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Abstract. In this paper we study the regularity properties of the one-dimensional one-
sided Hardy-Littlewood maximal operators M+ and M

−. More precisely, we prove that
M
+ andM

− map W 1,p(R)→ W 1,p(R) with 1 < p < ∞, boundedly and continuously. In
addition, we show that the discrete versionsM+ andM− map BV(Z)→ BV(Z) boundedly
and map l1(Z)→ BV(Z) continuously. Specially, we obtain the sharp variation inequalities
of M+ and M−, that is,

Var(M+(f)) 6 Var(f) and Var(M−(f)) 6 Var(f)

if f ∈ BV(Z), where Var(f) is the total variation of f on Z and BV(Z) is the set of all
functions f : Z → R satisfying Var(f) < ∞.

Keywords: one-sided maximal operator; Sobolev space; bounded variation; continuity
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1. Introduction

Over the last years there has been considerable effort in understanding the behavior

of differentiability under a maximal operator. The first work in this direction is due

to Kinnunen [9] who showed that the centered Hardy-Littlewood maximal operator

defined by

M(f)(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy
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is bounded on the Sobolev spaces W 1,p(Rd) for all p > 1, where d > 1 and B(x, r)

is the ball in R
d centered at x with radius r and |B(x, r)| denotes the volume of

B(x, r). Recall that the Sobolev spaces W 1,p(Rd), 1 6 p 6 ∞, are defined by

W 1,p(Rd) := {f : R
d → R : ‖f‖1,p = ‖f‖Lp(Rd) + ‖∇(f)‖Lp(Rd) < ∞},

where ∇(f) is the weak gradient of f . Subsequently, Kinnunen and Lindqvist in [10]

gave a local version of the original boundedness on W 1,p(Ω), where Ω is an open set

in R
d. This paradigm that an Lp-bound implies a W 1,p-bound was later extended to

a fractional version in [11], to a bilinear version in [5] and to a multisublinear version

in [14]. Later on, the continuity of M : W 1,p → W 1,p for p > 1 was established

by Luiro in [15] and in [16] for its local version (continuity is not immediate from

boundedness because of the lack of linearity).

The regularity at the endpoint case p = 1 seems to be a deeper issue. In this regard,

one of the main questions was posed by Haj lasz and Onninen in [7], Question 1: is the

operator f 7→ |∇(M(f))| bounded from W 1,1(Rd) to L1(Rd)? In 2002, Tanaka [19]

first gave the affirmative answer to this question for the one-dimensional non-centered

Hardy-Littlewood maximal function defined by

M̃(f)(x) = sup
s,t>0

1

s+ t

∫ x+t

x−s

|f(y)| dy.

Precisely, Tanaka showed that if f ∈ W 1,1(R), then M̃(f) has a weak derivative in

L1(R) and

‖(M̃(f))′‖L1(R) 6 2‖f ′‖L1(R),

where f ′ is the distributional derivative of f . This result was later refined by Aldaz

and Pérez-Lázaro in [1] who obtained, under the assumption that f is of bounded

variation on R, M̃(f) is absolutely continuous and

Var(M̃(f)) 6 Var(f),

where Var(f) denotes the total variation of f . This implies that

(1.1) ‖(M̃(f))′‖L1(R) 6 ‖f ′‖L1(R),

provided f ∈ W 1,1(R). A simple proof of (1.1) was given by Liu et al. in [13] under

the condition that f ∈ W 1,1(R). More recently, in the remarkable work [12], Kurka

showed that if f is of bounded variation on R, then

Var(M(f)) 6 C Var(f)

for a certain C > 1.
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In this paper we focus on the action of one-sided Hardy-Littlewood maximal op-

erator acting on W 1,p(R) functions. For a locally integrable function f on R, the

one-sided Hardy-Littlewood maximal functions are defined as

M+(f)(x) = sup
s>0

1

s

∫ x+s

x

|f(y)| dy and M−(f)(x) = sup
t>0

1

t

∫ x

x−t

|f(y)| dy.

One can easily check that

M̃(f)(x) = max{M+(f)(x),M−(f)(x)},(1.2)

M+(f)(x) = RM−(Rf)(x)(1.3)

for x ∈ R, where R denotes the reflection operator, that is, Rf(x) = f(−x) for any

x ∈ R.

The study of the operator M+ started in the 1930s (see [8]). During the same years

the basic results about the ergodic maximal operator were obtained. The ergodic

maximal operator is defined by

Mτ (f)(x) = sup
h>0

1

h

∫ h

0

|f(τ tx)| dt

for all measurable functions f : X → R, where (X,F , µ) is a measure space and

{τ t : t ∈ R} is a flow of measure-preserving transformations on X . Note that M+ is

a particular case of the ergodic maximal operator when (X,µ) is R with the Lebesgue

measure and τ t(x) = x+ t. It follows from (1.2) that both M+ and M− are of weak

type (1, 1) and of type (p, p) for p > 1 (also see [17] for the weighted boundedness).

By transference arguments, the boundedness for the general operator Mτ can be

obtained by using the corresponding results for the particular case M+ (see [18] for

a recent exposition in the discrete case).

The investigation of the regularity of M+ and M− began with Tanaka, see [19],

who proved that if f ∈ W 1,1(R), then the distributional derivatives of M+(f) and

M−(f) are integrable functions, and

‖(M+(f))′‖L1(R) 6 ‖f ′‖L1(R), ‖(M−(f))′‖L1(R) 6 ‖f ′‖L1(R).

It is observed that M+(f) and M−(f) are also absolutely continuous on R, which

follows from a combination of arguments in [13] and [19]. Based on the above, it is

natural to ask

Question A. Are the one-sided Hardy-Littlewood maximal operators M+ and

M− bounded and continuous from W 1,p(R) to W 1,p(R) for p > 1?
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We will give some affirmative answers to the above question by the following

Theorem 1. Let 1 < p < ∞. Then bothM+ andM− map W 1,p(R) → W 1,p(R)

boundedly. Furthermore, if f ∈ W 1,p(R), then

|(M+(f))′(x)| 6 M+(f ′)(x), |(M−(f))′(x)| 6 M−(f ′)(x)

for almost every x ∈ R.

Theorem 2. Let 1 < p < ∞. Then bothM+ andM− map W 1,p(R) → W 1,p(R)

continuously.

Remark 1. We remark that the one-sided maximal operators M+ and M− map

W 1,∞(R) into W 1,∞(R) boundedly, which follows from arguments similar to those

in [9], Remark (iii).

On the other hand, the investigation of the regularity of maximal operators in

discrete setting has attracted the attention of many authors (see [2], [4], [20] et al.).

Recall that the total variation of f is the ℓ1(Z)-norm of the difference of f , i.e.

(1.4) Var(f) = ‖f ′‖ℓ1(Z) =
∑

n∈Z

|f(n+ 1)− f(n)|.

We denote by BV(Z) the set of all functions f : Z → R satisfying Var(f) < ∞. We

also write

Var(f ; [a, b]) =

b−1∑

n=a

|f(n+ 1)− f(n)|

for the variation of f on the interval [a, b] ⊂ Z. In 2012, Bober et al. in [2] initially

studied the regularity of the discrete version of M̃ defined by

M̃(f)(n) = sup
r,s∈N

1

r + s+ 1

s∑

k=−r

|f(n+ k)|,

and proved that if f ∈ BV(Z), then

Var(M̃(f)) 6 Var(f).

Here, N = {0, 1, 2, . . .}. Recently, Temur in [20] extended Bober et al’s result to

the centered version of M̃ denoted by M . For general dimension d > 1, Carneiro

and Hughes [4] established the endpoint regularity of the discrete Hardy-Littlewood

maximal operator.
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The second aim of this paper is to investigate the endpoint regularity of the discrete

one-sided Hardy-Littlewood maximal operators

M+(f)(n) = sup
N∈N

1

N + 1

N∑

i=0

|f(n+ i)| and M−(f)(n) = sup
N∈N

1

N + 1

N∑

i=0

|f(n− i)|

for n ∈ Z. The operator M+ arose first in Dunford and Schwartz’s work [6] and

was studied by Calderón in [3], who proved that M+ is of weak type (1, 1) and of

type (p, p) for 1 < p < ∞. From this and the fact that M−(f) = RM+(Rf), one

can conclude that M− is of weak type (1, 1) and of type (p, p) for 1 < p < ∞. In

light of the aforementioned facts concerning the endpoint regularity of the discrete

maximal functions, a natural question is the following

Question B. Are the operators M+ and M− bounded and continuous from

ℓ1(Z) to BV(Z)?

This question will be addressed by the next results.

Theorem 3. Both M+ and M− map BV(Z) → BV(Z) boundedly. Moreover, if

f ∈ BV(Z), then

Var(M+(f)) 6 Var(f) and Var(M−(f)) 6 Var(f).

Theorem 4. Both M+ and M− map ℓ1(Z) → BV(Z) continuously.

Remark 2. We remark that our method applies to other maximal operators as

well. In particular, employing the method in the proof of Theorem 4, one can obtain

that both M̃ and M map ℓ1(Z) → BV(Z) continuously.

The rest of paper is organized as follows. In Section 2 we present the proof of

Theorems 1 and 2. The proofs of Theorems 3 and 4 will be given in Section 3. We

would like to remark that the main ideas employed in this paper follow from [2], [4],

[9], [15], but some new methods and techniques are necessary. Especially, the proof

of [4], Theorem 2, is highly dependent on two discrete versions of Luiro’s lemma

(see Lemmas 3 and 4 in [4]), but similar lemmas are unnecessary in the proof of

Theorem 4. Moreover, our method is very simple.
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2. Proofs of Theorems 1 and 2

This section is devoted to the proofs of Theorems 1 and 2. Let us begin with the

proof of Theorem 1.

P r o o f of Theorem 1. We only prove Theorem 1 for the operator M+ since

the other case is analogous. One can easily check that M+ is a sub-linear operator

which commutes with translations and is bounded on Lp(R) for 1 < p < ∞. From

this and Theorem 1 in [7] we obtain that M+ maps W 1,p(R) → W 1,p(R) boundedly

with 1 < p < ∞. Let {sk}k>1 be an enumeration of positive rational numbers. We

can write

M+(f)(x) = sup
k>1

1

sk

∫ x+sk

x

|f(y)| dy.

Define the family of operators {Tk}k>1 by

Tk(f)(x) = max
16i6k

1

si

∫ x+si

x

|f(y)| dy.

Obviously, Tk(f) converges to M+(f) pointwise. On the other hand, one can easily

check that

(2.1) |(Tk(f))
′(x)| 6 M+(f ′)(x)

for almost every x ∈ R. Combining this with the boundedness of M+ implies that

{Tk(f)} is an increasing sequence of functions in W 1,p(R), and

‖Tk(f)‖1,p 6 ‖M+(f)‖Lp(R) + ‖M+(f ′)‖Lp(R) 6 Cp‖f‖1,p.

The weak compactness of Sobolev implies M+(f) ∈ W 1,p(R), Tk(f) converges to

M+(f) in Lp(R) and (Tk(f))
′ converges to (M+(f))′ weakly in Lp(R), which to-

gether with (2.1) leads to

|(M+(f))′(x)| 6 M+(f ′)(x)

for almost every x ∈ R. This proves Theorem 1. �

Before presenting the proof of Theorem 2, we shall give some notation and lemmas.

If A ⊂ R and r ∈ R, we define

d(r, A) := inf
a∈A

|r − a| and A(λ) := {x ∈ R : d(x,A) 6 λ} for λ > 0.
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Denote by ‖f‖p,A the Lp-norm of fχA for all measurable sets A ⊂ R. Fix f ∈ Lp(R)

with 1 6 p < ∞ and x ∈ R, define the sets A+(f)(x) and A−(f)(x) by

A+(f)(x) :=

{
r > 0: M+(f)(x) = lim sup

k→∞

1

rk

∫ x+rk

x

|f(y)| dy for rk > 0, rk → r

}

and

A−(f)(x) :=

{
r > 0: M−(f)(x) = lim sup

k→∞

1

tk

∫ x

x−tk

|f(y)| dy for tk > 0, tk → r

}
.

We also define ux,f : [0,∞) 7→ R by

ux,f(0) = |f(x)| and ux,f(r) =
1

r

∫ x+r

x

|f(y)| dy for r ∈ (0,∞).

We notice that the following facts are valid: (i) ux,f are continuous on (0,∞) for all

x ∈ R and at r = 0 for almost every x ∈ R; (ii) lim
r→∞

ux,f(r) = 0 since ux,f(r) 6

‖f‖Lp(R)r
−1/p; (iii) the set A(f)(x) is nonempty and closed for any x ∈ R; (iv) almost

every point is a Lebesgue point. Thus we have

M+(f)(x) = ux,f(r) if 0 < r ∈ A(f)(x), x ∈ R,

M+(f)(x) = |f(x)| for almost every x ∈ R such that 0 ∈ A(f)(x).

We refer now to [15] for the ideas of the proofs for the next lemmata.

Lemma 1 ([15], Lemma 2.2). Let 1 6 p < ∞. Suppose fj → f in Lp(R) when

j → ∞. Then for all R > 0 and λ > 0 we have

lim
j→∞

|{x ∈ (−R,R) : A+(fj)(x) 6⊆ A+(f)(λ)}| = 0,

lim
j→∞

|{x ∈ (−R,R) : A−(fj)(x) 6⊆ A−(f)(λ)}| = 0.

The Hausdorff distance between two sets A and B is defined as

π(A,B) := inf{δ > 0: A ⊂ B(δ) and B ⊂ A(δ)}.

By Lemma 1 and an argument similar to that in the proof of [15], Corollary 2.3, we

have

Lemma 2. Let 1 < p < ∞ and f ∈ Lp(R). Then for all λ > 0 and R > 0, we

have

lim
h→0

|{x ∈ (−R,R) : π(A+(f)(x), A+(f)(x+ h)) > λ}| = 0,

lim
h→0

|{x ∈ (−R,R) : π(A−(f)(x), A−(f)(x+ h)) > λ}| = 0.
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Below we present two formulas for the derivatives of the one-sided maximal oper-

ators M+ and M−, which will play key roles in the proof of Theorem 2.

Lemma 3. Let f ∈ W 1,p(R) with 1 < p < ∞. Then for almost all x ∈ R, we

have

(M+(f))′(x) =
1

r

∫ x+r

x

|f |′(y) dy, 0 < r ∈ A+(f)(x),

(M+(f))′(x) = |f |′(x) if 0 ∈ A+(f)(x);

(M−(f))′(x) =
1

r

∫ x

x−r

|f |′(y) dy, 0 < r ∈ A−(f)(x),

(M−(f))′(x) = |f |′(x) if 0 ∈ A−(f)(x).

P r o o f. We only prove Lemma 3 for the operator M+ since the other case is

analogous. Without loss of generality we may assume that f > 0, since |f | ∈ W 1,p(R)

if f ∈ W 1,p(R) with 1 < p < ∞. It follows from Theorem 1 that M+(f) ∈ W 1,p(R).

By Lemma 2 we can choose a sequence {sk}∞k=1, sk > 0 such that lim
k→∞

sk = 0 and

lim
k→∞

π(A+(f)(x),A+(f)(x + sk)) = 0 for almost every x ∈ (−R,R). Let

fsk(x) =
fτ(sk)(x)− f(x)

sk
with fτ(sk)(x) = f(x+ sk).

Then we have

‖fτ(sk) − f‖Lp(R) → 0 as k → ∞,

‖fsk − f ′‖Lp(R) → 0 as k → ∞,

‖M+(fsk − f ′)‖Lp(R) → 0 as k → ∞,

‖(M+(f))sk − (M+(f))′‖Lp(R) → 0 as k → ∞.

Furthermore, there exists a subsequence {hk}∞k=1 of {sk}∞k=1 and a measurable set

A1 ⊂ (−R,R) satisfying |(−R,R) \A1| = 0 such that

(i) fτ(hk)(x) → f(x), fhk
(x) → f ′(x), M+(fhk

− f ′)(x) → 0 and (M+(f))hk
(x) →

(M+(f))′(x) when k → ∞ for any x ∈ A1;

(ii) lim
k→∞

π(A+(f)(x),A+(f)(x+ hk)) = 0 for any x ∈ A1.

Let

A2 :=

∞⋂

k=1

{x ∈ R : M+(f)(x+ hk) = f(x+ hk) if 0 ∈ A+(f)(x+ hk)},

A3 :=

∞⋂

k=1

{x ∈ R : M+(f)(x+ hk) > f(x+ hk)},

A4 := {x ∈ R : M+(f)(x) = f(x) if 0 ∈ A+(f)(x)}.
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Note that |(−R,R) \Ai| = 0 for i = 2, 3, 4. Let x ∈ A1 ∩A2 ∩A3 ∩A4 be a Lebesgue

point of f ′. For any fixed r ∈ A+(f)(x), there exist radii rk ∈ A+(f)(x + hk) such

that lim
k→∞

rk = r. We consider the following two cases:

Case A: r > 0. We may assume that rk > 0 for all k.

(M+(f))′(x) = lim
k→∞

1

hk
(M+(f)(x + hk)−M+(f)(x))(2.2)

6 lim
k→∞

1

hk

(
1

rk

∫ x+hk+rk

x+hk

f(y) dy −
1

rk

∫ x+rk

x

f(y) dy

)

= lim
k→∞

1

rk

∫ x+rk

x

f(y + hk)− f(y)

hk
dy

=
1

r

∫ x+r

x

f ′(y) dy.

The last equation holds, because fhk
χ(x,x+rk) → f ′χ(x,x+r) in L1(R) as k → ∞. On

the other hand,

(M+(f))′(x) = lim
k→∞

1

hk
(M+(f)(x+ hk)−M+(f)(x))(2.3)

> lim
k→∞

1

hk

(
1

r

∫ x+hk+r

x+hk

f(y) dy −
1

r

∫ x+r

x

f(y) dy

)

= lim
k→∞

1

r

∫ x+r

x

f(y + hk)− f(y)

hk
dy

=
1

r

∫ x+r

x

f ′(y) dy.

Combining (2.2) with (2.3) yields

(M+(f))′(x) =
1

r

∫ x+r

x

f ′(y) dy whenever 0 < r ∈ A+(f)(x).

Case B : r = 0. First we estimate the lower bound of (M+(f))′(x). We can write

(M+(f))′(x) = lim
k→∞

1

hk
(M+(f)(x+ hk)−M+(f)(x))(2.4)

> lim
k→∞

1

hk
(f(x+ hk)− f(x)) = f ′(x).

Below we estimate the upper bound of (M+(f))′(x). If we have rk = 0 for infinitely

many k, we can obtain that

(M+(f))′(x) = lim
k→∞

1

hk
(M+(f)(x+ hk)−M+(f)(x))(2.5)

= lim
k→∞

1

hk
(f(x+ hk)− f(x)) = f ′(x).
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If there exists k0 ∈ N \ {0} such that rk > 0 when k > k0, then

(M+(f))′(x) = lim
k→∞

1

hk
(M+(f)(x + hk)−M+(f)(x))

6 lim
k→∞

1

hk

(
1

rk

∫ x+hk+rk

x+hk

f(y) dy −
1

rk

∫ x+rk

x

f(y) dy

)

= lim
k→∞

1

rk

∫ x+rk

x

f(y + hk)− f(y)

hk
dy

6 lim
k→∞

M+(fhk
− f ′)(x) + lim

k→∞

1

rk

∫ x+rk

x

f ′(y) dy

6 f ′(x),

which together (2.4) with (2.5) implies that

(M+(f))′(x) = f ′(x) whenever r = 0 ∈ A+(f)(x).

Now we have shown the claim in the interval (−R,R). Since R was arbitrary, this

completes the proof of Lemma 3. �

Now we are in the position of proving Theorem 2.

P r o o f of Theorem 2. We only prove Theorem 2 for M+ by employing the idea

in [15], since the other case is analogous. Let fj → f in W 1,p(R) when j → ∞.

We shall prove ‖M+(fj) − M+(f)‖1,p → 0 when j → ∞. Since ‖M+(fj) −

M+(f)‖Lp(R) → 0 when j → ∞ because of the sublinearity of M+, it suffices

to prove that ‖(M+(fj))
′ − (M+(f))′‖Lp(R) → 0 when j → ∞. We may assume

that the functions fj and f satisfy fj > 0 and f > 0. For any fixed ε > 0, there

exists j0 ∈ N \ {0} such that ‖f ′
j − f ′‖Lp(R) < ε for any j > j0. Let us choose

R > 0 such that ‖M+(f ′)‖p,B1
< ε with B1 = (−∞,−R)∪ (R,∞). By the absolute

continuity, there exists η > 0 such that ‖M+(f ′)‖p,B < ε for any measurable subset

B of (−R,R) satisfying |B| < η. As already observed, for almost every x ∈ R, the

function ux,f ′ is uniformly continuous on [0,∞) and we can find δ(x) > 0 such that

|ux,f ′(r1)− ux,f ′(r2)| < R−1/pε if |r1 − r2| < δ(x).

We can write (−R,R) as

(−R,R) =

( ∞⋃

k=1

{
x ∈ (−R,R) : δ(x) >

1

k

})
∪ N ,

where N is a zero set. From this we can choose δ > 0 such that

|{x ∈ (−R,R) : |ux,f ′(r1)− ux,f ′(r2)| > R−1/pε

for some r1, r2, |r1 − r2| < δ}| =: |B2| <
η

2
.
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By Lemma 1 there exists j1 ∈ N \ {0} such that

|{x ∈ (−R,R) : A+(fj)(x) 6⊆ A+(f)(x)(δ)}| =: |Bj | <
η

2
if j > j1.

Invoking Lemma 3 we have for almost every x ∈ R and fixed j > j0,

|(M+(fj))
′(x) − (M+(f))′(x)| = |ux,f ′

j
(r1)− ux,f ′(r2)|

6 |ux,f ′

j
(r1)− ux,f ′(r1)|+ |ux,f ′(r1)− ux,f ′(r2)|

6 M+(f ′
j − f ′)(x) + |ux,f ′(r1)− ux,f ′(r2)|

for any r1 ∈ A+(fj)(x) and r2 ∈ A+(f)(x). If x /∈ B1 ∪ B2 ∪ Bj , we can choose

r1 ∈ A+(fj)(x) and r2 ∈ A+(f)(x) such that |r1 − r2| < δ and

|ux,f ′(r1)− ux,f ′(r2)| < R−1/pε.

On the other hand, for any r1 ∈ A+(fj)(x) and r2 ∈ A+(f)(x), we have

|ux,f ′(r1)− ux,f ′(r2)| 6 2M+(f ′)(x).

Note that |B2 ∪Bj | < η for all j > j1. Thus we have

‖(M+(fj))
′ − (M+(f))′‖p 6 ‖M+(f ′

j − f ′)‖Lp(R) + 2‖M+(f ′)‖p,B1

+ 2‖M+(f ′)‖p,B2∪Bj + ‖R−1/pε‖p,(−R,R) 6 Cε,

for any j > max{j0, j1}, which implies that (M+(fj))
′ → (M+(f))′ in Lp(R) when

j → ∞. This completes the proof of Theorem 2. �

3. Proofs of Theorems 3 and 4

In this section we will prove Theorems 3 and 4. Let us begin with some notation.

Definition 1. We say that a point n is a local maximum of f : Z → R if

f(n− 1) 6 f(n) and f(n) > f(n+ 1).

Lemma 4. Let f ∈ BV(Z).

(i) If n is a local maximum of M+(f), then M+(f)(n) = |f(n)|.

(ii) If n is a local maximum of M−(f), then M−(f)(n) = |f(n)|.
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P r o o f. We only prove the result for M+ since the argument for M− is analo-

gous. We assume that M+(f)(n) > |f(n)| and need to prove that n is not a local

maximum of M+(f). Below we consider the following two cases:

Case 1. M+(f)(n) is not attained for any N ∈ N. Let {rk}∞k=1 be an increasing

sequence of positive integer numbers satisfying lim
k→∞

rk = ∞. By our assumption, we

can write

(3.1) M+(f)(n) = sup
N∈N

N>rk

1

N + 1

N∑

i=0

|f(n+ i)|, k > 1.

Then for any k > 1 and N > rk we have

1

N + 1

N∑

i=0

|f(n+ i)| =
1

N + 1

( N∑

i=0

|f(n+ 1 + i)|+ |f(n)| − |f(n+ 1 +N)|

)

6 M+(f)(n+ 1) +
1

rk + 1
Var(f),

which together with (3.1) implies that

(3.2) M+(f)(n) 6 M+(f)(n+ 1) +
1

rk + 1
Var(f), k > 1.

Letting k → ∞, (3.2) implies that M+(f)(n) 6 M+(f)(n+1). Thus n is not a local

maximum of M+(f).

Case 2. M+(f)(n) is attained for some N ∈ N. By our assumption, there exists

N0 ∈ N \ {0} such that

M+(f)(n) =
1

N0 + 1

N0∑

i=0

|f(n+ i)|.

It follows from our assumption |f(n)| < M+(f)(n) that

M+(f)(n) =
1

N0 + 1

(N0−1∑

i=0

|f(n+ 1 + i)|+ |f(n)|

)

6
1

N0 + 1
(N0M

+(f)(n+ 1) + |f(n)|)

<
1

N0 + 1
(N0M

+(f)(n+ 1) +M+(f)(n)),

which leads to M+(f)(n) < M+(f)(n + 1). Thus n is not a local maximum of

M+(f). Lemma 4 is proved. �
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Applying Lemma 4, we will establish the variation inequalities of the discrete

one-sided Hardy-Littlewood maximal functions on an arbitrary interval [a, b] ⊂ Z.

Lemma 5. Let [a, b] be an interval with a, b being integers (or possibly∞ or −∞)

and f ∈ BV(Z). Then

Var(M+(f); [a, b]) 6 Var(f ; [a, b]);

Var(M−(f); [a, b]) 6 Var(f ; [a, b]).

P r o o f. We only prove the result for M+, since the result of M− can be ob-

tained by the facts that Var(f ; [a, b]) = Var(Rf ; [−b,−a]) and M−(f) = RM+(Rf).

We only consider the bounded interval [a, b], since the assertion of Lemma 5 for un-

bounded intervals [a, b] follows easily from this and the fact that Var(M+(f); [a, b])

is the supremum of Var(M+(f); [a′, b′]) over bounded subintervals [a′, b′] ⊂ [a, b].

Without loss of generality we may assume that f > 0. Let −∞ < a < b < ∞. We

may assume without loss of generality that a1 or al, l > 1, is respectively the first or

last local maximum of M+(f). It follows from Lemma 4 that M+(f)(ak) = f(ak).

Then

Var(M+(f); [a, b]) = Var(M+(f); [a, a1]) + Var(M+(f); [al, b])

+

l−1∑

k=1

Var(M+(f); [ak, ak+1])

6 M+(f)(a1)−M+(f)(a) +M+(f)(al)−M+(f)(b)

+

l−1∑

k=1

(M+(f)(ak)−M+(f)(bk+1)

+M+(f)(ak+1)−M+(f)(bk+1))

6 f(a1)− f(a) + f(al)− f(b)

+

l−1∑

k=1

(f(ak)− f(bk+1) + f(ak+1)− f(bk+1))

6 Var(f ; [a, a1]) + Var(f ; [al, b])

+

l−1∑

k=1

(Var(f ; [ak, bk+1]) + Var(f ; [bk+1, ak+1]))

6 Var(f ; [a, b]).

This completes the proof of Lemma 5. �

P r o o f of Theorem 3. Theorem 3 can be seen as a special case of Lemma 5. �
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P r o o f of Theorem 4. One can easily check that Var(f) = Var(Rf) and

‖f‖ℓ1(Z) = ‖Rf‖ℓ1(Z). Thus we only prove Theorem 4 for M+. Let fk → f in

ℓ1(Z) when k → ∞. By (1.4), we need to prove that

(3.3) lim
k→∞

‖(M+(fk))
′ − (M+(f))′‖ℓ1(Z) = 0.

Since
∣∣|fk| − |f |

∣∣ 6 |fk − f |, we may assume without loss of generality that fk > 0

for all k ∈ Z and f > 0. Since fk → f in ℓ1(Z), hence for any fixed ε > 0 there exists

K0 = K0(ε) ∈ N \ {0} such that ‖fk − f‖ℓ∞(Z) 6 ‖fk − f‖ℓ1(Z) < ε for any k > K0.

Thus for any fixed n ∈ Z and k > K0, we have

(3.4) |M+(fk)(n)−M+(f)(n)| 6 M+(fk − f)(n) 6 ‖fk − f‖ℓ∞(Z) < ε, n ∈ Z,

which implies M+(fk)(n) → M+(f)(n) as k → ∞ for any n ∈ Z. This leads to

(3.5) (M+(fk))
′(n) → (M+(f))′(n) as k → ∞

for any n ∈ Z. It follows from Theorem 3 that Var(M+(f)) 6 Var(f) 6 2‖f‖ℓ1(Z).

Observe that

∣∣|(M+(fk))
′(n)| − |(M+(fk))

′(n)− (M+(f))′(n)|
∣∣ 6 |(M+(f))′(n)|, n ∈ Z.

By the dominated convergence theorem and (3.5),

lim
k→∞

(‖(M+(fk))
′‖ℓ1(Z) − ‖(M+(fk))

′ − (M+(f))′‖ℓ1(Z)) = ‖(M+(f))′‖ℓ1(Z).

Therefore, to prove (3.3), it suffices to prove

(3.6) lim
k→∞

‖(M+(fk))
′‖ℓ1(Z) = ‖(M+(f))′‖ℓ1(Z).

It follows from (3.5) and Fatou’s lemma that

(3.7) ‖(M+(f))′‖ℓ1(Z) 6 lim inf
k→∞

‖(M+(fk))
′‖ℓ1(Z).

Thus, to prove (3.6), we want to show that

(3.8) lim sup
k→∞

‖(M+(fk))
′‖ℓ1(Z) 6 ‖(M+(f))′‖ℓ1(Z).

We now prove (3.8). Since ‖f‖ℓ1(Z) < ∞, so for every ε > 0 there exists a suffi-

ciently large integer radius R = R(ε) such that

(3.9)
∑

|n|>R
n∈Z

f(n) < ε.

232



On the other hand, by (3.4), there exists K1 = K1(ε,R) ∈ N \ {0} such that

(3.10) |(M+(fk))
′(n)− (M+(f))′(n)| 6

ε

2R+ 1

for any k > K1 and n ∈ [−R,R] ∩ Z. Write then

(3.11) ‖(M+(fk))
′‖ℓ1(Z) =

∑

|n|>R
n∈Z

|(M+(fk))
′(n)|+

∑

|n|6R
n∈Z

|(M+(fk))
′(n)| =: S1 + S2.

Below we estimate S1. It follows from (3.9) and Lemma 5 that

S1 6 Var(M+(fk); [R,∞)) + Var(M+(fk); (−∞,−R])(3.12)

6 Var(fk; [R,∞)) + Var(fk; (−∞,−R])

6 Var(fk − f ; [R,∞)) + Var(fk − f ; (−∞,−R])

+ Var(f ; (−∞,−R] ∪ [R,∞))

6 2‖fk − f‖ℓ1 + 2
∑

|n|>R
n∈Z

f(n) 6 4ε

for any k > K0. On the other hand, we get from (3.10) that

(3.13) S2 6
∑

|n|6R
n∈Z

|(M+(f))′(n)|+ ε 6 ‖(M+(f))′‖ℓ1(Z) + ε

for any k > K1. From (3.12) and (3.13) we have

‖(M+(fk))
′‖ℓ1(Z) 6 ‖(M+(f))′‖ℓ1(Z) + 5ε

for any k > max{K0,K1}. This implies (3.8) and hence Theorem 4 is proved. �
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