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Abstract. Option pricing models are an important part of financial markets worldwide.
The PDE formulation of these models leads to analytical solutions only under very strong
simplifications. For more general models the option price needs to be evaluated by numer-
ical techniques. First, based on an ideal pure diffusion process for two risky asset prices
with an additional path-dependent variable for continuous arithmetic average, we present
a general form of PDE for pricing of Asian option contracts on two assets. Further, we
focus only on one subclass—Asian options with floating strike—and introduce the concept
of the dimensionality reduction with respect to the payoff leading to PDE with two spa-
tial variables. Then the numerical option pricing scheme arising from the discontinuous
Galerkin method is developed and some theoretical results are also mentioned. Finally, the
aforementioned model is supplemented with numerical results on real market data.
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ket option; floating strike
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1. Introduction

Mathematics is the science good understanding of which is essential for efficient

solving of problems in various fields. One of the most important applications, at

least in economics, is pricing of options. While most of the assets at the market get

the right price when the supply matches the demand, in case of financial derivatives
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the traders mostly follow the no-arbitrage conditions. This comes from the fact that

the value of any financial derivative is derived from the price of its underlying asset.

It implies furthermore that by combining the investment into the financial derivative

itself and its underlying asset one can find a strategy that should bring riskless return

(i.e., we create riskless portfolio), at least if the market is complete.

Among financial derivatives, options are the most interesting contracts, both from

the mathematical point of view and the range of financial applications, since the

option payoff function is nonlinear—an option is exercised at the maturity time only

if it brings the holder positive cashflow; on the other hand, the other contracts, such

as forwards, futures or swaps, must be exercised regardless of the will of the holder.

At the market we can also find exotic options, which is a term used for a family of

options whose payoff conditions are even more complex than in the case of simple

options (denoted as plain-vanilla options).

After introducing the seminal papers of option pricing in the 70’s, [2] and [23],

the problem has been studied extensively by many authors with generally very good

results, which is confirmed by the existence of analytical or closed form valuation for-

mulas for plain vanilla options not only under simplifying assumptions of Gaussian

distribution, but also for more complex underlying distributions, such as subordi-

nated Lévy processes [6]. The starting point for deriving pricing formulas has been

the construction of a system of partial differential equations (PDE) accompanied by

boundary and terminal (or initial) conditions, which arise from the aforementioned

no-arbitrage conditions.

On the other hand, pricing of many types of exotic options is complicated even

under the simplifying assumptions of Gaussian distribution, and solving of the PDE

system generally does not lead to analytical formulas. For example, the most common

group of exotic options, the path-dependent options, have payoff depending on the

path followed by the underlying asset during the option life. Such path is in reality

observable only at discrete moments (e.g., closing prices every day or every Friday),

which is not feasible to express it by continuous stochastic processes.

If we cannot solve the PDE system analytically, we should apply some numeri-

cal approximation technique, such as Monte Carlo simulation (see e.g. [3]), lattices

and trees (an approximation technique originally proposed in [7]), finite difference

method, finite elements method or discontinuous Galerkin (DG) method formulated

for the first time in [24]. The last approach is rather novel, not well studied within

option pricing problems and might be of relevance especially for exotic options with

very complex conditions.

In this paper we focus on the pricing of Asian basket option using the DG method

together with the theoretical justification for the derived numerical scheme. We pro-

ceed as follows. In Section 2, we first formulate the PDE system for Asian options
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on several assets. We proceed with dimensionality reduction and the problem refor-

mulation. Next, in Section 3, the DG approximation is developed. Finally, we show

an illustrative example assuming the Asian two-asset basket put option with floating

strike.

2. PDE models for multi-asset Asian options

We follow the standard approach to the derivation of a general model for the

valuation of path-dependent basket options with a few modifications for the case of

Asian options on more assets (see also [4], [26], or [27]). For simpler notation, we

consider only two asset prices (the generalization to path-dependent basket options

with d assets is straightforward). Here we suppose that the price function V =

V (S1(t), S2(t), A(t), t) depends on the actual time t, price processes S1(t), S2(t) and

the newly introduced path-dependent variable

(2.1) A(t) =
1

t

∫ t

0

(α1S1(u) + α2S2(u)) du

with positive weights α1 and α2 satisfying α1 + α2 = 1.

Let us note that there exist several approaches how to introduce the average A,

cf. [10], [22]. The relation (2.1) is often called the continuous arithmetic average of

the basket of two asset prices over some prespecified period of time and it does not

depend on the current asset prices S1(t) and S2(t), in general. Therefore, the option

price V is a function of four (generally d+ 2) independent variables.

Next, we contemplate a continuous time trading economy with an infinite horizon.

The uncertainty is described by a complete probability space (ω,F ,Q) with the

state space ω; F is the σ-algebra representing the measurable events, and Q denotes
the risk neutral probability measure, which is assumed to be unique in a complete

market with no arbitrage. For a movement of the prices of the underlying assets we

assume that they follow a classical geometric Brownian motion (equivalent with the

lognormal distribution) and pay dividends at a constant rate continuously, i.e.,

dSi(t) = (µi − qi)Si(t) dt+ σiSi(t) dWi(t), i = 1, 2,(2.2)

〈dW1(t), dW2(t)〉 = ̺ dt,(2.3)

where Wi(t) are standard Brownian motions (i.e., Wiener processes), whose incre-

ments are correlated.

This is the commonly used stochastic process and implies that the returns of the

assets are normally distributed with constant correlation ̺ ∈ (−1, 1). Since the
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underlying assets pay dividends, the drift µi (i.e., the change of the average value

of Brownian motion) of the ith asset is reduced by the amount qi, denoting the

corresponding dividend yield. The variables σi are the volatilities of the asset i (i.e.,

a measure of the standard deviation of the return), and Si(t) their asset prices at

time t. We assume that parameters qi and σi, i = 1, 2, are (piecewise) constant

functions over the life of the option. The reason why we choose this approach is that

it quite well coincides with the way the asset prices move in the real world.

Further, it is necessary to set up the differential equation for the average A. After

easy differentiation of (2.1) with respect to the variable t we obtain

(2.4)
dA(t)

dt
=

1

t
(α1S1(t) + α2S2(t))−

1

t2

∫ t

0

(α1S1(u) + α2S2(u)) du

=
1

t
(α1S1(t) + α2S2(t)−A(t)),

which implies that the dynamics of A is driven according to an ordinary differential

equation only.

Next, we are ready to apply the multidimensional Itô’s lemma to the value func-

tion V (see [14]), leading to

(2.5) dV = σ1S1
∂V

∂S1
dW1 + σ2S2

∂V

∂S2
dW2

+
(∂V

∂t
+ (µ1 − q1)S1

∂V

∂S1
+ (µ2 − q2)S2

∂V

∂S2
+

α1S1 + α2S2 −A

t

∂V

∂A

+
1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ̺σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

)

dt.

Let us now construct a risk-free portfolio Π of one option and −∆1 shares of the

underlying asset S1 and −∆2 shares of the underlying asset S2. The value of Π is

given by Π = V −∆1S1 −∆2S2 and its corresponding increment is

(2.6) dΠ = dV −∆1 dS1 −∆2 dS2 −∆1q1S1 dt−∆2q2S2 dt,

where the terms −∆iqiSi dt arise, since the underlying assets pay dividends contin-

uously, which decreases the value of the portfolio Π by the amount of the dividend.

Replacing the term dV by the values from Itô’s lemma and using (2.2) in (2.6) yields

dΠ =
(

σ1S1
∂V

∂S1
−∆1σ1S1

)

dW1 +
(

σ2S2
∂V

∂S2
−∆2σ2S2

)

dW2(2.7)

+
(∂V

∂t
+ (µ1 − q1)S1

∂V

∂S1
−∆1(µ1 − q1)S1

174



+ (µ2 − q2)S2
∂V

∂S2
−∆2(µ2 − q2)S2 +

α1S1 + α2S2 −A

t

∂V

∂A

+
1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ̺σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

−∆1q1S1 −∆2q2S2

)

dt.

To eliminate the stochastic component from our portfolio, we choose ∆i = ∂V/∂Si,

i = 1, 2. This procedure leads to a portfolio whose increment has only deterministic

component, i.e.

(2.8) dΠ =
(∂V

∂t
+

α1S1 + α2S2 −A

t

∂V

∂A
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ̺σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

− q1S1
∂V

∂S1
− q2S2

∂V

∂S2

)

dt.

Further, we apply the assumption of no arbitrage opportunities on the market, in

other words, the change of portfolio corresponds to the change of a value of money

deposited on the bank account earning risk-free interest rate r (assumed constant or

piecewise constant in time). Then we obtain

(2.9) dΠ = rΠdt = r(V −∆1S1 −∆2S2) dt = r
(

V − S1
∂V

∂S1
− S2

∂V

∂S2

)

dt.

Putting together (2.8) and (2.9) leads to the modified form of Black-Scholes PDE

for pricing Asian option contracts on two assets

(2.10)
∂V

∂t
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ̺σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

+ (r − q1)S1
∂V

∂S1
+ (r − q2)S2

∂V

∂S2
+

α1S1 + α2S2 −A

t

∂V

∂A
− rV = 0

for t ∈ (0, T ), S1 > 0, S2 > 0, and A > 0. Let us note that (2.10) represents a linear

parabolic PDE degenerated in variable A, because there is no second order term with

respect to A. It is interesting to see that in the system the drifts µi vanish. Note,

finally, that a singularity exists in equation (2.10) at t = 0 (i.e., today). However,

this can be avoided due to the following remark.

R em a r k 2.1. The PDE (2.10) for pricing Asian two-asset options tends to the

classical 2D Black-Scholes equation for pricing standard basket options with two

underlying assets as t → 0+. Neglecting the term ∂V/∂A corresponds to setting

α1S1 + α2S2 = A at t = 0, which is justified by the following simple calculation.

175



Let us denote I(t) =
∫ t

0
(α1S1(u) + α2S2(u)) du. Then

(2.11) lim
t→0+

A(t) = lim
t→0+

I(t)− I(0)

t
=

dI

dt
(0) = α1S1(0) + α2S2(0).

As has been already stated, we focus only on one subclass of path-dependent

options, strictly speaking Asian two-asset basket options. The main feature of all

Asian options is that their terminal payoff is a function of an average over some time

period prior to expiry. Another specific feature is the way in which the average is

incorporated into the payoff function. If we denote the strike price by K and the
maturity by T , then according to these two features, we distinguish four basic payoff

functions (w.r.t. two-asset basket options):

(A(T )− K)+ average rate call,(2.12)

(K −A(T ))+ average rate put,(2.13)

(α1S1(T ) + α2S2(T )−A(T ))+ floating strike call,(2.14)

(A(T )− α1S1(T )− α2S2(T ))
+ floating strike put,(2.15)

where (·)+ = max(·, 0). Note that the rate options are sometimes called the fixed
strike options and the floating strike options are also called the average strike options.

In our further analysis we consider only Asian options with floating strike. Let

g = g(S1, S2, A) denote the payoff function defined by (2.14) or (2.15), i.e.

(2.16) V (S1(T ), S2(T ), A(T ), T ) = g(S1(T ), S2(T ), A(T )).

Then following the martingale theory (see [13]), we get the value of option as

(2.17) V (S1(0), S2(0), A(0), 0) = e−rT
E(g(S1(T ), S2(T ), A(T )).

More precisely, the price of an option at time t can be expressed as the expected

value of the discounted payoff under the risk neutral probability measure. Moreover,

it is well-know that the option price V is also the solution of PDE (2.10).

This PDE has one dimension in time and three spatial variables. It has convection-

diffusion character and it is difficult to solve it, since the parabolic operator is de-

generated in the variable A. This undesirable feature of (2.10) can be overcome by

a suitable dimensionality reduction. Notice that this equation is more general, since

the reduction is only possible for specific payoffs.

2.1. Dimensionality reduction. In the past [10], [22], the two-dimensional ver-

sion of (2.10) (i.e., Asian option restricted only to one underlying asset) was reduced
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to a PDE with only one spatial dimension. There are several possible ways how

to make this procedure, some of them are applicable to the case of average strike

options only or to Asian options of European style. In our case, the above mentioned

three-dimensional PDE can be reduced to a PDE with only two spatial dimensions,

using the inspiring approach from [20] for floating strike options.

Since the equation is backward in time, the possible dimensionality reduction

for the studied model might be achieved by introducing the new spatial variables

x1 = S1/A and x2 = S2/A together with the reversal time transformation t̂ = T − t

(t̂ is time to maturity) in order to rewrite the Cauchy problem (2.10) with (2.16)

to the forward type. Denoting x = [x1, x2], the payoff functions (2.14) and (2.15)

satisfy

(2.18) g(S1, S2, A) = A · u0(x), u0(x) :=

{

(α1x1 + α2x2 − 1)+ for call,

(1− α1x1 − α2x2)
+ for put,

and the option price transforms to

(2.19) V (S1, S2, A, t) = e−rt̂
E(A · u0|F(t̂)) = A · e−rt̂

E(u0|F(t̂)) = A · u(x, t̂).

Furthermore, simple usage of the chain rule leads to

∂V

∂t
= −∂u

∂t̂
· A, ∂V

∂A
= u−

( ∂u

∂x1
· x1 +

∂u

∂x2
· x2

)

,(2.20)

∂V

∂S1
=

∂u

∂x1
,

∂V

∂S2
=

∂u

∂x2
,

∂2V

∂S2
1

=
∂2u

∂x2
1

· 1
A
,

∂2V

∂S1∂S2
=

∂2u

∂x1∂x2
· 1
A
,

∂2V

∂S2
2

=
∂2u

∂x2
2

· 1
A
.

Next, substituting (2.19) and (2.20) into (2.10) and dividing by A, we obtain the

new pricing equation in terms of the value function u with only two spatial variables

and forward time t̂, written in the divergence-free form as

(2.21)
∂u

∂t̂
−

2∑

i=1

∂

∂xi
(D(x)∇u)i +

2∑

i=1

bi(x, t̂)
∂u

∂xi
+
(

r − α1x1 + α2x2 − 1

T − t̂

)

u = 0,

where (D(x)∇u)i denotes the ith component of the vector D(x)∇u, defined using the

symmetric positive semi-definite matrix

(2.22) D(x) =
1

2

(
σ2
1x

2
1 ̺σ1σ2x1x2

̺σ1σ2x1x2 σ2
2x

2
2

)

,
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and the vector (b1, b2)
T represents the field induced by physical fluxes, written com-

ponentwise as

(2.23) bi(x, t̂) =
(

σ2
i +

1

2
̺σ1σ2 − r + qi +

α1x1 + α2x2 − 1

T − t̂

)

xi.

Finally, it is important to note that at t̂ = T (i.e., today) a singularity still exists

in equation (2.21) due to the presence of the term (α1x1 + α2x2 − 1)/(T − t̂) in the

convection and reaction terms. This can be also avoided in a way similar to that

stated in Remark 2.1.

2.2. Localization to bounded domains. In order to numerically solve the

Cauchy problem (2.21)–(2.23) with (2.18), the unbounded domain in the variables

x1 and x2 has to be truncated at first, and then this initial problem should be supplied

with suitable choices of additional boundary conditions on appropriate parts of the

boundary of the computational domain Ω := (0, xmax
1 )×(0, xmax

2 ), where xmax
i stands,

in fact, for the maximal price of the scaled ith asset. We distinguish three parts of

the rectangular boundary ∂Ω defined as

(2.24) Γ1 = {0} × (0, xmax
2 ), Γ2 = (0, xmax

1 )× {0}, Γ3 = ∂Ω ∩ R
2
+.

In what follows, we consider only put options for simplicity. The generalization

of all conditions for call options can be done straightforwardly with the aid of the

so-called put-call parity, see [14]. First we mention the asymptotic behaviour of the

original price function V at a far-field boundary, i.e.,

(2.25) lim
Si→∞

V (S1, S2, A, t) = 0, i = 1, 2, lim
A→∞

∂V

∂A
(S1, S2, A, t) = 1.

Let us mention that it is sufficient to prescribe only one boundary condition in A-

direction, since only the first partial derivative with respect to the variable A appears

in equation (2.10). Moreover, on the planes S1 = 0 and S2 = 0, the simple concept

of extrapolated boundary condition is used, i.e.

(2.26)

∂V

∂S1
(0, S2, A, t) = lim

ε→0+

∂V

∂S1
(ε, S2, A, t),

∂V

∂S2
(S1, 0, A, t) = lim

ε→0+

∂V

∂S2
(S1, ε, A, t).

Note that to preserve the homogeneity of the option price V with respect to A,

shown in (2.19), all the previously depicted boundary conditions have to be linearly

homogeneous in the variable A. Therefore, in terms of the new price function u
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and new variables, the boundary conditions become of a mixed type in the following

sense for put options:

(2.27) (D(x)∇u(x, t̂)) · ~n = 0 on Γi, i = 1, 2, u(x, t̂) = 0 on Γ3,

where ~n is the outer unit normal to Γi. Let us point out that homogeneous Neumann

boundary conditions from (2.27) prescribed on axes x1 = 0 and x2 = 0 are a priori

fulfilled in the variational form and correspond to the so-called do-nothing boundary

condition. On the other hand, homogeneous Dirichlet conditions on Γ3 come from

the asymptotic behaviour of put options.

Then, the resulting pricing problem for Asian two-asset basket option with floating

strike is formulated as the initial-boundary value problem for an unknown function

u(x, t̂) : Ω × (0, T ) → R satisfying (2.21)–(2.23) with (2.18) and (2.27). In what

follows this problem will be denoted as (OPP), i.e., option pricing problem.

2.3. Weak formulation. In the first instance, the standard notation for function

spaces should be introduced together with their norms ‖·‖ and seminorms |·|. Let
k > 0 be an integer and p ∈ [1,∞]. We use the well-known Lebesgue, Sobolev spaces

Lp(Ω), Hk(Ω), and Bochner spaces Lp(0, T ;X) of functions defined in (0, T ) with

values in a Banach space X .

In order to obtain a variational formulation of (OPP) a concept of weighted

Sobolev spaces is used. For more details see e.g. [21]. Let us introduce the space

(2.28) V ≡ V (Ω) :=
{

v ∈ L2(Ω): xi
∂v

∂xi
∈ L2(Ω), i = 1, 2

}

with a scalar product

(2.29) (u, v)V = (u, v) +
2∑

i=1

(

xi
∂u

∂xi
, xi

∂v

∂xi

)

,

where (·, ·) denotes the scalar product of L2(Ω) with the induced norm ‖·‖ = (·, ·)1/2.

Lemma 2.1. The space V is a Hilbert space with the norm ‖·‖V := (·, ·)1/2V and

has the following properties:

(P1) V is separable,

(P2) D(Ω) = {v ∈ C∞
0 (R2

+) : v|Ω} is densely embedded in V ,

(P3) V is densely embedded in L2(Ω).

P r o o f. The items (P1)–(P3) can be simply proven, see, e.g., [1]. �
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Further, in order to fulfill the boundary conditions it is appropriate to define space

V0 := {v ∈ V : v|Γ3
= 0} with seminorm

(2.30) |v|V =

( 2∑

i=1

∥
∥
∥xi

∂v

∂xi

∥
∥
∥

2
)1/2

.

Lemma 2.2. If v ∈ V0, then

(2.31) ‖v‖ 6
√
2|v|V .

Moreover, the seminorm |·|V is in fact a norm on V0 equivalent to ‖·‖V .

P r o o f. Since the space of infinitely differentiable functions with compact support

in Ω is dense in V0, it is enough to prove (2.31) for v ∈ C∞
0 (Ω). We have, for i = 1, 2,

(2.32) 2

∫

Ω

xiv(x)
∂v

∂xi
(x) dx =

∫

∂Ω

xiv
2(x)ni dS −

∫

Ω

v2(x) dx = −
∫

Ω

v2(x) dx.

Using the Cauchy-Schwarz inequality on the left-hand side of (2.32), we deduce that

(2.33) ‖v‖2 6 2‖v‖
∥
∥
∥xi

∂v

∂xi

∥
∥
∥, i = 1, 2.

Then, we can write

(2.34) 2‖v‖2 = ‖v‖2 + ‖v‖2 6 4
(∥
∥
∥x1

∂v

∂x1

∥
∥
∥

2

+
∥
∥
∥x2

∂v

∂x2

∥
∥
∥

2)

and the square root of (2.34) yields the estimate (2.31). Finally, the equivalence of

norms comes from (2.31) and the fact that norm ‖·‖V is by definition stronger then
the L2-norm. �

In order to simplify the notation, we define the linear partial differential operator

L : V → V ′ as

(2.35) Lu = −
2∑

i=1

∂

∂xi

(
D(x) · ∇u

)

i
+

2∑

i=1

bi(x, t)
∂u

∂xi
+
(

r − α1x1 + α2x2 − 1

T − t̂

)

u.

Then using standard approach—multiplication of (2.21) by a test function v ∈ V0,

integration over the whole domain Ω and application of Green’s theorem on the

diffusion term—leads to

(2.36)
(∂u

∂t̂
, v
)

+ (Lu, v) = 0 ∀ v ∈ V0, a.e. t̂ ∈ (0, T ),
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with the bilinear form

(2.37) (Lu, v) =
∫

Ω

D(x)∇u · ∇v dx+

2∑

i=1

∫

Ω

bi(x, t̂)
∂u

∂xi
v dx

+

∫

Ω

(

r − α1x1 + α2x2 − 1

T − t̂

)

uv dx.

Definition 2.1. Assuming that u0 ∈ L2(Ω), the initial-boundary problem (OPP)

has the following variational (weak) formulation: Find u ∈ C0([0, T ];L2(Ω)) ∩
L2(0, T ;V0) such that ∂u/∂t̂ ∈ L2(0, T ;V ′) satisfies

(u(0), v) = (u0, v) ∀ v ∈ V0,(2.38)
(∂u

∂t̂
(t̂), v

)

+ (Lu (t̂), v) = 0 ∀ v ∈ V0, a.e. t̂ ∈ (0, T ).(2.39)

where u(t̂) denotes the function on Ω such that u(t̂)(x), x ∈ Ω.

In order to investigate the properties of the operator L we recall the assumptions
on the model parameters. We assume that the coefficients σi, qi, and r are constant

or piecewise constant, i.e., there exist four constants, 0 < σmin 6 σmax, rmax > 0,

and qmax > 0 such that for all t̂ ∈ [0, T ] and x ∈ Ω,

(2.40)
0 < σmin 6 σi(x, t̂) 6 σmax, i = 1, 2, 0 6 r(x, t̂) 6 rmax,

0 6 qi(x, t̂) 6 qmax, i = 1, 2.

Lemma 2.3. Under the assumptions (2.40), the operator L given by (2.35) is

bounded, i.e., there exists a positive constant CB(t̂) such that

(2.41) |(Lu, v)| 6 CB(t̂)|u|V |v|V ∀u, v ∈ V0, t̂ ∈ [0, T ∗],

where 0 < T ∗ < T .

P r o o f. We split the term (Lu, v) into several parts and estimate them sepa-
rately. First, for the diffusion term, from (2.40), |̺| < 1, and using Cauchy-Schwarz

inequality, we have

(2.42)

∣
∣
∣
∣

∫

Ω

D(x)∇u · ∇v dx

∣
∣
∣
∣
6

σ2
max

2

2∑

i,j=1

∫

Ω

∣
∣
∣xi

∂u

∂xi

∣
∣
∣

∣
∣
∣xj

∂v

∂xj

∣
∣
∣ dx

6
σ2
max

2

(∥
∥
∥x1

∂u

∂x1

∥
∥
∥+

∥
∥
∥x2

∂u

∂x2

∥
∥
∥

)(∥
∥
∥x1

∂v

∂x1

∥
∥
∥+

∥
∥
∥x2

∂v

∂x2

∥
∥
∥

)

6 σ2
max|u|V |v|V ,
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where the last inequality in (2.42) comes from the relation (a + b)2 6 2(a2 + b2),

a, b > 0.

Secondly, for the convection part, by an approach similar to that in (2.42) and

using the inequality (2.31), we deduce that

(2.43)

∣
∣
∣
∣

2∑

i=1

∫

Ω

bi(x, t̂)
∂u

∂xi
v dx

∣
∣
∣
∣
6

2∑

i=1

∫

Ω

|bi(x, t̂)|
∣
∣
∣
∂u

∂xi

∣
∣
∣|v| dx

6

(3

2
σ2
max + rmax + qmax +

α1x
max
1 + α2x

max
2 + 1

T − t̂

)

︸ ︷︷ ︸

:=c1(t̂)>0

∫

Ω

2∑

i=1

∣
∣
∣xi

∂u

∂xi

∣
∣
∣|v| dx

6 c1(t̂)

2∑

i=1

∥
∥
∥xi

∂u

∂xi

∥
∥
∥‖v‖ 6 c1(t̂)

√
2

( 2∑

i=1

∥
∥
∥xi

∂u

∂xi

∥
∥
∥

2
)1/2

‖v‖

6 2c1(t̂)|u|V |v|V .

Next, for the reaction term, using (2.40), the Cauchy-Schwarz inequality, and (2.31),

we find that

(2.44)
∣
∣
∣
∣

∫

Ω

(

r − α1x1 + α2x2 − 1

T − t̂

)

uv dx

∣
∣
∣
∣
6

(

rmax +
α1x

max
1 + α2x

max
2 + 1

T − t̂

)

︸ ︷︷ ︸

:=c2(t̂)>0

∫

Ω

|u||v| dx

6 c2(t̂)‖u‖‖v‖ 6 2c2(t̂)|u|V |v|V .

Finally, putting (2.42), (2.43), and (2.44) together and setting CB(t̂) = σ2
max +

2c1(t̂) + 2c2(t̂), we obtain the desired estimate (2.41). �

Lemma 2.4. Under the assumptions (2.40), the operator L given by (2.35) sat-

isfies the so-called G̊arding inequality, i.e., there exists a nonnegative constant cg(t̂)

such that

(2.45) (Lu, u) > σ2
min

4
(1 − |̺|)|u|2V − cg(t̂) ‖u‖2 ∀u ∈ V0, t̂ ∈ [0, T ∗],

where 0 < T ∗ < T .

P r o o f. We again split the estimation of (Lu, u) into several parts. From (2.40)
and the relation ab 6 a2/2 + b2/2, a, b > 0, we have

(2.46)

∣
∣
∣
∣

∫

Ω

D(x)∇u · ∇u dx

∣
∣
∣
∣
>

σ2
min

2

∫

Ω

(

x1
∂u

∂x1

)2

dx+
σ2
min

2

∫

Ω

(

x2
∂u

∂x2

)2

dx

− |̺|σ2
min

∫

Ω

∣
∣
∣x1

∂u

∂x1

∣
∣
∣

∣
∣
∣x2

∂u

∂x2

∣
∣
∣dx >

σ2
min

2
(1− |̺|)|u|2V .
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Further, an approach similar to that in (2.43) with v := u leads to

(2.47)

∣
∣
∣
∣

2∑

i=1

∫

Ω

bi(x, t̂)
∂u

∂xi
u dx

∣
∣
∣
∣
6 c1(t̂)

√
2|u|V ‖u‖ 6 c1(t̂)

√
2
(

ε|u|2V +
1

4ε
||u||2

)

=
σ2
min

4
(1− |̺|) |u|2V +

2c21(t̂)

σ2
min(1− |̺|)‖u‖

2,

where the last inequality in (2.47) comes from the Young inequality

(2.48) ab 6 εa2 +
1

4ε
b2, a, b > 0, ε > 0

by setting ε := σ2
min(1 − |̺|)/(4

√
2c1(t̂)). Then the estimates (2.46), (2.47), and

(2.44) with v := u complete the proof with cg(t̂) = 2c21(t̂)/(σ
2
min(1 − |̺|))+ c2(t̂). �

R em a r k 2.2. Due to the singularity of (2.21) at t̂ = T the boundedness (2.41)

and the G̊arding inequality (2.45) hold only on every compact interval [0, T ∗] ⊂ [0, T ).

R em a r k 2.3. The G̊arding inequality is a sufficient condition for ellipticity (i.e.,

strict positivity). Using easy transformation u = eλt̂w, λ = max
t̂∈[0,T∗]

cg(t̂), in equation

(2.39) and setting Ae(w, v) := (Lw, v) + λ(w, v) leads to

(∂w

∂t̂
, v
)

+Ae(w, v) = 0 ∀ v ∈ V0, a.e. t̂ ∈ (0, T ∗),(2.49)

w(0) = u0 ∈ L2(Ω)(2.50)

with the strictly positive bilinear form Ae(·, ·).

Theorem 2.1. Problem (2.38)–(2.39) has a unique weak solution.

P r o o f. The proof is based on the main theorem on first-order linear evolution

equations, see [28]. Therefore, it is enough to prove the following assumptions:

(A1) V ⊆ L2(Ω) ⊆ V ′ form a Gelfand triple.

(A2) The mapping (L·, ·) : V × V → R is bilinear, bounded and strictly positive.

The fulfilment of assumption (A1) follows directly from Lemma 2.1. Since (L·, ·) is
bilinear by definition (2.37), bounded, cf. Lemma 2.3, and the G̊arding inequality is

applicable, see Lemma 2.4, (A2) is also satisfied. With these facts, we can apply the

abstract theory of variational parabolic problems, which guarantees the existence of

a unique weak solution of problem (OPP), i.e., it concludes the proof. �
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3. Discontinuous Galerkin approximations

Since the governing equation of the problem (OPP) cannot be transformed into

a standard heat equation with constant coefficients, it has no closed-form solution

of Black-Scholes type and we need to use a numerical approach. Here we select

an approach based on the DG framework. The standard DG method uses piece-

wise polynomial, generally discontinuous, approximation of the pth order describing

a global solution on the whole domain, for a survey see [9], [25].

We proceed as follows. First, we start with a triangulation of a computational

domain and define the finite dimensional space Sp
h, which approximates the weighted

Sobolev space V in some reasonable sense. Secondly, we derive the space semidiscrete

DG formulation of the problem, followed by the fully time-space discrete one and

finally, we construct the corresponding linear algebraic problem and end up with the

resulting numerical scheme.

3.1. Triangulation. Let Th (h > 0) represent a partition of the closure of the

computational domain Ω into a finite number of closed elements K (i.e., polygons)

with mutually disjoint interiors. We set h = max
K∈Th

diam(K) and call Th = {K}K∈Th

a triangulation of Ω; we do not require the conforming properties from the finite

element method, see, e.g., [5].

By Fh we denote the set of all open edges of all elements K ∈ Th. Further, the
symbol FI

h stands for the set of all Γ ∈ Fh that are contained in Ω (inner edges),

the symbol FD
h for the set of all Γ ∈ Fh such that Γ ⊂ Γ3 (Dirichlet edges) and

the symbol FN
h for the set of all Γ ∈ Fh such that Γ ⊂ Γ1 ∪ Γ2 (Neumann edges).

Obviously, Fh = FI
h ∪FD

h ∪FN
h . For a shorter notation we put FID

h ≡ FI
h ∪FD

h and

FDN
h ≡ FD

h ∪ FN
h .

Next, for each Γ ∈ Fh we define a unit normal vector ~nΓ. We assume that ~nΓ,

Γ ⊂ ∂Ω, has the same orientation as the outer normal of ∂Ω. For ~nΓ, Γ ∈ FI
h , the

orientation is arbitrary but fixed for each edge. For each Γ ∈ FI
h there exist two

neighboring elements K+ and K−. We use a convention that K− lies in the direction

of ~nΓ and K+ in the opposite direction of ~nΓ, see Figure 1 (left).

Over the triangulation Th we define the finite dimensional space of discontinuous
piecewise polynomial functions

(3.1) Sp
h ≡ Sp

h(Ω, Th) = {v ∈ L2(Ω); v|K ∈ Pp(K) ∀K ∈ Th},

where Pp(K) denotes the space of all polynomials of order less than or equal to p

defined on K. Then we seek an approximate solution of the problem (OPP) uh in

the space Sp
h, see the simple example of a such function in Figure 1 (right).
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K+

K
−

Γ

~nΓ

Figure 1. Orientation of a normal to the common edge of two neighbouring elements (left)
and an example of a discontinuous piecewise polynomial function (right).

Since we deal with the discontinuous functions along edges Γ, it is suitable to

introduce operators of the jump [·] and of the mean value 〈·〉, defined in the following
way:

(3.2) [v] := v|+Γ − v|−Γ , 〈v〉 := 1

2
(v|+Γ + v|−Γ ),

where v|+Γ is the trace of v|K+
on Γ and v|−Γ is the trace of v|K−

on Γ, which are

different in general. For Γ ∈ ∂Ω, we simply put 〈v〉 = [v] = v|+Γ .

3.2. Space semidiscrete solution. Now, we recall the space semidiscrete DG

scheme presented in [16] with a slight modification for Asian options, cf. [19]. First,

we multiply (2.21) by a test function vh ∈ Sp
h, integrate over an element K ∈ Th

and use integration by parts in the diffusion as well as the convection part of (2.21)

subsequently. Further, we sum over all K ∈ Th and add some auxiliary terms vanish-
ing for the exact solution such as penalty and stabilization terms, which replace the

inter-element discontinuities and guarantee the stability of the resulting numerical

scheme, respectively.

Then we employ a concept of an upwind numerical flux for the discretization of the

convection term and end up with the following DG formulation for the semidiscrete

solution uh(t̂), introduced in [17] as a system of ordinary differential equations:

(3.3)
(∂uh(t̂)

∂t̂
, vh

)

+ ah(uh(t̂), vh) + bh(uh(t̂), vh) + Jh(uh(t̂), vh)

+ (γ(x, t̂)uh(t̂), vh) = 0 ∀ vh ∈ Sp
h, ∀ t̂ ∈ (0, T )
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where

ah(u, v) =
∑

K∈Th

∫

K

D(x)∇u · ∇v dx−
∑

Γ∈FID

h

∫

Γ

〈D(x)∇u · ~nΓ〉[v] dS(3.4)

+
∑

Γ∈FID

h

∫

Γ

〈D(x)∇v · ~nΓ〉[u] dS,

bh(u, v) = −
∑

K∈Th

∫

K

(b1(x, t̂), b2(x, t̂))u · ∇v dx(3.5)

+
∑

Γ∈FI

h

∫

Γ

H(u|+Γ , u|−Γ , ~nΓ)[v]Γ dS

+
∑

Γ∈FDN

h

∫

Γ

H(u|+Γ , u∗|Γ, ~nΓ)[v]Γ dS,

γ(x, t̂) = 3r − q1 − q2 −
4α1x1 + 4α2x2 − 3

T − t̂
− σ2

1 − ̺σ1σ2 − σ2
2 .(3.6)

The crucial item of the DG formulation of the model problem is the treatment of

the convection part. We proceed analogously to [17], where the convection terms are

approximated with the aid of the numerical flux H(·, ·) through Γ in the direction

~nΓ = (n1, n2), i.e.

(3.7) H(u|+Γ , u|−Γ , ~nΓ) =







2∑

i=1

bi(x, t̂)ni · u
∣
∣
+

Γ
if A > 0,

2∑

i=1

bi(x, t̂)ni · u
∣
∣
−

Γ
if A 6 0,

where A =
2∑

i=1

bi(x, t̂)ni and the function u
∗ on the boundary edges Γ ∈ FDN

h has to

be chosen according to the prescribed boundary conditions. Here we use

(3.8) u∗|Γ =

{

0 if Γ ∈ FD
h (homogeneous b.c.),

u|+Γ if Γ ∈ FN
h (extrapolation).

The numerical flux H : R
2 → R given by (3.7) is based on the concept of upwinding

and one can easily see that it is Lipschitz continuous on any bounded subset of R2,

consistent and conservative, for more details see [11].

A particular attention should be also paid to the treatment of the diffusion terms,

which include an artificially added stabilization
∑

Γ∈FID

h

∫

Γ〈D(x)∇v ·~nΓ〉[u] dS, in order

to guarantee stability of the numerical scheme. In our case, where this stabilization
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is added with positive sign, we speak of the nonsymmetric interior penalty Galerkin

method.

In the end, the semi-discrete DG scheme is completed with the weighted penalty

(3.9) Jh(u, v) =
∑

Γ∈FI

h

∫

Γ

σ2
min

2|Γ| [u] [v] dS +
∑

Γ∈FD

h

∫

Γ

σ2
min

2|Γ| u v dS,

where |Γ| is the length of the edge Γ. The term (3.9) replaces the inter-element

discontinuities and guarantees the fulfilment of the prescribed boundary conditions.

In order to simplify the notation we introduce the bilinear form

(3.10) Ch(u, v) := ah(u, v) + bh(u, v) + Jh(u, v) + (γ(x, t̂)u, v)

for all u, v ∈ Sp
h, t̂ ∈ (0, T ). Consequently, we can define here the semidiscrete

solution uh of the problem (2.38)–(2.39).

Definition 3.1. We say that uh is a semidiscrete solution of problem (OPP), if

uh ∈ C1(0, T ;Sp
h) and the following conditions are satisfied:

(uh(0), vh) = (u0, vh) ∀ vh ∈ Sp
h,(3.11)

(∂uh(t̂)

∂t̂
, vh

)

+ Ch(uh(t̂), v) = 0 ∀ vh ∈ Sp
h, ∀ t̂ ∈ (0, T ).(3.12)

Let us comment that the problem (3.12) represents a system of ordinary differential

equations (ODEs) for the unknown function uh(t̂) supplemented with the initial

condition (3.11).

Theorem 3.1. Problem (3.11)–(3.12) has a unique semidiscrete solution.

P r o o f. Let us introduce B = {ϕj ; supp(ϕj) ⊂ K,K ∈ Th}DOF
j=1 ⊂ Sp

h, a stan-

dard basis of the space Sp
h, i.e.

(3.13) uh(t̂)(x) =

DOF∑

j=1

ξj(t̂)ϕj(x), x ∈ Ω,

where DOF denotes the number of degrees of freedom. Then we substitute (3.13)

into (3.12) choosing vh = ϕj(x). Setting

U(t̂) = (ξ1(t̂), . . . , ξDOF(t̂))
T, M = (ϕj , ϕi)DOF×DOF,(3.14)

C(t̂) = (Ch(ϕj , ϕi))DOF×DOF,
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we rewrite (3.12) as follows: Find U(t̂) for all t̂ ∈ (0, T ) such that

MU ′(t̂) = −C(t̂)U(t̂),(3.15)

U(0) = (ξ1(0), . . . , ξDOF(0))
T,(3.16)

where U(0) is determined by uh(0) in (3.11). Since the numerical flux H is Lipschitz

continuous and the form Ch(·, ·) is bilinear, we prove that the right-hand side of (3.15)
is Lipschitz continuous. Thus, by the theory of differential equations, (3.15)–(3.16)

has a unique solution (see [12]), and equivalently (OPP) has a unique semidiscrete

solution. �

The detailed numerical analysis of the introduced DGmethod applied to the option

pricing problem is available in weighted function spaces under very strong simplifi-

cations only, see [1]. On the other hand, there is a lot of results on the convergence

of this method in non-weighted function spaces, for survey see [9], [25] and references

cited therein.

The basic error estimate for the discontinuous Galerkin method (with nonsymmet-

ric discretization of diffusion terms and with the interior and boundary penalty) for

convection-diffusion equations indicates an O(hp) convergence rate in the L2-norm

and the H1-seminorm for the pth degree polynomial approximation over a polygonal

mesh of size h. However, the optimal O(hp+1) rate in the L2-norm is frequently

seen in practise for odd polynomial orders, see [8]. Since (OPP) belongs to the class

of convection-diffusion problems, similar results about the asymptotic order of the

convergence can be expected for sufficiently regular data.

3.3. Fully time-space discrete solution. In order to obtain the fully time-

space discrete DG formulation, we have to discretize also in the temporal variable.

There exists a wide range of approaches for the time discretization of ODE systems.

In practical computations, the simplest time discretization is via an explicit scheme,

which suffers from a limitation on the length of the time step due to a CFL-stability

condition. On the other hand, to avoid this time step restriction, it is advantageous

to use a fully implicit time discretization, which does not require any additional

linearization in our case, cf. [16], [18].

Therefore, the fully discrete solution of problem (3.11)–(3.12) via the backward

Euler method is defined in the following way.

Definition 3.2. Let 0 = t̂0 < t̂1 < . . . < t̂s = T ∗ < T be a partition of

the interval [0, T ∗] with the constant time step τ = T ∗/s. We define the discrete

solution of problem (OPP) as functions uk
h ≈ uh(t̂k), t̂k ∈ [0, T ∗], k = 0, . . . , s − 1,
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satisfying the conditions

u0
h is S

p
h-approximation of u

0,(3.17)

1

τ
(uk+1

h , vh) + Ch(uk+1
h , vh) =

1

τ
(uk

h, vh) ∀ vh ∈ Sp
h.(3.18)

The discrete problem (3.18) is equivalent to a system of linear algebraic equations

at each time level t̂k, which can be solved by a suitable solver.

Theorem 3.2. Problem (3.17)–(3.18) has a unique discrete solution.

P r o o f. Suppose uk
h = 0. Then the relation (3.18) is equivalent to

(3.19)
1

τ
(uk+1

h , vh) + ah(u
k+1
h , vh) + bh(u

k+1
h , vh)

+ Jh(u
k+1
h , vh) + (γ(x, t̂k+1)u

k+1
h , vh) = 0 ∀ vh ∈ Sp

h.

Since the problem (3.18) is a linear algebraic system, the existence of the solution is

implied by the uniqueness. Taking vh = uk+1
h in (3.19) and neglecting the positive

terms ah(u
k+1
h , uk+1

h ) and Jh(u
k+1
h , uk+1

h ), we obtain

(3.20)
1

τ
‖uk+1

h ‖2 6 |bh(uk+1
h , uk+1

h )|+ γk+1‖uk+1
h ‖2,

where γk+1 = max
x∈Ω

|γ(x, t̂k+1)|. Since uk+1
h ∈ Sp

h, we use the result from [8], Lemma 4

with a slight modification for the broken weighted spaces and obtain the estimate

(3.21) |bh(uk+1
h , uk+1

h )| 6 C

(

Jh(u
k+1
h , uk+1

h )1/2 +

(
∑

K∈Th

|uk+1
h |2V (K)

)1/2)

‖uk+1
h ‖

with a constant C > 0 independent of uk+1
h and h. Using (3.21) in (3.20), we have

‖uk+1
h ‖2 6 τC

(

Jh(u
k+1
h , uk+1

h )1/2 +

(
∑

K∈Th

|uk+1
h |2V (K)

)1/2)

‖uk+1
h ‖+ τγk+1‖uk+1

h ‖2.

Further, putting

(3.22) δ := τC

(

Jh(u
k+1
h , uk+1

h )1/2 +

(
∑

K∈Th

|uk+1
h |2V (K)

)1/2)

+ τγk+1‖uk+1
h ‖,

then for sufficiently small τ we have

(3.23) ‖uk+1
h ‖ 6 δ‖uk+1

h ‖ with δ ∈ (0, 1),

which implies ‖uk+1
h ‖ = 0, i.e., uk+1

h ≡ 0. We prove that for the homogeneous linear

algebraic system (3.19) there exists only the trivial solution, i.e., we complete the

proof of the existence and uniqueness of the discrete solution of (OPP). �
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3.4. Linear algebraic representation. We proceed similarly to [18]. More pre-

cisely, according to (3.13), rewriting the discrete DG solution as a linear combination

of basis functions, i.e.

(3.24) uk
h(x) =

DOF∑

j=1

ξkj vj(x), x ∈ Ω

and setting the vector of real coefficients Uk = {ξkj }DOF
j=1 ∈ R

DOF, we obtain the

sparse matrix equation

(3.25) (M+ τC(t̂k))Uk+1 = MUk,

where M is the symmetric, positive definite block diagonal mass matrix related to

L2-scalar product of basis functions. Using (3.14), the matrix C corresponds to the

bilinear form Ch(·, ·) and has also a sparse pattern. The solvability of linear algebraic
problem (3.25) follows from Theorem 3.2.

4. Numerical example

We illustrate the usage of the DG method to the pricing of Asian basket put op-

tion assuming a risk management problem of corporate finance. For this purpose we

utilize real market data, though with some simplification (see below). All computa-

tions are carried out with an algorithm implemented in the solver Freefem++, i.e.,

a mesh generation/adaptation, the DG discretization, assembly of a linear algebraic

problem and its solving. A detailed description can be found in [15].

The computational domain Ω is set large enough to suppress the undesirable effect

of the treatment of boundary conditions on the far-field boundary Γ3 by asymptotic

values, usually xmax
i ≈ 2/αi. Further, in order to obtain the approximate solution

well resolved in the whole computational domain, the mesh is adaptively refined

according to the orientation of the vector field induced by physical fluxes (2.23),

see Figure 2 (left). Moreover, to eliminate the influence of the approximation of

the payoff on the option value, the starting mesh allows to construct the initial

condition exactly. For the purpose of comparison the piecewise linear and quadratic

polynomial approximations are employed. For simplicity and in line with the option

type, we use a constant time step proportional to one day and GMRES as a sparse

solver for (3.25) during all simulations.

We consider an Asian basket put option written on two underlying assets, exchange

rates of EUR and USD, both with respect to GBP. We assume an air-service firm

from the UK, which has fixed prices of the outputs (60% EUR and 40% USD) in the
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respective currencies for the next month, but receives them on a daily basis. The

basket put option allows the firm to transfer the cashflow from local currencies into

the home currency (GBP) at favourable conditions (i.e., using either the market price

or the strike price) while the Asian feature enables the firm to average the value over

the whole month.

The parameter setting comes from real market observations of both currency pairs

over last 15 years (2001 to 2015) and fits the option maturity (one month). For

the basic setting we use the most commonly observed values. On the other hand,

the sensitivity analysis provided in Table 1 and Figure 3 should cover the observed

variability of the parameters (standard deviations, correlation).

In particular, we set up the input as follows: maturity time is one month

(T = 1/12), risk-free interest rates and dividend yields in all currencies are set

to zero for a given horizon, volatilities of the exchange rate returns are σ1 = 0.1

and σ2 = 0.15, respectively, the coefficient of linear correlation of the exchange

rate returns is ̺ = 0.45 and the reference node given by the closing values of

both underlying assets Sref
1 = 0.83 and Sref

2 = 0.75, respectively, and the average

Aref = α1S
ref
1 + α2S

ref
2 . The approximate solution is depicted in Figure 2 (right).

Since we deal with (Asian basket) put option, the surface of solutions attains

the highest value at the point [0, 0]. On the other hand, the surface of solutions

approaches zero if any of the variables (exchange rates) rises above 2.5.
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Figure 2. The adaptively refined triangulation with #Th ≈ 1 500 (left) and the correspond-
ing piecewise linear DG discrete solution after 30 days (right).

For efficient risk management it is important to know not only the price, but

also the sensitivity to input parameters. First, we investigate the sensitivity of the

option prices to the volatilities of both the underlying asset returns with a fixed

correlation. We generate the option prices using both polynomial orders for five

values of σi ∈ {0.05, 0.10, 0.15, 0.20, 0.25} so that we can capture various market
conditions (from sleeping market with low rate of information arrival up to busy

trading coming from the arrival of many important information). The comparative
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results evaluated at reference node are presented in Table 1 along with the option

values in thousands after 30 days (i.e. T ∗ = 30/365). Obviously, since the weight

of the first underlying asset (EUR) is higher (60%), the impact of its volatility

on the option price is higher as well. The option prices for linear and quadratic

approximations are very close to each other. However, one can observe that the

difference between these approximations is decreasing with increasing magnitude of

volatilities. This is caused by the character of the transport term (i.e. physical fluxes)

in the vicinity of the point [Sref
1 /Aref , Sref

2 /Aref ].

σ2

σ1
0.05 0.10 0.15 0.20 0.25

0.05
2.35934 3.14940 4.01797 4.92643 5.85842
2.25641 3.06311 3.95030 4.87346 5.81509

0.10
3.86766 4.55077 5.32706 6.16010 7.03085
3.79658 4.49091 5.27593 6.11722 6.99444

0.15
5.43499 6.06573 6.77591 7.54478 8.35751
5.39115 6.02129 6.73512 7.50910 8.32639

0.20
7.03286 7.62733 8.29107 9.01075 9.77543
7.00067 7.59162 8.25682 8.97995 9.74803

0.25
8.64311 9.21087 9.84104 10.5233 11.2495
8.61628 9.18118 9.81180 10.4964 11.2250

Table 1. Comparison of P1 (upper values in cells) and P2 approximations (bottom values
in cells) w.r.t. volatilities (̺ = 0.45).

Another important factor, specific to basket options, is the mutual dependence of

the two risk sources (foreign exchange rates), which is expressed here by the coef-

ficient of linear correlation. According to Figure 3, it is evident that the relation

between the option price and the correlation is positive and almost linear except

for strongly negatively correlated exchanges rates when the option price falls down

sharply. The reason is that the appreciation of EUR is connected with the depre-

ciation of USD (and vice versa) so that there is hardly any profit from holding the

option. Note finally that the difference between the linear and quadratic approxima-

tion is rather stable.

Finally, we focus on the structure of the basket, which is defined by weights αi. We

consider seven different scenarios with weights varying from 20% to 80%, and fixed

correlation and volatilities. The reference option prices (in thousands at T ∗) for all

scenarios are recorded in Table 2. It is apparent that the results are not symmetric,

i.e., the structure does matter—it is again natural, since both risk sources (foreign

exchange rates) have different starting value as well as different volatilities.
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Figure 3. Dependence of option values between particular risk sources given by correlation
̺ for different orders of approximation with fixed σ1 = 0.1 and σ2 = 0.15.

weights approximation
α1 α2 P1 P2

0.20 0.80 6.53574 6.44199
0.30 0.70 6.11812 6.05392
0.40 0.60 5.76402 5.72306
0.50 0.50 5.51185 5.46052
0.60 0.40 5.32706 5.27593
0.70 0.30 5.24099 5.17977
0.80 0.20 5.19455 5.17476

Table 2. Option prices at reference node [Sref1 , Sref2 , Aref ] after 30 days for piecewise linear
and quadratic treatment w.r.t. weights.

5. Conclusion

Various options have so specific payoff functions that analytical solution of the

PDE system is impossible and one must apply some numerical approximative tech-

nique. In this paper we have focused on deriving a numerical approach for the

pricing of Asian basket options with floating strike, which is based on the dimension-

ality reduction and the discontinuous Galerkin framework. We have also presented

an illustrative example of two-asset option on two foreign exchange rates, including

the sensitivity analysis. From this point of view the proposed numerical scheme pro-
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vides an option pricing tool which seems to be robust with respect to various types

of options as well as different market conditions.
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