Czechoslovak Mathematical Journal

Mojgan Afkhami; Kazem Khashyarmanesh; Zohreh Rajabi
Some results on the annihilator graph of a commutative ring

Czechoslovak Mathematical Journal, Vol. 67 (2017), No. 1, 151-169

Persistent URL: http://dml.cz/dmlcz/146046

Terms of use:

© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

SOME RESULTS ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING

Mojgan Afkhami, Neyshabur, Kazem Khashyarmanesh, Zohreh Rajabi, Mashhad

Received August 13, 2015. First published February 24, 2017.

Abstract

Let R be a commutative ring. The annihilator graph of R, denoted by $\mathrm{AG}(R)$, is the undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}_{R}(x y) \neq \operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}(y)$, where for $z \in R, \operatorname{ann}_{R}(z)=\{r \in R: r z=0\}$. In this paper, we characterize all finite commutative rings R with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings R whose annihilator graphs have clique number 1,2 or 3 . Also, we investigate some properties of the annihilator graph under the extension of R to polynomial rings and rings of fractions. For instance, we show that the graphs $\mathrm{AG}(R)$ and $\mathrm{AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of R. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo n, where $n \geqslant 1$.

Keywords: annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions

MSC 2010: 05C75, 13A99, 05C99

1. Introduction

Let R be a commutative ring with nonzero identity. We denote the sets of all zero-divisors and nilpotent elements of R by $Z(R)$ and $\mathrm{Nil}(\mathrm{R})$, respectively. In 1999, Anderson and Livingston introduced the zero-divisor graph of R, denoted by $\Gamma(R)$, that is the graph with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$ and distinct vertices x and y being adjacent in $\Gamma(R)$ if and only if $x y=0$. Beck introduced this concept in 1988 but he allowed all the elements of R as vertices and was mainly interested in colorings. Several other classes of graphs associated with algebraic structures have been defined and studied (cf. [2], [6], [10], [14], [13], [22]). One of the most important class of graphs associated with the algebraic structures is that of Cayley graphs (cf. [19],
[20], [21]). Recently, in [12], the concept of the annihilator graph has been defined and studied. The annihilator graph of R, denoted by $\operatorname{AG}(R)$, is an undirected graph with vertex set $Z(R)^{*}$, and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}_{R}(x y) \neq \operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}(y)$, where for $z \in R$, $\operatorname{ann}_{R}(z)=\{r \in R: r z=0\}$. Let G be an additive abelian group and let S be a symmetric subset of G. The Cayley graph $\operatorname{Cay}(\mathrm{G}, S)$ is the graph with vertex set G and two vertices x and y are adjacent if and only if $x-y \in S$. It is easy to see that the induced subgraph of the Cayley graph $\operatorname{Cay}(R, S)$, where $S=R \backslash Z(R)$, with vertex set $Z(R)^{*}$ is a subgraph of the annihilator graph $\mathrm{AG}(R)$. Indeed, assume that $x-y \in S$, and suppose on the contrary that x and y are not adjacent in $\operatorname{AG}(R)$. Then, by [12], Lemma 2.1, we have $\operatorname{ann}_{R}(x) \subseteq \operatorname{ann}_{R}(y)$ or $\operatorname{ann}_{R}(y) \subseteq \operatorname{ann}_{R}(x)$. Without loss of generality, we may assume that $\operatorname{ann}_{R}(x) \subseteq \operatorname{ann}_{R}(y)$. So $x-y \in Z(R)$, which is a contradiction.

By [12], Lemma 2.1, the zero-divisor graph $\Gamma(R)$ is a (spanning) subgraph of the annihilator graph $\mathrm{AG}(R)$. Many results on zero-divisor graphs of commutative rings have been obtained (cf. [3], [4], [5], [8], [9], [15], [17]). Let $\mathrm{AG}_{\mathrm{N}}(R)$ be the (induced) subgraph of $\mathrm{AG}(R)$ with vertices $\operatorname{Nil}(R)^{*}=\operatorname{Nil}(R) \backslash\{0\}$. Recall that R is reduced if $\operatorname{Nil}(R)=0$. Also, $\operatorname{Min}(R)$ is the set of all minimal prime ideals of R. In [2], the authors studied the situations that the unit, unitary and total graphs are ring-graph or outerplanar. Also, in [1], they studied the ring-graph and outerplanarity for comaximal and zero-divisor graphs. In the second section of this paper, we completely characterize all finite commutative rings with planar or outerplanar or ring-graph annihilator graphs. In the third section we characterize all finite commutative rings R, whose annihilator graphs have clique number 1,2 or 3 . In the fourth section, we investigate the annihilator graph of the extension of R to polynomial rings and rings of fractions. Also, we show that the graphs $\mathrm{AG}(R)$ and $\mathrm{AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of R. Finally, in the fifth section, we investigate some properties of the annihilator graph of the ring of integers modulo n, where $n \geqslant 1$. For instance, we study cut-vertices and cut-sets in $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$.

Now, we recall some definitions and notation on graphs. Let G be a simple graph with vertex set $V(G)$ and let C be a cycle of G. A chord in G is any edge joining two nonadjacent vertices in C. A primitive cycle is a cycle without chord. Moreover, if any two primitive cycles intersect in at most one edge, then we say G has the primitive cycle property (PCP). The number of primitive cycles of G is the free rank of G and is denoted by $\operatorname{frank}(G)$. We have $\operatorname{rank}(G):=q-n+r$, where q, n and r are the number of edges of G, the number of vertices of G and the number of connected components of G, respectively.

A graph G is called planar if it can be drawn in the plane without crossing edges. A graph G is an outerplanar graph if it can be drawn in the plane without crossing in such a way that all of the vertices belong to the unbounded face of the drawing.

The precise definition of a ring-graph can be found in section 2 of [18]. Also, in [18], the authors showed that the following conditions are equivalent:
(i) G is a ring-graph,
(ii) $\operatorname{rank}(G)=\operatorname{frank}(G)$,
(iii) G satisfies PCP and G does not contain a subdivision of K^{4} as a subgraph.

So every ring-graph is planar. Moreover, in [18], authors showed that every outerplanar graph is a ring-graph. A set $A \subset V(G)$ is said to be a cut-set if its removal increases the number of connected components of G and no proper subset of A satisfies the same condition. A cut-set consisting of only one element is called a cut-vertex of G. Suppose that $x, y \in V(G)$. If x is adjacent to y, then y is a neighbour of x. We use the notation $x-y$ to say that x and y are adjacent in a graph G. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty$ if G contains no cycles). Also we denote the complete graph with n vertices by K^{n} and we denote the complete bipartite graph by $K^{m, n}$. We denote the star graph by $K^{1, n}$. Let k be a positive integer. For a graph G, a k-coloring of the vertices of G is an assignment of k colors to the vertices of G in such a way that no two adjacent vertices receive the same color. The chromatic number of G, denoted by $\chi(G)$, is the smallest number k such that G admits a k-coloring. Any subgraph of G is called a clique if it is complete and the size of a largest clique in a graph G is denoted by $\operatorname{cl}(G)$. A graph G is called weakly perfect provided $\chi(G)=\operatorname{cl}(G)$ (cf. [23]).

2. Ring-Graphs and outerplanar annihilator graphs

In this section, we investigate all finite commutative rings R such that their annihilator graphs are planar or outerplanar or ring-graph. Throughout this section, R is a finite commutative ring with nonzero identity and \mathbb{F} is a finite field. Specially, \mathbb{F}_{4} is a field with four elements.

Theorem 2.1. The annihilator graph $\mathrm{AG}(R)$ is planar if and only if R is isomorphic to one of the following rings:
(i) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
(ii) $\mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{2} \times \mathbb{F}, \mathbb{Z}_{3} \times \mathbb{F}$,
(iii) $\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{9}$, $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}\right), \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right), \mathbb{Z}_{25}, \mathbb{Z}_{5}[x] /\left(x^{2}\right)$.

Proof. Clearly, by [12], Lemma 2.1, the zero-divisor graph $\Gamma(R)$ is a (spanning) subgraph of the annihilator graph $\mathrm{AG}(R)$. Hence if $\Gamma(R)$ is not planar, then $\mathrm{AG}(R)$ is not planar either. So in order to investigate the planarity of $\mathrm{AG}(R)$, we need only
to study the rings R whose zero-divisor graphs are planar. In [3] and [16] it was shown that $\Gamma(R)$ is planar if and only if R is isomorphic to one of the following rings:
(i) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$,
(ii) $\mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{2} \times \mathbb{F}, \mathbb{Z}_{3} \times \mathbb{F}, \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{2} \times \mathbb{Z}_{8}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{2} \times \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), \mathbb{Z}_{2} \times \mathbb{Z}_{9}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{Z}_{3} \times \mathbb{Z}_{9}$, $\mathbb{Z}_{3} \times \mathbb{Z}_{3}[x] /\left(x^{2}\right)$,
(iii) $\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{4}[x] /\left(2 x, x^{2}\right)$, $\mathbb{Z}_{9}, \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2\right), \mathbb{Z}_{4}[x] /\left(x^{2}+2 x+2\right)$, $\mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right), \mathbb{Z}_{25}, \mathbb{Z}_{5}[x] /\left(x^{2}\right), \mathbb{Z}_{16}, \mathbb{Z}_{2}[x] /\left(x^{4}\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}-y^{2}, x y\right)$, $\mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{3}-2\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}-2, x y, y^{2}-2,2 x\right)$,
$\mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \mathbb{Z}_{8}[x] /\left(2 x, x^{2}-4\right), \mathbb{Z}_{27}$, $\mathbb{Z}_{9}[x] /\left(x^{2}-3,3 x\right), \mathbb{Z}_{9}[x] /\left(x^{2}-6,3 x\right), \mathbb{Z}_{3}[x] /\left(x^{3}\right)$.
Now we study the planarity of $\operatorname{AG}(R)$, when R is one of the above rings. By Figure 1 , it is easy to see that $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ is planar.

Figure 1. $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.

In Figure 2, the graph $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}\right)$ has a copy of $K^{3,3}$, and so it is not planar.

Figure 2.

If R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{F}$ with $|\mathbb{F}|=m$, then $\mathrm{AG}(R) \cong K^{1, m-1}$. Hence $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{F}\right)$ is planar. Also if R is isomorphic to $\mathbb{Z}_{3} \times \mathbb{F}$ with $|\mathbb{F}|=m$, then one can easily check that $\mathrm{AG}(R) \cong K^{2, m-1}$. Thus $\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{F}\right)$ is planar.

If $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ or $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$, then we have $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right) \cong \mathrm{AG}\left(\mathbb{Z}_{2} \times\right.$ $\left.\mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)$. Let $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$. Then, by Figure 3, it is obvious that $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$ is planar.

Figure 3. $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$.
If $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4}$ or $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$, then we have $\operatorname{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right) \cong$ $\operatorname{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)$. Now, one can easily find a copy of $K^{3,3}$ with vertex set $\{(1,0),(2,0),(1,2),(0,1),(0,2),(0,3)\}$ in $\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)$ (see Figure 4), and so it is not planar.

Figure 4.
If R is isomorphic to one of the rings $\mathbb{Z}_{2} \times \mathbb{Z}_{8}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{2} \times$ $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)$, then we have $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right) \cong \mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{3}\right)\right) \cong \mathrm{AG}\left(\mathbb{Z}_{2} \times\right.$ $\left.\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)$. Let $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{8}$. By Figure 5, the graph $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$ has a subdivision of K^{5}. So $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$ is not planar.

Figure 5.
If $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{9}$ or $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3}[x] /\left(x^{2}\right)$, then we have $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9}\right) \cong \mathrm{AG}\left(\mathbb{Z}_{2} \times\right.$ $\mathbb{Z}_{3}[x] /\left(x^{2}\right)$). Let $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{9}$. Then, by Figure 6 , one can find a copy of $K^{3,3}$. Hence $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9}\right)$ is not planar.

Also, if $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{9}$ or $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}[x] /\left(x^{2}\right)$, then $\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{9}\right) \cong \mathrm{AG}\left(\mathbb{Z}_{3} \times\right.$ $\left.\mathbb{Z}_{3}[x] /\left(x^{2}\right)\right)$. Let $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{9}$. Then one can find a copy of K^{5} with vertex set $\{(0,3),(0,6),(1,3),(1,6),(2,3)\}$ in $\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{9}\right)$, so $\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{9}\right)$ is not planar.

Figure 6. $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9}\right)$.
Now, we study the situation when R is a local ring. Badawi in [12] proved that $\mathrm{AG}_{\mathrm{N}}(R)$ is a complete graph. Since for finite local rings we have $Z(R)=\operatorname{Nil}(R)$ if $|Z(R)| \geqslant 6$, hence $\mathrm{AG}(R)$ contains a copy of K^{5}, and so it is not planar. It is easy to see that the following rings have $|Z(R)|=8$, and hence their annihilator graphs are not planar:

$$
\begin{gathered}
\mathbb{Z}_{16}, \mathbb{Z}_{2}[x] /\left(x^{4}\right), \quad \mathbb{Z}_{2}[x, y] /\left(x^{2}-y^{2}, x y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \quad \mathbb{Z}_{4}[x] /\left(2 x, x^{3}-2\right), \\
\mathbb{Z}_{8}[x] /\left(2 x, x^{2}-4\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}-2, x y, y^{2}-2,2 x\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}\right), \\
\mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2\right), \mathbb{Z}_{4}[x] /\left(x^{2}+2 x+2\right) .
\end{gathered}
$$

Also in the following rings we have $|Z(R)|=9$, and hence their annihilator graphs are not planar:

$$
\mathbb{Z}_{27}, \mathbb{Z}_{9}[x] /\left(x^{2}-3,3 x\right), \quad \mathbb{Z}_{9}[x] /\left(x^{2}-6,3 x\right), \quad \mathbb{Z}_{3}[x] /\left(x^{3}\right)
$$

Now, one can easily check that the following isomorphisms hold:

$$
\begin{aligned}
\mathrm{AG}\left(\mathbb{Z}_{4}\right) & \cong \mathrm{AG}\left(\mathbb{Z}_{2}[x] /\left(x^{2}\right)\right) \cong K^{1}, \\
\mathrm{AG}\left(\mathbb{Z}_{8}\right) & \cong \mathrm{AG}\left(\mathbb{Z}_{2}[x] /\left(x^{3}\right)\right) \cong \mathrm{AG}\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right) \\
& \cong \mathrm{AG}\left(\mathbb{Z}_{2}[x, y] /(x, y)^{2}\right) \cong \mathrm{AG}\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}\right)\right) \\
& \cong \mathrm{AG}\left(\mathbb{F}_{4}[x] /\left(x^{2}\right)\right) \cong \mathrm{AG}\left(\mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right)\right) \cong K^{3}, \\
\mathrm{AG}\left(\mathbb{Z}_{9}\right) & \cong \mathrm{AG}\left(\mathbb{Z}_{3}[x] /\left(x^{2}\right)\right) \cong K^{2}, \\
\mathrm{AG}\left(\mathbb{Z}_{25}\right) & \cong \mathrm{AG}\left(\mathbb{Z}_{5}[x] /\left(x^{2}\right)\right) \cong K^{4} .
\end{aligned}
$$

By the above discussion the result holds.

In the next theorem, we characterize all rings with ring-graph annihilator graphs.
Theorem 2.2. The annihilator graph $\mathrm{AG}(R)$ is a ring-graph if and only if R is isomorphic to one of the following rings:
(i) $\mathbb{Z}_{2} \times \mathbb{F}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}$,
(ii) $\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), \mathbb{Z}_{2}[x, y] /(x, y)^{2}$, $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}\right), \mathbb{Z}_{9}, \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right)$.

Proof. Since every ring-graph is planar, it is enough to study the rings with planar annihilator graphs. Since

$$
\operatorname{frank}\left(\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)=7 \quad \text { and } \quad \operatorname{rank}\left(\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)=4
$$

by Figure $1, \mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ is not a ring-graph. If R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, by Figure 3, we have

$$
\operatorname{rank}\left(\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)\right)=6-5+1=2 \quad \text { and } \quad \operatorname{frank}\left(\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)\right)=3
$$

Thus $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$ is not a ring-graph. Also $\mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right) \cong \mathrm{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)$, and so $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)$ is not a ring-graph. If R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{F}$, then it is easy to see that $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{F}\right)$ is a star graph. Hence $\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{F}\right)$ is a ring-graph. If R is isomorphic to $\mathbb{Z}_{3} \times \mathbb{F}$, then $\operatorname{AG}(R)$ is isomorphic to $K^{2, m-1}$, where $|\mathbb{F}|=m$. Thus $\operatorname{rank}\left(\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{F}\right)\right)=m-2$ and $\operatorname{frank}\left(\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{F}\right)\right)=(m-1)(m-2) / 2$. Therefore $\mathrm{AG}\left(\left(\mathbb{Z}_{3} \times \mathbb{F}\right)\right)$ is a ring-graph if and only if $(m-1)(m-2) / 2=m-2$, which implies that $m=2$ or $m=3$. So $\mathrm{AG}\left(\mathbb{Z}_{3} \times \mathbb{F}\right)$ is a ring-graph if and only if $\mathbb{F} \cong \mathbb{Z}_{2}$ or $\mathbb{F} \cong \mathbb{Z}_{3}$. Also, in view of the proof of Theorem 2.1, the annihilator graphs of all rings

$$
\begin{array}{rlll}
\mathbb{Z}_{4}, & \mathbb{Z}_{2}[x] /\left(x^{2}\right), & \mathbb{Z}_{8}, & \mathbb{Z}_{2}[x] /\left(x^{3}\right), \\
\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), & \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \\
\mathbb{Z}_{4}[x] /\left(2 x, x^{2}\right), & \mathbb{Z}_{9}, & \mathbb{Z}_{3}[x] /\left(x^{2}\right), & \mathbb{F}_{4}[x] /\left(x^{2}\right) \text { and } \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right)
\end{array}
$$

are ring-graphs. The graphs $\mathrm{AG}\left(\mathbb{Z}_{25}\right)$ and $\mathrm{AG}\left(\mathbb{Z}_{5}[x] /\left(x^{2}\right)\right)$ are isomorphic to K^{4}, and so they are not ring-graphs.

In the next theorem, by using the fact that every outerplanar graph is a ringgraph in conjunction with Theorem 2.2, we determine all rings R with outerplanar annihilator graphs.

Theorem 2.3. The annihilator graph $\mathrm{AG}(R)$ is outerplanar if and only if R is isomorphic to one of the following rings:
(i) $\mathbb{Z}_{2} \times \mathbb{F}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}$,
(ii) $\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), \mathbb{Z}_{2}[x, y] /(x, y)^{2}$, $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}\right), \mathbb{Z}_{9}, \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right)$.

Proof. Since a graph G is outerplanar if and only if it does not contain a subdivision of a complete graph K^{4} or a complete bipartite graph $K^{2,3}$, one can check that no ring-graph annihilator graphs contain a subdivision of a complete graph K^{4} or a complete bipartite graph $K^{2,3}$. Now the result follows immediately from Theorem 2.2.

3. Clique numbers of the annihilator graphs

We begin this section with a lemma which shows that the annihilator graph of the product of three fields is weakly perfect.

Lemma 3.1. Let K_{1}, K_{2} and K_{3} be fields. Then $\operatorname{cl}\left(\mathrm{AG}\left(K_{1} \times K_{2} \times K_{3}\right)\right)=$ $\chi\left(\mathrm{AG}\left(K_{1} \times K_{2} \times K_{3}\right)\right)=3$.

Proof. Suppose that (a, b, c) is in $Z\left(K_{1} \times K_{2} \times K_{3}\right)$. Then at least one of a, b or c is zero. So, if

$$
\begin{aligned}
& A_{1}=\left\{(a, b, c) \in K_{1} \times K_{2} \times K_{3}: a=0 \text { and } b \neq 0 \neq c\right\}, \\
& A_{2}=\left\{(a, b, c) \in K_{1} \times K_{2} \times K_{3}: b=0 \text { and } a \neq 0 \neq c\right\}, \\
& A_{3}=\left\{(a, b, c) \in K_{1} \times K_{2} \times K_{3}: c=0 \text { and } a \neq 0 \neq b\right\}, \\
& A_{4}=\left\{(a, b, c) \in K_{1} \times K_{2} \times K_{3}: a=b=0 \text { and } c \neq 0\right\}, \\
& A_{5}=\left\{(a, b, c) \in K_{1} \times K_{2} \times K_{3}: a=c=0 \text { and } b \neq 0\right\}, \\
& A_{6}=\left\{(a, b, c) \in K_{1} \times K_{2} \times K_{3}: b=c=0 \text { and } a \neq 0\right\},
\end{aligned}
$$

then $Z\left(K_{1} \times K_{2} \times K_{3}\right)^{*}=\bigcup_{i=1}^{6} A_{i}$. Now, by the definition of the annihilator graph $\mathrm{AG}(R)$, every vertex in A_{1} is adjacent to every vertex in A_{2}, A_{3} and A_{6}, every vertex in A_{2} is adjacent to every vertex in A_{1}, A_{3} and A_{5}, every vertex in A_{3} is adjacent to every vertex in A_{1}, A_{2} and A_{4}, every vertex in A_{4} is adjacent to every vertex in A_{3}, A_{5} and A_{6}, every vertex in A_{5} is adjacent to every vertex in A_{2}, A_{4} and A_{6} and every vertex in A_{6} is adjacent to every vertex in A_{1}, A_{4} and A_{5}. Also, each A_{i} for $i=1, \ldots, 6$ is an independent set. Hence $\operatorname{cl}\left(\mathrm{AG}\left(K_{1} \times K_{2} \times K_{3}\right)\right)=3$, and so $\chi\left(\mathrm{AG}\left(K_{1} \times K_{2} \times K_{3}\right)\right) \geqslant 3$. Since each A_{i} for $i=1, \ldots, 6$ is an independent set, we can color every vertex in A_{1} by λ_{1}. Now, since every vertex in A_{2} is adjacent to every vertex in A_{1}, we color every vertex in A_{2} by λ_{2}. Also, every vertex in A_{3} is adjacent to every vertex in A_{1} and A_{2}. Therefore we need another color λ_{3} for every vertex in A_{3}. Every vertex in A_{4} is adjacent to every vertex in A_{3}, A_{5} and A_{6}, and so we can color the vertices in A_{4} by λ_{1} or λ_{2}. Without loss of generality, we color
every vertex in A_{4} by λ_{1}. Since every vertex in A_{5} is adjacent to A_{2} and A_{4}, we cannot color the vertices in A_{5} by λ_{1} and λ_{2}. So we color every vertex in A_{5} by λ_{3}. Finally, since every vertex in A_{6} is adjacent to A_{1}, A_{4} and A_{5}, we color the vertices in A_{6} by λ_{2}. Hence $\chi\left(\mathrm{AG}\left(K_{1} \times K_{2} \times K_{3}\right)\right)=3$.

In the next theorem we characterize all finite rings R whose annihilator graphs have clique number 1,2 or 3 .

Theorem 3.2. Let R be a finite commutative ring and let K_{1}, K_{2} and K_{3} be finite fields. Also, let \mathbb{F}_{4} be a field with four elements. Then the following statements hold:
(a) $\operatorname{cl}(\mathrm{AG}(R))=1$ if and only if R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$.
(b) $\operatorname{cl}(\mathrm{AG}(R))=2$ if and only if R is isomorphic to one of the following rings:

$$
K_{1} \times K_{2}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{4}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \quad \mathbb{Z}_{9}, \quad \mathbb{Z}_{3}[x] /\left(x^{2}\right)
$$

(c) $\operatorname{cl}(\operatorname{AG}(R))=3$ if and only if R is isomorphic to one of the following rings:

$$
\begin{gathered}
K_{1} \times K_{2} \times K_{3}, \quad \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \quad \mathbb{Z}_{3} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \quad \mathbb{Z}_{8}, \quad \mathbb{Z}_{2}[x] /\left(x^{3}\right), \quad \mathbb{Z}_{4}[x] /(2, x)^{2}, \\
\quad \mathbb{F}_{4}[x] /\left(x^{2}\right), \quad \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right), \quad \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \quad \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right) .
\end{gathered}
$$

Proof. (a) Clearly, by [12], Lemma 2.1, the zero-divisor graph $\Gamma(R)$ is a (spanning) subgraph of the annihilator graph $\operatorname{AG}(R)$. Hence if $\operatorname{cl}(\mathrm{AG}(R))=n$, then $\operatorname{cl}(\Gamma(R)) \leqslant n$. So $\operatorname{cl}(\operatorname{AG}(R))=1$ if and only if $\operatorname{cl}(\Gamma(R))=1$. Also by [15], Proposition $2.2, \operatorname{cl}(\Gamma(R))=1$ if and only if R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$.
(b) In order to characterize all rings R with $\operatorname{cl}(\operatorname{AG}(R))=2$, we need only to study the rings R with $\operatorname{cl}(\Gamma(R))=1$ or 2 . It is easy to see that if $\operatorname{cl}(\Gamma(R))=1$, then $\operatorname{cl}(\operatorname{AG}(R))=1$. Now, by [15], page 226, $\operatorname{cl}(\Gamma(R))=2$ if and only if R is isomorphic to one of the following rings:

$$
\begin{aligned}
& K_{1} \times K_{2}, \quad K_{1} \times \mathbb{Z}_{4}, \quad K_{1} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \quad \mathbb{Z}_{8}, \quad \mathbb{Z}_{9} \\
& \quad \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{Z}_{2}[x] /\left(x^{3}\right), \quad \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)
\end{aligned}
$$

If $R \cong K_{1} \times K_{2}$ with $\left|K_{1}\right|=n$ and $\left|K_{2}\right|=m$, then one can easily check that $\mathrm{AG}(R) \cong K^{n-1, m-1}$. Thus $\operatorname{cl}\left(\mathrm{AG}\left(K_{1} \times K_{2}\right)\right)=2$.

If $R \cong K_{1} \times \mathbb{Z}_{4}$ or $K_{1} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$ with $\left|K_{1}\right|=n$, then $\operatorname{AG}\left(K_{1} \times \mathbb{Z}_{4}\right) \cong \mathrm{AG}\left(K_{1} \times\right.$ $\left.\mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)$. Let $R \cong K_{1} \times \mathbb{Z}_{4}$. Then $\operatorname{AG}\left(K_{1} \times \mathbb{Z}_{4}\right)$ contains a complete graph K^{n} with vertex set $\left\{(0,2),\left(r_{1}, 2\right),\left(r_{2}, 2\right), \ldots,\left(r_{n-1}, 2\right)\right\}$, where $r_{i} \neq 0$ for $i=1, \ldots, n-1$, and so $\operatorname{cl}(\operatorname{AG}(R)) \geqslant n$. Thus, for $n \geqslant 3$ we have that $\operatorname{cl}\left(\operatorname{AG}\left(K_{1} \times \mathbb{Z}_{4}\right)\right) \geqslant 3$. Now,
if $n=2$, then $K_{1} \cong \mathbb{Z}_{2}$, and so $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)\right)=2$. If $R \cong \mathbb{Z}_{8}$, then we have $\operatorname{AG}\left(\mathbb{Z}_{8}\right) \cong K^{3}$. Thus $\operatorname{cl}\left(\mathrm{AG}\left(\mathbb{Z}_{8}\right)\right)=3$.

If $R \cong \mathbb{Z}_{9}$ or $\mathbb{Z}_{3}[x] /\left(x^{2}\right)$, then we have $\mathrm{AG}\left(\mathbb{Z}_{9}\right) \cong \mathrm{AG}\left(\mathbb{Z}_{3}[x] /\left(x^{2}\right)\right) \cong K^{2}$. Thus $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{9}\right)\right)=\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{3}[x] /\left(x^{2}\right)\right)\right)=2$. If $R \cong \mathbb{Z}_{2}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)$, then we have $\operatorname{AG}\left(\mathbb{Z}_{2}[x] /\left(x^{3}\right)\right) \cong \operatorname{AG}\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right) \cong K^{3}$. Therefore, for clicque subgraph is $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{2}[x] /\left(x^{3}\right)\right)\right)=\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)\right)=3$.
(c) In order to characterize all rings R with $\operatorname{cl}(\operatorname{AG}(R))=3$, we need only to study the rings R with $\operatorname{cl}(\Gamma(R))=1,2$ or 3 . In view of the proof of part (b), we have $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)\right)=\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)\right)=\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{8}\right)\right)=\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{2}[x] /\left(x^{3}\right)\right)\right)=$ $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)\right)=3$. Now we study the rings R with $\operatorname{cl}(\Gamma(R))=3$. By $[9]$, Theorem 4.4, $\operatorname{cl}(\Gamma(R))=3$ if and only if R is isomorphic to one of the following rings:

$$
\begin{gathered}
\mathbb{Z}_{4} \times \mathbb{Z}_{4}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \\
K_{1} \times K_{2} \times K_{3}, K_{1} \times K_{2} \times \mathbb{Z}_{4}, K_{1} \times K_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \\
K_{1} \times \mathbb{Z}_{8}, K_{1} \times \mathbb{Z}_{9}, K_{1} \times \mathbb{Z}_{3}[x] /\left(x^{2}\right), K_{1} \times \mathbb{Z}_{2}[x] /\left(x^{3}\right), \\
K_{1} \times \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), \mathbb{Z}_{16}, \mathbb{Z}_{2}[x] /\left(x^{4}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{3}-2\right), \\
\mathbb{Z}_{4}[x] /\left(x^{2}-2\right), \mathbb{Z}_{4}[x] /\left(x^{2}+2 x+2\right), \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right), \\
\mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{4}[x] /(2, x)^{2}, \mathbb{Z}_{27}, \mathbb{Z}_{3}[x] /\left(x^{3}\right), \mathbb{Z}_{9}[x] /\left(3 x, x^{2}-3\right), \\
\mathbb{Z}_{9}[x] /\left(3 x, x^{2}-6\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}-x y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \\
\mathbb{Z}_{8}[x] /\left(2 x-4, x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \\
\mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}, 2 x, 2 y\right) \text { or } \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, x^{2}-x y, 2 x, 2 y\right) .
\end{gathered}
$$

If $R \cong \mathbb{Z}_{4} \times \mathbb{Z}_{4}$, then $\operatorname{AG}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right)$ contains a complete graph K^{5} with vertex set $\{(2,1),(2,2),(2,3),(1,2),(3,2)\}$. Thus $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right)\right) \geqslant 5$. If $R \cong$ $\mathbb{Z}_{4} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$, then $\mathrm{AG}(R)$ contains a complete graph K^{5} with vertex set $\{(2,1),(2, x),(2,1+x),(1, x),(3, x)\}$. Therefore $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)\right) \geqslant 5$. If $R \cong \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$, then $\mathrm{AG}(R)$ contains a complete graph K^{5} with vertex set $\{(x, 1),(x, x),(x, 1+x),(1+x, x),(1, x)\}$. Thus $\operatorname{cl}(\operatorname{AG}(R)) \geqslant 5$. If $R \cong$ $K_{1} \times K_{2} \times K_{3}$, then by Lemma 3.1, $\operatorname{cl}(\mathrm{AG}(R))=3$. If $R \cong K_{1} \times K_{2} \times \mathbb{Z}_{4}$, then $\mathrm{AG}(R)$ contains a complete graph K^{4} with vertex set $\{(0,1,2),(1,1,0),(1,0,2),(0,0,2)\}$. Therefore $\operatorname{cl}(\operatorname{AG}(R)) \geqslant 4$. If $R \cong K_{1} \times K_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$, then $\operatorname{AG}(R)$ contains a complete graph K^{4} with vertex set $\{(0,1, x),(1,1,0),(1,0, x),(0,0, x)\}$. Hence $\operatorname{cl}(\mathrm{AG}(R)) \geqslant 4$. If $R \cong K_{1} \times \mathbb{Z}_{8}$, then $\mathrm{AG}(R)$ contains a complete graph K^{4} with vertex set $\{(0,1),(1,2),(1,4),(1,6)\}$. Thus $\operatorname{cl}(\operatorname{AG}(R)) \geqslant 4$. If $R \cong K_{1} \times \mathbb{Z}_{9}$, then $\mathrm{AG}(R)$ contains a complete graph K^{4} with vertex set $\{(1,3),(1,6),(0,3),(0,6)\}$. So $\operatorname{cl}(\mathrm{AG}(R)) \geqslant 4$. If $R \cong K_{1} \times \mathbb{Z}_{3}[x] /\left(x^{2}\right)$, then $\mathrm{AG}(R)$ contains a complete graph K^{4} with vertex set $\{(1, x),(1,2 x),(0, x),(0,2 x)\}$. Thus $\operatorname{cl}(\operatorname{AG}(R)) \geqslant 4$.

Now, if $R \cong K_{1} \times \mathbb{Z}_{2}[x] /\left(x^{3}\right)$, then $\mathrm{AG}(R)$ contains a complete graph K^{4} with vertex set $\left\{(1, x),\left(1, x^{2}+x\right),(0, x),\left(0, x^{2}+x\right)\right\}$, and so $\operatorname{cl}(\operatorname{AG}(R)) \geqslant 4$. If $R \cong$ $K_{1} \times \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)$, then $\mathrm{AG}(R)$ contains a complete graph K^{4} with vertex set $\{(1,2),(1,2+x),(0,2),(0,2+x)\}$. So $\operatorname{cl}(\operatorname{AG}(R)) \geqslant 4$. If R is isomorphic to one of the following rings:

$$
\begin{gathered}
\mathbb{Z}_{16}, \quad \mathbb{Z}_{2}[x] /\left(x^{4}\right), \quad \mathbb{Z}_{4}[x] /\left(2 x, x^{3}-2\right), \quad \mathbb{Z}_{4}[x] /\left(x^{2}-2\right), \\
\mathbb{Z}_{4}[x] /\left(x^{2}+2 x+2\right), \\
\mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}-x y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \\
\mathbb{Z}_{8}[x] /\left(2 x-4, x^{2}\right), \\
\mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \\
\mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}, 2 x, 2 y\right)
\end{gathered} \text { or } \quad \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, x^{2}-x y, 2 x, 2 y\right), \text {, }
$$

then its annihilator graph is isomorphic to K^{7}. Thus, for clicque subgraph is $\operatorname{cl}(\operatorname{AG}(R))=7$. If $R \cong \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right), \mathbb{Z}_{2}[x, y] /(x, y)^{2}$ or $\mathbb{Z}_{4}[x] /(2, x)^{2}$, then its annihilator graph is isomorphic to K^{3}. Hence $\operatorname{cl}(\operatorname{AG}(R))=3$. If $R \cong \mathbb{Z}_{27}$, $\mathbb{Z}_{3}[x] /\left(x^{3}\right), \mathbb{Z}_{9}[x] /\left(3 x, x^{2}-3\right)$ or $\mathbb{Z}_{9}[x] /\left(3 x, x^{2}-6\right)$, then its annihilator graph is isomorphic to K^{8}. Therefore $\operatorname{cl}(\operatorname{AG}(R))=8$. Now by the above discussion the result holds.

4. Extension Rings

In this section, we compare some properties of the annihilator graph $\mathrm{AG}(R)$ with the graphs $\mathrm{AG}(R[x])$ and $\mathrm{AG}\left(S^{-1} R\right)$. Note that McCoy's theorem states that $f(x) \in R[x]$ is a zero-divisor if and only if there is a nonzero element $r \in R$ such that $r f(x)=0$. Also it is proved that a polynomial $f(x)$ over a commutative ring R is nilpotent if and only if each coefficient of $f(x)$ is nilpotent (cf. [11]).

Proposition 4.1. Let R be a finite commutative ring with $\left|Z(R)^{*}\right|>1$ and $R \not \not \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then the annihilator graph $\mathrm{AG}(R)$ is a complete graph if and only if R is a local ring.

Proof. First assume that the annihilator graph $\mathrm{AG}(R)$ is a complete graph. We shall show that R is a local ring. If R is a finite commutative ring and $Z(R)$ is an ideal of R, then R is a local ring with $Z(R)=\operatorname{Nil}(R)$ its unique maximal ideal. So it is enough to show that $Z(R)$ is an ideal of R. Let $\left|Z(R)^{*}\right|=2$. So $Z(R)=\{0, x, y\}$ where $x \neq y$. If $x y \neq 0$, then $x^{2}=y^{2}=0$. Hence $Z(R)=\operatorname{Nil}(R)$. Therefore $Z(R)$ is an ideal of R. Now, suppose that $x y=0$. Then the zero-divisor graph $\Gamma(R)$ is a complete graph. Moreover, in [8], Theorem 2.10, it was shown that for any finite commutative ring R, if $\Gamma(R)$ is complete, then either $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or R is a local
ring with characteristic p or p^{2} and $|\Gamma(R)|=p^{s}-1$, where p is a prime and $s \geqslant 1$. Thus the result follows. Now assume that $\left|Z(R)^{*}\right| \geqslant 3$. Let x, y be distinct elements in $Z(R)^{*}$. It is enough to show that $x+y \in Z(R)$. Since $\Gamma(R)$ is connected, there is a nonzero element $r \in R$ such that $r x=0$ (or $r y=0$). Now, because $\operatorname{AG}(R)$ is a complete graph, $r-y$ is an edge of $A G(R)$. So $\operatorname{ann}_{R}(r y) \neq \operatorname{ann}_{R}(r) \cup \operatorname{ann}_{R}(y)$. Thus there exists $r^{\prime} \in R$ such that $r^{\prime} r y=0$ and $r^{\prime} r \neq 0$ and $r^{\prime} y \neq 0$. Hence $r^{\prime} r(x+y)=0$. Therefore $x+y \in Z(R)$.

Conversely, since for a finite local ring we have $Z(R)=\operatorname{Nil}(R)$, the result follows from [12], Theorem 3.10.

Theorem 4.2. Let R be a finite commutative ring with $\left|Z(R)^{*}\right|>1$ and $R \not \approx$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. If $\mathrm{AG}(R)$ is complete, then $\mathrm{AG}(R[x])$ is also complete.

Proof. It is enough to show that every zero-divisor element in $R[x]$ is nilpotent. Then, by [12], Theorem 3.10, $\mathrm{AG}(R[x])$ is complete. Since $\mathrm{AG}(R)$ is complete, by Proposition 4.1, R is a local ring. So $Z(R)=\operatorname{Nil}(R)$. Now, let $f(x) \in Z(R[x])$, where $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$. Thus $a_{0}, \ldots, a_{n} \in \operatorname{Nil}(R)$, which implies that $f(x)$ is nilpotent.

Recall that the diameter of a graph G, denoted by $\operatorname{diam}(G)$, is equal to $\sup \{\mathrm{d}(a, b)$: $a, b \in V(G)\}$, where $\mathrm{d}(a, b)$ is the length of the shortest path connecting a and b.

Corollary 4.3. Let R be a finite commutative ring with $\left|Z(R)^{*}\right|>1$ and $R \not \approx$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then $\operatorname{diam}(\operatorname{AG}(R))=\operatorname{diam}(\operatorname{AG}(R[x]))$.

Proof. By [12], Theorem 2.2, we have $\operatorname{diam}(\operatorname{AG}(R))=1$ or 2. Assume that $\operatorname{diam}(\mathrm{AG}(R))=1$. So $\mathrm{AG}(R)$ is a complete graph. Therefore, by Theorem 4.2, the annihilator graph $\operatorname{AG}(R[x])$ is also a complete graph. Hence $\operatorname{diam}(\operatorname{AG}(R[x]))=1$. Now if $\operatorname{diam}(\operatorname{AG}(R))=2$, then there are distinct elements $a, b \in Z(R)^{*}$, such that $a-b$ is not an edge of $\operatorname{AG}(R)$. We show that $a-b$ is not an edge of $\operatorname{AG}(R[x])$ either. Since $a-b$ is not an edge of $\operatorname{AG}(R), \operatorname{ann}_{R}(a b)=\operatorname{ann}_{R}(a) \cup \operatorname{ann}_{R}(b)$. So, $\operatorname{ann}_{R}(a) \subseteq \operatorname{ann}_{R}(b)$ or $\operatorname{ann}_{R}(b) \subseteq \operatorname{ann}_{R}(a)$. Now (without loss of generality), we set $\operatorname{ann}_{R}(a) \subseteq \operatorname{ann}_{R}(b)$. So $\operatorname{ann}_{R}(a b)=\operatorname{ann}_{R}(b)$. Suppose that $f(x) \in \operatorname{ann}_{R[x]}(a b)$ where $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$. Hence $a b a_{0}=a b a_{1}=\ldots=a b a_{n}=0$. Since $\operatorname{ann}_{R}(a b)=\operatorname{ann}_{R}(b), b a_{0}=b a_{1}=\ldots=b a_{n}=0$. Thus $f(x) \in \operatorname{ann}_{R[x]}(b)$. Hence $\operatorname{ann}_{R[x]}(a b) \subseteq \operatorname{ann}_{R[x]}(b)$. Therefore $\operatorname{ann}_{R[x]}(a b)=\operatorname{ann}_{R[x]}(a) \cup \operatorname{ann}_{R[x]}(b)$, so $a-b$ is not an edge of $\operatorname{AG}(R[x])$, and since $\operatorname{diam}(\operatorname{AG}(R[x])) \leqslant 2$, we conclude that $\operatorname{diam}(\mathrm{AG}(R[x]))=2$.

Theorem 4.4. Let R be a commutative ring. If R is not an integral domain, then the annihilator graph $\mathrm{AG}(R[x])$ is not planar.

Proof. First suppose that R is not a reduced ring. So there exists a nonzero nilpotent element $a \in R$. Let n be the least positive integer such that $a^{n}=0$. Then one can find a copy of K^{5} with vertex set $\left\{a, a x, a x^{2}, a x^{3}, a x^{4}\right\}$ in $\mathrm{AG}(R[x])$, and so $\mathrm{AG}(R[x])$ is not planar. Now assume that R is a reduced ring. Hence there exist $a, b \in R$ such that $a \neq b$ and $a b=0$. Then, by Figure 7, the graph $\operatorname{AG}(R[x])$ has a copy of $K^{3,3}$, and so $\mathrm{AG}(R[x])$ is not planar.

Figure 7.
The following corollary immediately follows from Theorem 4.4.

Corollary 4.5. Let R be a commutative ring. If R is not an integral domain, then $\operatorname{gr}(\operatorname{AG}(R[x])) \in\{3,4\}$.

In the rest of the section, we study the annihilator graph of the ring of fractions $S^{-1} R$, where S is a multiplicatively closed subset of R. It is obvious that if $r \in Z(R)$, then $r / s \in Z\left(S^{-1} R\right)$ for every $s \in S$. Now, let $r / s \in Z\left(S^{-1} R\right)$. Thus there is a nonzero element $r^{\prime} / s^{\prime} \in S^{-1} R$ such that $(r / s) \cdot\left(r^{\prime} / s^{\prime}\right)=0 / 1$. So there exists $u \in S$ such that $u r r^{\prime}=0$. Clearly $u r^{\prime} \neq 0$, because otherwise $r^{\prime} / s^{\prime}=0 / 1$. Thus $r \in Z(R)$.

Proposition 4.6. Let R be a commutative ring. If r and r^{\prime} are arbitrary elements of R such that $\operatorname{ann}_{R}(r) \subseteq \operatorname{ann}_{R}\left(r^{\prime}\right)$, then $\operatorname{ann}_{S^{-1} R}(r / s) \subseteq \operatorname{ann}_{S^{-1} R}\left(r^{\prime} / s^{\prime}\right)$ for every $s, s^{\prime} \in S$.

Proof. Assume that $\operatorname{ann}_{R}(r) \subseteq \operatorname{ann}_{R}\left(r^{\prime}\right)$, and suppose on the contrary that $\operatorname{ann}_{S^{-1} R}(r / s) \nsubseteq \operatorname{ann}_{S^{-1} R}\left(r^{\prime} / s^{\prime}\right)$. Then there is $r^{\prime \prime} / s^{\prime \prime} \in S^{-1} R$ such that $(r / s) \times$ $\left(r^{\prime \prime} / s^{\prime \prime}\right)=0 / 1$ and $\left(r^{\prime} / s^{\prime}\right)\left(r^{\prime \prime} / s^{\prime \prime}\right) \neq 0 / 1$. So there exists $u \in S$ such that $u r r^{\prime \prime}=0$, and, for every $v \in S$, vr'r$r^{\prime \prime} \neq 0$. So $u r^{\prime \prime} \in \operatorname{ann}_{R}(r)$. Thus $u r^{\prime \prime} \in \operatorname{ann}_{R}\left(r^{\prime}\right)$. So we have $u r^{\prime} r^{\prime \prime}=0$, which is the required contradiction.

Lemma 4.7. Let R be a commutative ring. If a_{1} / s_{1} is adjacent to a_{2} / s_{2} in $\mathrm{AG}\left(S^{-1} R\right)$, then either a_{1} is adjacent to a_{2} or $a_{1} s_{2}$ is adjacent to $a_{2} s_{1}$ in $\mathrm{AG}(R)$ for every $s_{1}, s_{2} \in S$.

Proof. First assume that $a_{1} \neq a_{2}$. Since $a_{1} / s_{1}-a_{2} / s_{2}$ is an edge in $\operatorname{AG}\left(S^{-1} R\right)$, there is b / s in $\operatorname{AG}\left(S^{-1} R\right)$ such that $(b / s)\left(a_{1} a_{2} / s_{1} s_{2}\right)=0,(b / s)\left(a_{1} / s_{1}\right) \neq 0$ and $(b / s)\left(a_{2} / s_{2}\right) \neq 0$. Hence there exists $v \in S$ such that $v b a_{1} a_{2}=0, v b a_{1} \neq 0$ and
$v b a_{2} \neq 0$, and so a_{1} is adjacent to a_{2} in $\operatorname{AG}(R)$. Now assume that $a_{1}=a_{2}$. Since $a_{1} / s_{1} \neq a_{2} / s_{2}$, we have $a_{1} s_{2} \neq a_{2} s_{1}$. Also $a_{1} s_{2} / s_{1} s_{2}$ is adjacent to $a_{2} s_{1} / s_{1} s_{2}$ in $\mathrm{AG}\left(S^{-1} R\right)$, and so $a_{1} s_{2}$ is adjacent to $a_{2} s_{1}$ in $\mathrm{AG}(R)$.

By Lemma 4.7, one can see that if $\mathrm{AG}\left(S^{-1} R\right)$ is a complete graph, then $\operatorname{AG}(R)$ is complete.

Lemma 4.8. Let R be a commutative ring. If $\operatorname{ann}_{R}\left(x_{1}\right)=\operatorname{ann}_{R}\left(x_{2}\right)$, then x_{1} and x_{2} have the same neighbours in $\mathrm{AG}(R)$.

Proof. Suppose that x is adjacent to x_{1} in $\operatorname{AG}(R)$. So we have $\operatorname{ann}_{R}\left(x x_{1}\right) \neq$ $\operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}\left(x_{1}\right)$. Hence there is x^{\prime} such that $x^{\prime} x x_{1}=0, x^{\prime} x_{1} \neq 0$ and $x^{\prime} x \neq 0$. Now, since $\operatorname{ann}_{R}\left(x_{1}\right)=\operatorname{ann}_{R}\left(x_{2}\right)$, we have $x^{\prime} x x_{2}=0$ and $x^{\prime} x_{2} \neq 0$. Therefore $\operatorname{ann}_{R}\left(x x_{2}\right) \neq \operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}\left(x_{2}\right)$, and so x is adjacent to x_{2} in AG(R). Also, if x is adjacent to x_{2} in $\operatorname{AG}(R)$, then similarly x is adjacent to x_{1} in $\operatorname{AG}(R)$. So x_{1} and x_{2} have the same neighbours in $\operatorname{AG}(R)$.

Lemma 4.9. Let R be a commutative ring. Suppose that s is an arbitrary element in S. If $r \in Z(R)$, then of r / s and $r / 1$ have the same neighbours in $\mathrm{AG}\left(S^{-1} R\right)$.

Proof. By Lemma 4.8, it is enough to show that $\operatorname{ann}_{S^{-1} R}(r / s)=\operatorname{ann}_{S^{-1} R}(r / 1)$. So if $a / t \in \operatorname{ann}_{S^{-1} R}(r / s)$, then we have $(a / t)(r / s)=0 / 1$. Hence there exists $u \in S$ such that uar $=0$. Also $(a / t)(r / 1)=a r / t=a r u /(t u)=0 / 1$, and so $a / t \in \operatorname{ann}_{S^{-1} R}(r / 1)$. Now, if $a / t \in \operatorname{ann}_{S^{-1} R}(r / 1)$, then there exists $u \in S$ such that uar $=0$. Also $(a / t)(r / s)=a r /(t s)=a r u /(t s u)=0 / 1$. Therefore $a / t \in \operatorname{ann}_{S^{-1} R}(r / s)$.

Let $T(R)=S^{-1} R$ be the total quotient ring of R, where $S=R-Z(R)$. In [7], Theorem 2.2, Anderson and Shapiro showed that the graphs $\Gamma(R)$ and $\Gamma(T(R))$ are isomorphic. For $x, y \in R$, they defined a relation \sim as follows: $x \sim y$ if $\operatorname{ann}_{R}(x)=$ $\operatorname{ann}_{R}(y)$. Clearly \sim is an equivalence relation on R. Let $T=T(R)$. Denote the equivalence relations on $Z(R)^{*}$ and $Z(T)^{*}$ by \sim_{R} and \sim_{T}, respectively, and denote their equivalence classes by $[a]_{R}$ and $[a]_{T}$, respectively. They proved that there is a bijection between equivalence classes of $\Gamma(T(R))$ and $\Gamma(R)$, and they defined a bijection $\varphi: Z(R)^{*} \rightarrow Z(T)^{*}$ by $\varphi(x)=\varphi_{\alpha}(x)$, where $\varphi_{\alpha}:\left[a_{\alpha}\right] \rightarrow\left[a_{\alpha} / 1\right]$ is a bijection and $x \in\left[a_{\alpha}\right]$. In the next theorem, using the above notation, we show that $\mathrm{AG}(R)$ is isomorphic to $\mathrm{AG}(T(R))$.

Theorem 4.10. Let R be a commutative ring. Then the graphs $\operatorname{AG}(R)$ and $\mathrm{AG}(T(R))$ are isomorphic.

Proof. By the proof of [7], Theorem 2.2, we have the bijection $\varphi: Z(R)^{*} \rightarrow$ $Z(T)^{*}$ defined by $\varphi(x)=\varphi_{\alpha}(x)$, where $\varphi_{\alpha}:\left[a_{\alpha}\right] \rightarrow\left[a_{\alpha} / 1\right]$ is a bijection and $x \in\left[a_{\alpha}\right]$. Thus we only need to show that x and y are adjacent in $\mathrm{AG}(R)$ if and only if $\varphi(x)$ and $\varphi(y)$ are adjacent in $\mathrm{AG}(T(R))$; i.e., $\operatorname{ann}_{R}(x y) \neq \operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}(y)$ if and only if $\operatorname{ann}_{T}(\varphi(x) \varphi(y)) \neq \operatorname{ann}_{T}(\varphi(x)) \cup \operatorname{ann}_{T}(\varphi(y))$. Let $x \in[a]_{R}, y \in[b]_{R}, l \in[c]_{R}$, $w \in[a / 1]_{T}, z \in[b / 1]_{T}$ and $t \in[c / 1]_{T}$. We need only to show that $x y l=0, x l \neq 0$ and $y l \neq 0$ if and only if $w z t=0, w t \neq 0$ and $z t \neq 0$. Note that $\operatorname{ann}_{T}(x)=\operatorname{ann}_{T}(a)=$ $\operatorname{ann}_{T}(w), \operatorname{ann}_{T}(y)=\operatorname{ann}_{T}(b)=\operatorname{ann}_{T}(z)$ and $\operatorname{ann}_{T}(l)=\operatorname{ann}_{T}(c)=\operatorname{ann}_{T}(t)$. Hence

$$
\begin{aligned}
x y l=0 & \Leftrightarrow x y \in \operatorname{ann}_{T}(l)=\operatorname{ann}_{T}(t) \Leftrightarrow x y t=0 \Leftrightarrow x t \in \operatorname{ann}_{T}(y)=\operatorname{ann}_{T}(z) \\
& \Leftrightarrow x t z=0 \Leftrightarrow t z \in \operatorname{ann}_{T}(x)=\operatorname{ann}_{T}(w) \Leftrightarrow w z t=0 .
\end{aligned}
$$

Since φ is an isomorphism between the graphs $\Gamma(R)$ and $\Gamma(T(R))$, we have $x l \neq 0$ and $y l \neq 0$ if and only if $w t \neq 0$ and $z t \neq 0$.

Theorem 4.11. Let R be a finite commutative ring. If \mathfrak{p} is a prime ideal of R, then the annihilator graph $\mathrm{AG}\left(S^{-1} R\right)$ is complete, where $S=R-\mathfrak{p}$.

Proof. Since $R_{\mathfrak{p}}$ is a finite local ring, $Z\left(R_{\mathfrak{p}}\right)=\operatorname{Nil}\left(R_{\mathfrak{p}}\right)$. So, by [12], Theorem 3.10, $\mathrm{AG}\left(R_{\mathfrak{p}}\right)$ is complete.

5. Annihilator graphs of \mathbb{Z}_{n}

In this section, we examine the existence of cut-vertices and cut-sets in $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$. We determine the reduced rings whose annihilator graphs are bipartite graphs. Also we show that $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$ is bipartite for a certain n.

Theorem 5.1. Let $n \geqslant 6$. Then $r \in \mathbb{Z}_{n}$ is a cut-vertex of $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$ if and only if $2 r=n$ and r is a prime integer.

Proof. First assume that r is a cut-vertex of $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$. Since the zero-divisor graph is the (spanning) subgraph of the annihilator graph $\mathrm{AG}(R)$, every cut-vertex in $\operatorname{AG}(R)$ is a cut-vertex in $\Gamma(R)$. Therefore, by [17], Lemma 2.2, $n=2 r$. Now, we prove that r is a prime integer. Since r is a cut-vertex of the annihilator graph $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$, there exist vertices α and β such that $\alpha-r-\beta$ is the only path that connects α to β. Now, since α is not adjacent to β in $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$, hence by [12], Lemma 2.1, $\operatorname{ann}_{R}(\alpha) \subseteq \operatorname{ann}_{R}(\beta)$ or $\operatorname{ann}_{R}(\beta) \subseteq \operatorname{ann}_{R}(\alpha)$. Without loss of generality, we may assume $\operatorname{ann}_{R}(\alpha) \subseteq \operatorname{ann}_{R}(\beta)$. Let t be a nonzero element in $\mathbb{Z}_{n} \backslash\{r\}$. If $t \alpha=0$, then $t \beta=0$. So we have the path $\alpha-t-\beta$, which is impossible. Now, since $\alpha \in Z\left(\mathbb{Z}_{n}\right)$, we have $\alpha r=0$. Therefore $\operatorname{ann}_{R}(\alpha)=\{0, r\}$. If r is not prime, then there are positive
integers $q, q^{\prime} \neq 1$ such that $q q^{\prime}=r$. Hence we have $\operatorname{ann}_{R}(\alpha q) \neq \operatorname{ann}_{R}(\alpha) \cup \operatorname{ann}_{R}(q)$ and $\operatorname{ann}_{R}\left(\alpha q^{\prime}\right) \neq \operatorname{ann}_{R}(\alpha) \cup \operatorname{ann}_{R}\left(q^{\prime}\right)$, which implies that α is adjacent to q and q^{\prime} in $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$. If $q \beta=0$ or $q^{\prime} \beta=0$, then we have the path $\alpha-q-\beta$ or $\alpha-q^{\prime}-\beta$, which is impossible. So $q \beta \neq 0$ and $q^{\prime} \beta \neq 0$. In this situation one can easily check that $\operatorname{ann}_{R}(\beta q) \neq \operatorname{ann}_{R}(\beta) \cup \operatorname{ann}_{R}(q)$ and $\operatorname{ann}_{R}\left(\beta q^{\prime}\right) \neq \operatorname{ann}_{R}(\beta) \cup \operatorname{ann}_{R}\left(q^{\prime}\right)$, and therefore we have the paths $\alpha-q-\beta$ and $\alpha-q^{\prime}-\beta$, which is again impossible. Thus r is prime.

Conversely, by [12], Theorem 3.8, $\mathrm{AG}\left(\mathbb{Z}_{n}\right) \cong K^{1, m}$ for some $m \geqslant 1$. Thus it contains a cut-vertex.

Theorem 5.2. If $\left|\operatorname{Min}\left(\mathbb{Z}_{n}\right)\right|=2$ and every minimal prime ideal has at least 3 elements, then the nonzero elements in a minimal prime ideal of \mathbb{Z}_{n} with minimal cardinality form a cut-set of $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$.

Proof. Since $\left|\operatorname{Min}\left(\mathbb{Z}_{n}\right)\right|=2$ and every minimal prime ideal has at least 3 elements, we have $n=p q$, where p and q are distinct prime integers with $p, q \neq 2$. So let $A=\left\{x \in \mathbb{Z}_{n}: p \mid x, q \nmid x\right\}$ and $B=\left\{x \in \mathbb{Z}_{n}: q \mid x, p \nmid x\right\}$. One can easily see that $A \cup\{0\}$ and $B \cup\{0\}$ are minimal prime ideals of \mathbb{Z}_{n} and $\mathrm{AG}\left(\mathbb{Z}_{n}\right) \cong K^{m, n}$, where $|A|=m$ and $|B|=n$ and A, B are two parts in $A G\left(\mathbb{Z}_{n}\right)$.

In the next theorem, we determine some conditions under which $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$ is weakly perfect.

Theorem 5.3. Suppose that \mathbb{Z}_{n} is a finite reduced ring. If $\left|\operatorname{Min}\left(\mathbb{Z}_{n}\right)\right| \leqslant 3$, then $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$ is weakly perfect.

Proof. Since $\left|\operatorname{Min}\left(\mathbb{Z}_{n}\right)\right| \leqslant 3$ and \mathbb{Z}_{n} is a reduced ring, we have $n=p, p q$ or $p q r$ where p, q and r are distinct prime integers. If $n=p$, then $Z\left(\mathbb{Z}_{n}\right)=\{0\}$. If $n=p q$, then $\mathbb{Z}_{n}=\mathbb{Z}_{p q} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \cong K_{1} \times K_{2}$, where K_{1} and K_{2} are finite fields with p and q elements, respectively. So $\operatorname{AG}\left(K_{1} \times K_{2}\right) \cong K^{p-1, q-1}$. Hence $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{p q}\right)\right)=$ $\chi\left(\mathrm{AG}\left(\mathbb{Z}_{p q}\right)\right)=2$. If $n=p q r$, then $\mathbb{Z}_{n}=\mathbb{Z}_{p q r} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{r} \cong K_{1} \times K_{2} \times K_{3}$, where K_{1}, K_{2} and K_{3} are finite fields with p, q and r elements, respectively. Therefore, by Lemma 3.1, $\operatorname{cl}\left(\operatorname{AG}\left(\mathbb{Z}_{p q r}\right)\right)=\chi\left(\operatorname{AG}\left(\mathbb{Z}_{p q r}\right)\right)=3$.

Theorem 5.4. Let R be a commutative reduced ring. Then $\mathrm{AG}(R)$ is bipartite if and only if there exist two distinct prime ideals \mathfrak{p}_{1} and \mathfrak{p}_{2} of R such that $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=\{0\}$. In addition, if $\mathrm{AG}(R)$ is bipartite, then it is a complete bipartite graph.

Proof. Suppose that \mathfrak{p}_{1} and \mathfrak{p}_{2} are distinct prime ideals of R such that $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=\{0\}$. Then, in view of the proof of [3], Theorem 2.4, we have $Z(R)=\mathfrak{p}_{1} \cup \mathfrak{p}_{2}$. Set $V_{1}=\mathfrak{p}_{1} \backslash\{0\}$ and $V_{2}=\mathfrak{p}_{2} \backslash\{0\}$. Now, we show that $\operatorname{AG}(R)$ is bipartite
with two parts V_{1} and V_{2}. If $a, b \in V_{1}$ and a is adjacent to b, then $\operatorname{ann}_{R}(a b) \neq$ $\operatorname{ann}_{R}(a) \cup \operatorname{ann}_{R}(b)$. Hence there exists a nonzero element $c \in R$ such that $a b c=0$, $a c \neq 0$ and $b c \neq 0$. Since $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=\{0\}$ and $a, b \in V_{1}$, we have $c \in \mathfrak{p}_{2}$. So $a c \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$, which is a contradiction. Also, for every $a \in V_{1}$ and $b \in V_{2}$, we have $a b=0$ since $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=\{0\}$. Therefore $\mathrm{AG}(R)$ is a complete bipartite graph.

Conversely, suppose that $\mathrm{AG}(R)$ is bipartite. Since, by [12], Lemma 2.1, $\Gamma(R)$ is a (spanning) subgraph of $\mathrm{AG}(R)$, we have that $\Gamma(R)$ is bipartite. Hence, by [3], Theorem 2.4, there exist two distinct prime ideals \mathfrak{p}_{1} and \mathfrak{p}_{2} of R such that $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=\{0\}$.

Theorem 5.5. The graph $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$ is bipartite if and only if one of the following holds.
(i) $n=4$ or 9 .
(ii) $n=p_{1} p_{2}$, where p_{1} and p_{2} are distinct prime integers.
(iii) $n=4 p$, where p is a prime integer and $p \neq 2$.

Proof. First assume that the graph $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$ is bipartite. If there exist at least three distinct prime integers in divisors of n, say p_{1}, p_{2} and p_{3}, then p_{1} is adjacent to p_{2} and p_{3} and p_{2} is adjacent to p_{3}. So, we have the cycle $p_{1}-p_{2}-p_{3}-p_{1}$ of length three. Therefore $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$ is not bipartite. Hence there exist at most two distinct prime integers in divisors of n. Now let $n=p_{1}^{r} p_{2}^{s}$ for some distinct prime integers p_{1}, p_{2} and nonzero positive integers r and s. Set $A_{p_{1} p_{2}}=\left\{r \in \mathbb{N}: r\left|n, p_{1}\right| r, p_{2} \mid r\right\}$. Since $A_{p_{1} p_{2}}$ is a complete subgraph of $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$ and $\left|A_{p_{1} p_{2}}\right|=p_{1}^{r-1} p_{2}^{s-1}$, we have $r, s \leqslant 2$. If $r=s=2$, then $n=p_{1}^{2} p_{2}^{2}$, and so p_{1} is adjacent to p_{2}^{2} and $p_{1} p_{2}$, and p_{2}^{2} is adjacent to $p_{1} p_{2}$. Thus $\mathrm{AG}\left(\mathbb{Z}_{n}\right)$ is not bipartite. If $r=2$ and $s=1$, then $n=p_{1}^{2} p_{2}$. Since $A_{p_{1} p_{2}}$ is a complete subgraph of $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$ and $\left|A_{p_{1} p_{2}}\right|=p_{1}$, we have $p_{1}=2$. So $n=4 p_{2}$, where $p_{2} \neq 2$. Also if $r=1$ and $s=2$, then similarly $n=4 p_{1}$, where $p_{1} \neq 2$. If $r=1$ and $s=1$, then $n=p_{1} p_{2}$. If $n=p_{1}^{r}$, then $\left|Z\left(\mathbb{Z}_{n}\right)\right|=p_{1}^{r-1}$. Also, $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$ is a complete graph with $p_{1}^{r-1}-1$ vertices. So $\operatorname{AG}\left(\mathbb{Z}_{n}\right)$ is bipartite if and only if $p_{1}^{r-1}-1 \leqslant 2$. Hence $p_{1}^{r-1}=3$ or $p_{1}^{r-1}=2$. If $p_{1}^{r-1}=3$, then $p_{1}=3$ and $r=2$. Thus $n=9$. If $p_{1}^{r-1}=2$, then $p_{1}=2$ and $r=2$. Thus $n=4$.

Conversely, one can easily check that $\mathrm{AG}\left(\mathbb{Z}_{4}\right) \cong K^{1}, \mathrm{AG}\left(\mathbb{Z}_{9}\right) \cong K^{2}, \mathrm{AG}\left(\mathbb{Z}_{p_{1} p_{2}}\right) \cong$ $K^{p_{1}-1, p_{2}-1}$, where p_{1} and p_{2} are distinct prime integers and $\mathrm{AG}\left(\mathbb{Z}_{4 p}\right) \cong K^{3,2 p-2}$, where p is prime a integer and $p \neq 2$.

Lemma 5.6. The graph $\mathrm{AG}\left(\mathbb{Z}_{p^{n}}\right)$ is weakly perfect, where p is a prime integer. In addition, $\mathrm{AG}\left(\mathbb{Z}_{p^{n}}\right)$ has chromatic number $p^{n-1}-1$.

Proof. Clearly $Z\left(\mathbb{Z}_{p^{n}}\right)$ is an ideal of $\mathbb{Z}_{p^{n}}$. Then $Z\left(\mathbb{Z}_{p^{n}}\right)=\operatorname{Nil}\left(\mathbb{Z}_{p^{n}}\right)$. So by [12], Theorem 3.10, $\mathrm{AG}\left(\mathbb{Z}_{p^{n}}\right)$ is a complete graph with $p^{n-1}-1$ vertices. Hence $\mathrm{AG}\left(\mathbb{Z}_{p^{n}}\right)$ is weakly perfect and has chromatic number $p^{n-1}-1$.

Lemma 5.7. The graphs $\mathrm{AG}\left(\mathbb{Z}_{p_{1} p_{2}}\right)$ and $\mathrm{AG}\left(\mathbb{Z}_{p_{1} p_{2} p_{3}}\right)$ for some distinct prime integers p_{1}, p_{2}, p_{3} are weakly perfect. In addition,

$$
\chi\left(\mathrm{AG}\left(\mathbb{Z}_{p_{1} p_{2}}\right)\right)=2 \quad \text { and } \quad \chi\left(\mathrm{AG}\left(\mathbb{Z}_{p_{1} p_{2} p_{3}}\right)\right)=3
$$

Proof. Let $R \cong \mathbb{Z}_{p_{1} p_{2}}$. Then one can easily check that $\operatorname{AG}(R)$ is bipartite. So $\mathrm{AG}(R)$ is weakly perfect and $\chi(\mathrm{AG}(R))=2$. Let $R \cong \mathbb{Z}_{p_{1} p_{2} p_{3}}$. Then $R \cong$ $K_{1} \times K_{2} \times K_{3}$, where K_{1}, K_{2} and K_{3} are fields with $\left|K_{1}\right|=p_{1},\left|K_{2}\right|=p_{2}$ and $\left|K_{3}\right|=p_{3}$. Hence, by Lemma 3.1, $\operatorname{AG}(R)$ is weakly perfect and $\chi(\operatorname{AG}(R))=3$.

Acknowledgment. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

[1] M. Afkhami: When the comaximal and zero-divisor graphs are ring graphs and outerplanar. Rocky Mt. J. Math. 44 (2014), 1745-1761.
zbl MR doi
[2] M. Afkhami, Z. Barati, K. Khashyarmanesh: When the unit, unitary and total graphs are ring graphs and outerplanar. Rocky Mt. J. Math. 44 (2014), 705-716.
zbl MR doi
[3] S. Akbari, H. R. Maimani, S. Yassemi: When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270 (2003), 169-180.
zbl MR doi
[4] D. F. Anderson, M. C. Axtell, J. A. Stickles, Jr.: Zero-divisor graphs in commutative rings. Commutative Algebra. Noetherian and Non-Noetherian Perspectives (M. Fontana et al., eds.). Springer, New York, 2011, pp. 23-45.
zbl MR doi
[5] D. F. Anderson, A. Badawi: On the zero-divisor graph of a ring. Commun. Algebra 36 (2008), 3073-3092.
zbl MR doi
[6] D.F. Anderson, A. Badawi: The total graph of a commutative ring. J. Algebra 320 (2008), 2706-2719.
zbl MR doi
[7] D.F. Anderson, R. Levy, J. Shapiro: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180 (2003), 221-241.
zbl MR doi
[8] D.F. Anderson, P.S. Livingston: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434-447.
zbl MR doi
[9] D. D. Anderson, M. Naseer: Beck's coloring of a commutative ring. J. Algebra 159 (1993), 500-514.
zbl MR doi
[10] N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi: Unit graphs associated with rings. Commun. Algebra 38 (2010), 2851-2871.
zbl MR doi
[11] M. F. Atiyah, I. G. Macdonald: Introduction to Commutative Algebra. Series in Mathematics, Addison-Wesley Publishing Company, Reading, London, 1969.
[12] A. Badawi: On the annihilator graph of a commutative ring. Commun. Algebra 42 (2014), 108-121.
zbl MR doi
[13] A. Badawi: On the dot product graph of a commutative ring. Commun. Algebra 43 (2015), 43-50.
[14] Z. Barati, K. Khashyarmanesh, F. Mohammadi, K. Nafar: On the associated graphs to a commutative ring. J. Algebra Appl. 11 (2012), 1250037, 17 pages.
[15] I. Beck: Coloring of commutative rings. J. Algebra 116 (1988), 208-226.
zbl MR doi
[16] R. Belshoff, J. Chapman: Planar zero-divisor graphs. J. Algebra 316 (2007), 471-480.
zbl MR doi
[17] B. Coté, C. Ewing, M. Huhn, C. M. Plaut, D. Weber: Cut-sets in zero-divisor graphs of finite commutative rings. Commun. Algebra 39 (2011), 2849-2861.
zbl MR doi
zbl MR doi
[18] I. Gitler, E. Reyes, R. H. Villarreal: Ring graphs and complete intersection toric ideals. Discrete Math. 310 (2010), 430-441.
[19] A. Kelarev: Graph Algebras and Automata. Pure and Applied Mathematics 257, Marcel Dekker, New York, 2003.
[20] A. Kelarev: Labelled Cayley graphs and minimal automata. Australas. J. Comb. 30 (2004), 95-101.
zbl MR
[21] A.Kelarev, J. Ryan, J. Yearwood: Cayley graphs as classifiers for data mining: The influence of asymmetries. Discrete Math. 309 (2009), 5360-5369.
zbl MR
[22] H. R. Maimani, M. Salimi, A. Sattari, S. Yassemi: Comaximal graph of commutative rings. J. Algebra 319 (2008), 1801-1808.
[23] D. B. West: Introduction to Graph Theory. Prentice Hall, Upper Saddle River, 1996.
zbl MR doi

Authors' addresses: Mojgan Afkhami, Department of Mathematics, University of Neyshabur, P. O. Box 91136-899, Neyshabur, Iran, e-mail: mojgan. afkhami@yahoo.com; Kazem Khashyarmanesh, Zohreh Rajabi, Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran, e-mail: Khashyar@ ipm.ir, rajabi261@yahoo.com.

