + 1 and n by 2n or 2n+ 1, respectively, we get

∞∑

n=0

ψ2n,2k
z2n√
γ2n

+ z

∞∑

n=0

ψ2n+1,2k
z2n

√
γ2n+1

= eQ(z2)

√
γ2k

22k(2k)!
Hµ

2k(z),

∞∑

n=0

ψ2n,2k+1
z2n√
γ2n

+ z

∞∑

n=0

ψ2n+1,2k+1
z2n

√
γ2n+1

= eQ(z2)

√
γ2k+1

22k+1(2k + 1)!
Hµ

2k+1(z).

Since the generalized Hermite polynomials Hµ
k (x) are expressed as

(3.5)







Hµ
2k(z) = (−1)k

(2k)!

k!
1F1

( −k
µ+ 1

2

∣
∣
∣
∣
z2
)

,

Hµ
2k+1(z) = (−1)k

(2k + 1))!z

k!(µ+ 1/2)
1F1

( −k
µ+ 3

2

∣
∣
∣
∣
z2
)

,

Hµ
2k(z) is an even function. Consequently ψ2n,2k+1 = ψ2n+1,2k = 0. According to

the previous calculations and using the fact that γ2n = 22nn!(µ + 1/2)n, γ2n+1 =

22n+1n!(µ+ 1/2)(µ+ 3/2)n we obtain

Proposition 3.1. The matrix elements ψ2n,2k and ψ2n+1,2k+1 are generated by

∞∑

n=0

ψ2n,2k
zn

2n
√

n!(µ+ 1/2)n
=

(−1)k

2k

√

(µ+ 1/2)k
k!

eQ(z)
1F1

( −k
µ+ 1

2

∣
∣
∣
∣
z

)

,

∞∑

n=0

ψ2n+1,2k+1
zn

2n
√

n!(µ+ 3/2)n
=

(−1)k

2k

√

(µ+ 3/2)k
k!

eQ(z)
1F1

( −k
µ+ 3

2

∣
∣
∣
∣
z

)

.

3.2. Recurrence relation. To establish a recurrence relation satisfied by the

matrix elements sn,k = ψ2n,2k, we start from 〈2k|a+aS|2n〉.
We have according to (2.2)

(3.6) 〈2k|a+aS|2n〉 = (2k + 1 + 2µε2k+1)sn,k.

On the other hand,

(3.7) 〈2k|a+aS|2n〉 = 〈k|S(S−1a+S)(S
−1aS)|n〉.

By virtue of (3.2) we have

(S−1a+S)(S
−1aS) = a+a− 1

2a
2
+ + a+aQ

′(a2) +Q′(a2)aa+ − 2a2Q′(a2)(1 +Q′(a2)).

63



Therefore (3.7) becomes

(3.8) 〈2k|a+aS|2n〉 = 〈2k|Sa+a|2n〉 − 1
2 〈2k|Sa

2
+|2n〉+ 〈2k|Sa+aQ′(a2)|2n〉

+ 〈2k|SQ′(a2)aa+|2n〉 − 2〈2k|Sa2Q′(a2)(1 +Q′(a2))|2n〉.

From (2.2) we have

〈2k|Sa+a|2n〉 = (2n+ 2µε2n)sn,k

and

〈2k|Sa2+|2n〉 =
√

(2n+ 1 + 2µε2n+1)(2n+ 2 + 2µε2n+2)sn+1,k.

In addition, after writing the polynomials Q′(t) and tQ′(t)2 in the form,

Q′(t) =
d∑

i=0

ξit
i, tQ′(t)(1 +Q′(t)) =

d∑

i=0

ηit
i,

with ηd 6= 0, ξi = 0, i > r, we obtain successively according to (2.3)

〈2k|Sa+aQ′(a2)|2n〉 =
d∑

i=0

(2n− 2i+ 2µε2n−2i)ξi

√
γ2n
γ2n−2i

sn−i,k,

〈2k|SQ′(a2)aa+|2n〉 = (2n+ 1 + 2µε2n+1)

d∑

i=0

ξi

√
γ2n
γ2n−2i

sn−i,k,

〈2k|Sa2Q′(a2)(1 +Q′(a2))|2n〉 =
d∑

i=0

ηi

√
γ2n

γ2n−2i
sn−i,k.

Combining (3.6) with the previous calculations, we obtain

Proposition 3.2. The matrix elements sn,k satisfy the recurrence relation of

order d+ 1 = 2r

(3.9) sn+1,k =
2(2n+ 2µε2n − 2k − 1− 2µε2k+1)

√

(2n+ 1 + 2µε2n+1)(2n+ 2 + 2µε2n+2)
sn,k + 2

d∑

i=0

βn,isn−i,k,

where βn,i are complex numbers, with βn,d 6= 0.

From this relation one can express sn,k recursively, starting from s0,k. Indeed,

putting n = 0 or n = 1 in (3.9), we get

s1,k = 2

(
2µε0 − 2k − 1− 2µε2k+1
√

(1 + 2µε1)(2 + 2µε2)
+ β0,0

)

s0,k.

Repeating this process we arrive
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Corollary 3.3. The matrix elements sn,k are expressed in the form

(3.10) sn,k = s0,kP
µ
n (k),

where Pnµ(k) is a polynomial of degree n in the argument k satisfying the recurrence

relation of order d+ 1 given by

Pµ
n+1(k) =

2(2n+ 2µε2n − 2k − 1− 2µε2k+1)
√

(2n+ 1 + 2µε2n+1)(2n+ 2 + 2µε2n+2)
Pµ
n (k) + 2

d∑

i=0

βn,iP
µ
n−i(k),

with the initial conditions Pµ
0 (k) = 1, Pµ

n (k) = 0, n < 0.

According to (1.1), the polynomials Pµ
n (k) are d-orthogonal.

By virtue of Proposition 3.1, it is easy to see that ψ0,2k = (−1)k2−k
√

(µ+ 1
2 )k/k!.

Then taking into account (3.10) we get

Corollary 3.4. The d-orthogonal polynomials Pµ
n (k) are generated by

(3.11)
∞∑

n=0

Pµ
n (k)

zn

2n
√

n!(µ+ 1/2)n
= eQ(z)

1F1

( −k
µ+ 1

2

∣
∣
∣
∣
z

)

.

Remark 3.5. If we denote by tn,k the matrix elements defined by tn,k =

ψ2n+1,2k+1 then due to Proposition 3.1 and (3.10) we get tn,k = t0,kQ
µ
n(k), where

Qµ
n(k) are d-orthogonal polynomials generated by

∞∑

n=0

Qµ
n(k)

zn

2n
√

n!(µ+ 3/2)n
= eQ(z)

1F1

( −k
µ+ 3

2

∣
∣
∣
∣
z

)

.

Hence Pµ
n (k) and Q

µ
n(k) are related by Q

µ
n(k) = Pµ+1

n (k).

3.3. Link with the Meixner polynomials of the first kind. The Meixner

polynomials Mn(x, β, c) of the first kind are generated by (see [8])

(3.12)

∞∑

n=0

Mn(x;β, c)
zn

n!
= ez1F1

(−x
β

∣
∣
∣
∣

1− c

c
z

)

,

where β > 0 and 0 < c < 1. Mn(x;β, c), n = 0, 1, 2, . . . satisfy the orthogonality

relations

(3.13)
∞∑

k=0

(1− c)β(β)k
ck

k!
Mn(k;β, c)Mm(k;β, c) = 0, n 6= m.
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It is clear from (3.11) and (3.12) that when d = 1, Q(z) = cz/(1− c) and β = µ+1,

the polynomials Mn(x;β, c) and P
µ
n (x) are related by

Pµ
n (x) =

cn
√

(β)n
2n(1− c)n

Mn(x;β, c).

4. d-orthogonal polynomials of Meixner type

In this section, we assume that Q(z) = (cz/(1− c))r and consider the d-orthogonal

polynomials Mn(x;β, c, d) =
(
2n(1− c)n/cn

√

(β)n
)
Pn(x) generated by

(4.1)

∞∑

n=0

Mn(x;β, c, d)
zn

n!
= ez

r

1F1

(−x
β

∣
∣
∣
∣

1− c

c
z

)

.

Mn(x;β, c, d) reduced to the Meixner polynomials when d = r = 1 are called d-

orthogonal polynomials of Meixner type.

By ∆(a; r) we denote the array and defined by ∆(a; r) = (a/r, (a + 1)/r, . . . ,

(a+ r − 1)/r).

4.1. Explicit expression. To obtain the explicit expression of the polynomials

Mn(x;β, c, d), we can proceed directly by expanding the generating function (4.1).

Indeed, we have

∞∑

n=0

Mn(k;β, c, d)
zn

n!
=

∞∑

s=0

k∑

i=0

(1− c)i(−k)i
cii!(β)is!

zi+rs.

Then we get

(4.2) Mn(k;β, c, d) = n!

k∑

i=0

(1− c)i(−k)i
cii! (β)i((n− i)/r)!

.

In (4.2) the discrete variable i can take the values such that

n− i

r
= s = 0, 1, . . .

For any non-negative integer we can put n = mr + j, m = 0, 1, . . . and j = 0, 1, . . . ,

r − 1. Then i can take the values i = rl + j, l = 0, 1, . . .

Therefore (4.2) can be written in the form

(4.3) Mn(k;β, c, d) = n!
m∑

l=0

(1− c)rl+j(−k)rl+j

crl+j(rl + j)! (β)rl+j(m− l)!
,
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which becomes after an easy calculation according to (1.3)

Mn(k;β, c, d) =
n!(−k)j(1− c)j

m!j!(β)jcj

∞∑

l=0

(−1)ll! (−m)l(1− c)rl
r−1∏

s=0

(
(−k + j + s)/r

)

l

crlrrll!
r−1∏

s=0

(
(β + j + s)/r

)

l

.

Therefore, the polynomials Mn(k;β, c, d) have the following hypergeometric repre-

sentation:

Mn(k;β, c, d) =
n!(−k)j(1− c)j

m!j!(β)jcj
r+2F2r

(
1,−m, ∆(−k + j; r)

∆(j + 1; r), ∆(β + j; r)

∣
∣
∣
∣
−
(1− c

cr

)r
)

.

In the particular case d = 1 (then m = n and j = 0), we get

Mn(k;β, c, d) = 3F2

(
1, −n, −k

1, β

∣
∣
∣
∣

c− 1

c

)

= 2F1

(−n, −k
β

∣
∣
∣
∣

c− 1

c

)

.

Hence we meet again the hypergeometric representation of the Meixner polynomials

Mn(k ; β, c).

4.2. d-orthogonality relations. Let us now express explicitly in terms of hyper-

geometric functions the linear d-dimensional functional vector U = t(u0, u1, . . . , ud−1)

ensuring the d-orthogonality of the polynomials Mn(x;β, c, d). The adopted ap-

proach is based on obtaining the dual sequence of a polynomial set via inversion

coefficients (see [3]).

The main result of this section is the following theorem.

Theorem 4.1. The polynomials Mn(x;β, c, d) generated by (4.1) are d-orthogo-

nal with respect to the linear d-dimensional functional vector U = t(u0, u1, . . . , ud−1)

given for every 0 6 i 6 d− 1 and a polynomial f by

(4.4) 〈ui, f〉 =
r−1∑

s=0

∞∑

k=0

ωi,rk+sf(rk + s) ,

where ωi,rk+s is given by:

(1) for rk + s 6 i− 1

ωi,rk+s =
(−1)rk+s(β)ic

i

(rk + s)!(i− rk − s)!(1 − c)i
2rFr

(
∆(i+ 1; r),∆(β + 1; r)

∆(i− rk − s+ 1; r)

∣
∣
∣
∣
−
( c

1− c

)r
)

,
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(2) for rk + s > i and 1− r 6 s− i 6 0

ωi,rk+s =
(−1)(r+1)k+s(rk + i)!(β)rk+ic

rk+i

(rk + s)!i!k!((r − 1)k + i)!(1− c)rk+i

× 2r+1Fr+1

(
1,∆(rk + i+ 1; r),∆(β + rk + i; r)

k + 1,∆((r − 1)k + i+ 1; r)

∣
∣
∣
∣
−
( cr

1− c

)r
)

,

(3) for rk + s > i and 1 6 s− i 6 r − 1

ωi,rk+s =
(−1)(r+1)k+s+1(r(k + 1) + i)!(β)r(k+1)+ic

r(k+1)+i

(rk + s)!i!(r(k + 1) + i− k)!(1− c)r(k+1)+i

× 2r+1Fr+1

(
1,∆(r(k + 1) + i+ 1; r),∆(β + r(k + 1) + i; r))

k + 2,∆((r(k + 1) + i− k + 1; r)

∣
∣
∣
∣
−
( cr

1− c

)r
)

,

(4) for rk + s > i and 2(1− r) 6 d− i 6 −r

ωi,rk+s =
(−1)(r+1)k+s−1(r(k − 1) + i)!(β)r(k−1)+ic

r(k−1)+i

(rk + s)!i!(r(k − 1) + i− k)!(1− c)r(k−1)+i

× 2r+1Fr+1

(
1,∆(r(k − 1) + i+ 1; r),∆(β + r(k − 1) + i; r))

k,∆((r(k − 1) + i− k + 1; r)

∣
∣
∣
∣
−
( cr

1− c

)r
)

.

Example. Let d = 1 (then i = s = 0). We get from Theorem 4.1, Case (2), and

with help of the binomial theorem

ω0,k =
ck(β)k

k!(1− c)k
3F2

(
1, k + 1, β + k

k + 1, 1

∣
∣
∣
∣
− c

1− c

)

=
ck(β)k

k!(1− c)k
1F0

(
β + k

−

∣
∣
∣
∣
− c

1− c

)

=
(1− c)βck(β)k

k!
.

Then we obtain

〈u0, f〉 = (1− c)β
∞∑

k=0

ck(β)k
k!

f(k).

Hence we conclude the orthogonality of Meixner polynomials Mn(x;β, c).

P r o o f of Theorem 4.1. We have from (4.1)

1F1

(−x
β

∣
∣
∣
∣

1− c

c
z

)

= e−zr
∞∑

n=0

Mn(x;β, c, d)
zn

n!
.

Then by equalizing the coefficients of zn, we get

(4.5) (−x)n =
n!(β)nc

n

(1− c)n

[n/r]
∑

m=0

(−1)m

m!(n−mr)!
Mn−mr(x;β, c, d)
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(where [a] is the integer part of a). Applying the dual sequence (ui)i>0 ofMn(x;β, c)

to each member of (4.5) we obtain







〈ui, (−x)n〉 =
(−1)mn!(β)nc

n

m!i!(1− c)n
if n = mr + i,

〈ui, (−x)n〉 = 0, otherwise.

With help of (1.4) and (4.6), we get successively for every polynomial f

〈ui, f〉 =
∞∑

n=0

(−1)n

n!
∆n

1 f(0)〈ui, (−x)n〉

=

∞∑

m=0

(−1)mr+i

(mr + i)!
∆mr+i

1 f(0)〈ui, (−x)md+i〉

=

∞∑

m=0

mr+i∑

k=0

(−1)m+k(mr + i)!(β)mr+ic
mr+i

i!k!m!(mr + i− k)!(1 − c)mr+i
f(k)

=

∞∑

m=0

i−1∑

k=0

(−1)m+k(mr + i)!(β)mr+ic
mr+i

i!k!m!(mr + i− k)!(1− c)mr+i
f(k)

︸ ︷︷ ︸

Ai(f)

+

∞∑

m=0

i−1∑

k=0

(−1)m+k(mr + i)!(β)mr+ic
mr+i

i!k!m!(mr + i − k)!(1− c)mr+i
f(k),

︸ ︷︷ ︸

Bi(f)

with A0(f) = 0. Using the identities (1.3), we obtain

Ai(f) =

i−1∑

k=0

ω
(1)
i,k f(k),

where

ω
(1)
i,k =

(−1)k(β)ic
i

k!(i − k)!(1− c)i

∞∑

m=0

(−1)mrmr
r−1∏

s=0

(
(i+ s+ 1)/r

)

m

(
(β + i+ s)/r

)

m
cmr

r−1∏

s=0

(
(i − k + s+ 1)/r

)

m
(1− c)mrm!

=
(−1)k(β)ic

i

k!(i − k)!(1− c)i
2rFr

(
∆(i+ 1; r),∆(β + i; r)

∆(i− k + 1; r)

∣
∣
∣
∣
−
( cr

1− c

)r
)

.

By virtue of the transformation

∞∑

m=0

mr+i∑

k=i

H(m, k) =
∞∑

k=i

∞∑

m=0

H(m+ ηi,k, k), ηi,k = 1 +
[k − i− 1

r

]
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and (1.3) we get

Bi(f) =

i−1∑

k=0

ω
(2)
i,k f(k),

where

ω
(2)
i,k =

(−1)k+ηi,k(β)rηi,k+ic
rηi,k+i

k!i!ηi,k!(rηi,k + i− k)!(1− c)rηi,k+i

×
∞∑

m=0

(−1)mrmr
r−1∏

s=0

(
(rηi,k + i+ s)/r

)

m

(
(β + rηi,k + i+ s)/r

)

m
cmr

r−1∏

s=0

(
(i− k + s+ 1)/r

)

m
(1− c)mrm!

=
(−1)k+ηi,k(β)rηi,k+ic

rηi,k+i

k!i!ηi,k!(rηi,k + i− k)!(1− c)rηi,k+i

× 2r+1Fr+1

(
1,∆(rηi,k + i+ 1; r),∆(β + rηi,k + i; r)

1 + ηi,k,∆(rηi,k + i− k + 1; r)

∣
∣
∣
∣
−
( cr

1− c

)r
)

.

Then we get

〈ui, f〉 =
∞∑

k=0

ωi,kf(k),

with {
ωi,k = ω

(1)
i,k , if 0 6 k 6 i− 1,

ωi,k = ω
(2)
i,k , if i 6 k.

Since 0 6 i 6 2r − 2 and 0 6 s 6 r − 1, the result follows from the following three

cases:

ηi,dk+s =







k, if 1− r 6 s− i 6 0,

k + 1, if 1 6 s− i 6 r − 1,

k − 1, if 2(1− r) 6 s− i 6 −r.
�
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