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Abstract. Differential evolution algorithms represent an up to date and efficient way of
solving complicated optimization tasks. In this article we concentrate on the ability of
the differential evolution algorithms to attain the global minimum of the cost function.
We demonstrate that although often declared as a global optimizer the classic differential
evolution algorithm does not in general guarantee the convergence to the global minimum.
To improve this weakness we design a simple modification of the classic differential evolution
algorithm. This modification limits the possible premature convergence to local minima and
ensures the asymptotic global convergence. We also introduce concepts that are necessary
for the subsequent proof of the asymptotic global convergence of the modified algorithm.
We test the classic and modified algorithm by numerical experiments and compare the
efficiency of finding the global minimum for both algorithms. The tests confirm that the
modified algorithm is significantly more efficient with respect to the global convergence than
the classic algorithm.

Keywords: optimization; cost function; global minimum; global convergence; local con-
vergence; differential evolution algorithm; optimal solution set; convergence in probability;
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1. Introduction

Optimization tasks are frequent in science, engineering, and also production prac-

tice. The optimization can usually be expressed in terms of searching for the extreme

value of some objective function. The variables of the objective function represent

the system parameters and the extreme value corresponds to the optimized state of

the system. When we look for the minimum of the objective function, we usually

refer to it as a cost function.
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At present, evolutionary algorithms (including differential evolution algorithms)

are more and more used for optimization tasks with complicated cost functions.

A detailed survey of these methods is available e.g. in [6]. The evolutionary algo-

rithms are primarily utilized in situations when other usual methods fail to find the

optimized state. For instance the commonly used gradient methods usually do not

provide the global minimum when the cost function has a lot of local minima. In

these cases the gradient methods are prone to converge to a local minimum and their

result strongly depends on the choice of the starting point.

The evolutionary methods try to overcome this problem by generating whole pop-

ulations of potential solutions. The generation process is partly random. This con-

tributes to better exploring the space of all possible solutions (the search space). The

potential solutions are then assessed according to their cost function value. On the

other hand, the evolutionary algorithms are characterized by a slower convergence

and longer calculation times.

Because of the random creation of individual potential solutions, the convergence

analysis of differential evolution algorithms is more demanding. This is probably

the reason why the published results concerning sufficient conditions for the global

convergence of the differential evolution algorithms are relatively rare.

These algorithms were first introduced by Storn and Price in [4] and [7]. They now

consist of a larger group of similar algorithms that differ in implementation details.

We concentrate on the standard DE/rand/1/bin algorithm which is best known and

mostly used. That is why it is termed as the classic differential evolution algorithm

in [5] (further referenced to as CDEA).

In the first part of the article we concentrate on the global convergence of the

CDEA and find an example of the cost function demonstrating that the CDEA does

not in general guarantee the convergence to the global minimum of the cost function.

In the second part we design a simple modification improving CDEA’s global

convergence abilities. This modified algorithm is further referenced to as MDEA.

We prove that the modified algorithm does ensure the convergence to the global

minimum in asymptotic sense. The CDEA and MDEA are then tested by numerical

experiments. The numerical testing confirms that MDEA converges to the global

minimum with substantially higher probability than CDEA.

2. Classic differential evolution algorithm

In this section we briefly describe the functioning of CDEA. Generally, CDEA

seeks for the minimum of the cost function by constructing whole populations of in-

dividuals. Each individual is an ordered set of specific values from the cost function
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domain. In this way each individual represents a potential solution of the optimiza-

tion task. The quality of this individual is determined by the evaluation of the cost

function.

The next population is formed from the existing population by means of mutation

and crossover operators. Specifically, we go successively through all individuals in

the population G. For each individual yGi (termed as the target individual) we

select randomly three other (different) individuals yGr1, y
G
r2, y

G
r3 from the current

population. We form in a specific way (including randomness) a combination of these

three individuals and the target individual. This combination is termed the trial

individual and denoted ytriali . Then we evaluate the cost function for the target yGi
and trial individual ytriali and compare the results. The individual with lower value

of the cost function advances to the position of the target individual of the next

population yG+1

i . When this procedure is completed for all target individuals in

population G, we have the new population of individuals numbered G+ 1.

The next part illustrates CDEA operation more specifically in the form of the

pseudo code.

Input:

Optimization task parameters:

f denotes the cost function, D is the dimension of the cost function domain,

〈xmin
i , xmax

i 〉 is the domain of each cost function variable xi.

CDEA parameters:

NP denotes the population size (the number of individuals in each population),

NG is the total number of populations, F stands for the mutation factor, F ∈ 〈0, 2〉,

and CR denotes the crossover probability, CR ∈ 〈0, 1〉. The symbol G stands for the

population number, index i is the number of the individual in a specific population,

index j describes the jth component of a specific individual yi.

Computation:

(1) create the initial population (G = 1) of NP individuals yGi , 1 6 i 6 NP ,

randomly or according to a prescribed scheme

(2) (a) evaluate all individuals yGi of the population G (calculate f(yGi ) for each

individual yGi )

(b) store the individuals yGi and their evaluations f(y
G
i ) into the matrix A

with NP rows and D + 1 columns

(3) repeat until G 6 NG

(a) for i = 1 to NP do

(i) randomly select three different indices r1, r2, r3 ∈ {1, 2, . . . , NP},

rm 6= i, m ∈ {1, 2, 3}

(ii) randomly select an index ki ∈ {1, . . . , D}
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(iii) for j = 1 to D do

if (rand(0, 1) 6 CR or j = ki)

then ytriali,j = yGr3,j + F (yGr1,j − yGr2,j)

else ytriali,j = yGi,j
endif

endfor(j)

(iv) if f(ytriali ) 6 f(yGi )

then yG+1

i = ytriali

else yG+1

i = yGi
endif

endfor(i)

(b) store the individuals yG+1

i and their evaluations f(yG+1

i ), 1 6 i 6 NP , of

the new population G+ 1 into the matrix A, G = G+ 1

endrepeat.

Output:

The matrix A with NP rows and D + 1 columns contains the final population of

individuals including their evaluations. The row of the matrix A that contains the

lowest cost function value represents the best found individual ymin.

3. Classic differential evolution algorithm and

the global convergence

Although CDEA is commonly used for a lot of diverse optimization tasks, there are

not many publications dealing theoretically with their global convergence properties.

Most authors describe CDEA as a global optimizing technique (see for instance

[5], [7]), but quite often there is only very little of quantitative discussion to this

topic. The principle question is whether CDEA converges to the global minimum of

the cost function or not.

3.1. Counterexamples to the global convergence. It is not difficult to find

counterexamples to the global convergence of CDEA. Let us consider for instance

the following two graphs of cost functions with the domain in 2-D.

Even for the cost function shown in Figure 1(a) the probability that CDEA finds

the global minimum of the cost function is less than one. The reason is that CDEA

converges relatively fast to a local minimum. It means that the individuals in subse-

quent populations concentrate around the local minimum. As soon as the size of the

population falls under some critical value, the population is too small to generate
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trial individuals that could hit the global minimum (this situation is called the pre-

mature convergence). In this case even increasing the number of populations does

not lead to increasing the chances of finding the global minimum. Moreover, the

probability that CDEA finds the global minimum falls with the decreasing measure

of the global minimum region. The probability of finding the global minimum for

the cost function in Figure 1(b) is substantially smaller than for the cost function in

Figure 1(a). By reducting the measure of the global minimum region this probability

can be made as small as desired.

z-axis

y-axis x-axis

z-axis

y-axis x-axis

(a) (b)

Figure 1. Examples of cost functions in 2-D.

4. Modification ensuring the asymptotic global convergence

As mentioned in the previous part, CDEA does not in general guarantee the

convergence to the global minimum of the cost function. This is caused by the too

fast convergence of CDEA to a local minimum (premature convergence) resulting in

rapid reduction of the population size (loss of diversity). This observation gives us

a hint how to modify CDEA, so that it provides better results regarding the global

convergence. The most straightforward way is to limit the premature convergence

by replacing some individuals with the highest values of the cost function in each

population by random individuals. Though these random individuals reduce partially

the convergence speed they increase substantially the diversity of the population.

The increased diversity then ensures even the asymptotic global convergence of the

modified algorithm.
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5. Modified differential evolution algorithm

In this section we describe the modification of CDEA called MDEA. Since there is

in principle necessary to make one simple change in the algorithm, we present only

the differences with respect to CDEA. See the pseudo-code description of CDEA in

Section 2.

Input:

We add another parameter R that determines the ratio of random individuals in

each population, R ∈ 〈0, 1〉, e.g., R = 0.1 means that 10% of individuals in each

population are generated randomly.

Computation:

We add another procedure to the part (3), specifically:

(c) determine in matrix A the quantity ⌊NP · R⌋ of individuals with the highest

cost function values and replace these individuals by random individuals from the

search space.

Here the symbol ⌊x⌋ denotes the integer part of the real number x.

6. Asymptotic global convergence

In this section we present several theoretical concepts and statements that can

be used to prove the asymptotic global convergence of MDEA. More specifically, we

are able to show that when the number of populations satisfies G → ∞ than the

probability that MDEA finds the global minimum approaches 1.

6.1. Optimal solution set. We have an optimization task to find the minimum

of a cost function f(x1, x2, . . . , xn) defined on a bounded domain. For brevity we

denote by the symbol x the set of all variables x1, x2, . . . , xn of the optimized function.

That is, we should find the minimum of the function f(x). This function may have

several minima. We would like to find the minimum with the lowest cost function

value

(6.1) min{f(x) : x ∈ S},

where S is a measurable search space of a finite measure representing all possible

configurations of variables x. The solution set can be defined as

S∗ = {x∗ : f(x∗) = min{f(x) : x ∈ S}},
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where x∗ represents the global minimum of the cost function. We consider an ex-

panded solution set

(6.2) S∗

ε = {x ∈ S : |f(x)− f(x∗)| < ε},

where ε > 0 is a small positive real number. Denoting by µ the Lebesgue measure,

we suppose that µ(S∗

ε ) > 0 for each ε. We call the set S∗

ε defined by relation (6.2)

the optimal solution set.

6.2. Convergence in probability. To examine the global convergence of MDEA

we need to introduce a concept of the convergence in probability defined in [1].

Definition. Let {Y (k), k = 1, 2, . . .} be a population sequence generated by a

differential evolution algorithm for solving the optimization problem (6.1). We say

that the algorithm converges to the optimal solution set in probability if and only if

(6.3) lim
k→∞

p{Y (k) ∩ S∗

ε 6= ∅} = 1,

where p denotes the probability of an event.

Now we can prove the following theorem.

Theorem 6.1. Let us suppose that for each population Y (k) of a differential

evolution algorithm there exists at least one individual y such that

p{y ∈ S∗

ε} > α > 0,

where α is a small positive value. Then the algorithm converges to the optimal

solution set S∗

ε in probability. That is, the relation (6.3) holds.

Here p{y ∈ S∗

ε} denotes the probability that y belongs to the optimal solution

set S∗

ε .

P r o o f. Let us suppose that an individual yrand ∈ S is generated randomly in

each population Y (k). The probability that it hits the optimal solution set is given

by the relation

p{yrand ∈ S∗

ε} =
µ(S∗

ε )

µ(S)
= α > 0.

It means that the relation

p{yrand /∈ S∗

ε} = 1− α

203



holds for each population. We can estimate that the first k populations do not

include an individual y ∈ S∗

ε by the relation

k
∏

i=1

p{Y (i) ∩ S∗

ε = ∅} 6 (1− α)k.

Based on the construction of individuals in the population Y (k), the best individual

in the population Y (k) has the same or better evaluation than the best individual

from all the previous populations, implying

lim
k→∞

p{Y (k) ∩ S∗

ε = ∅} = lim
k→∞

k
∏

i=1

p{Y (i) ∩ S∗

ε = ∅} 6 lim
k→∞

(1− α)k = 0,

which induces

lim
k→∞

p{Y (k) ∩ S∗

ε 6= ∅} = 1− lim
k→∞

p{Y (k) ∩ S∗

ε = ∅} = 1− 0 = 1

which was to prove. �

Since the probability that a random individual hits the optimal solution set with

a positive measure is strictly positive, MDEA (in contrast to CDEA) complies with

the assumptions of the theorem. This implies the global convergence of MDEA in

probability.

7. Numerical testing and verification

In this section we describe the numerical testing of MDEA and CDEA and compare

the results of the two algorithms.

7.1. Cost function. For the tests we designed special cost functions that con-

tribute to quantitative considerations regarding convergence probabilities and can be

easily generalized to an arbitrary dimension D of the search space. The cost function

f(x1, x2, . . . , xD) of D variables xi is constructed as a sum of two simple functions

f = B + M , where B is a base function and M is a modifier creating the global

minimum of the function f . The base function is of a simple form

B =

D
∑

i=1

(xi − xiL)
2,
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where the coordinates xiL define the position of the local minimum at the point xL.

The modifier is expressed by the formula

M = d ·

[ D
∑

i=1

1

w
(xi − xiG)

D − 1

]

,

defined for xi complying with the condition
D
∑

i=1

(xi − xiG)
2 6 1 (the unit ball),

otherwise M = 0.

The parameter d defines the “depth” of the global minimum, the parameter w

determines the “width” of the global minimum. The coordinates xiG determine the

position of the global minimum at the point xG. Putting the two parts together we

get the final expression for the cost function f(x1, x2, . . . , xD) in the form

(7.1) f(x1, x2, . . . , xD) =

D
∑

i=1

(xi − xiL)
2 + d ·

[ D
∑

i=1

1

w
(xi − xiG)

D − 1

]

.

Figure 2 represents the cost function f(x1, x2) with the two-dimensional domain

(D = 2) in the three-dimensional space.

z-axis

y-axis x-axis

Figure 2. Example of a cost function.

7.2. Numerical testing—parameters. We performed the numerical tests and

comparison between CDEA and MDEA in the Matlab environment. We took as a

cost function the function defined in the previous section by relation (7.1) in an 8-

dimensional Euclidean space. That is, we use the parameter D = 8. The domain of

each variable xi, i = 1, 2, . . . , 8, is the interval 〈−4, 4〉, the domain of the cost function
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f(x1, x2, . . . , x8) is then the Cartesian product 〈−4, 4〉 × 〈−4, 4〉 × . . . × 〈−4, 4〉 =

〈−4, 4〉8. The point of the global minimum is xG = [3.0, 3.0, . . . , 3.0], the point of

the local minimum is xL = [0.0, 0.0, . . . , 0.0]. The parameters are d = 144 and w = 1.

Concerning the parameters of the differential evolution algorithms, the number of

individuals in the population is NP = 800, the total number of populations is NG =

4000, the crossover probability is CR = 0.9, the mutation factor is F = 0.8. The ratio

of random individuals in the population is R = 0 for CDEA (the classic differential

evolution algorithm has no random individuals), for MDEA we tested the following

alternatives for the value of parameter R: R = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7.

7.3. Numerical testing—results. We summarized the results of the numerical

testing in Table 1. The algorithms CDEA and all variants of MDEA were run 80

times. All algorithm parameters (except for the parameter R defining the number of

random individuals in each population) were the same for both CDEA and MDEA

as stated in the previous subsection. We recorded the number of successful attempts

to find the global minimum of the cost function and evaluated the corresponding

success ratio.

CDEA MDEA MDEA MDEA

R = 0.1 R = 0.2 R = 0.3
Percentage of random individuals 0.0% 10.0% 20.0% 30.0%

Number of random individuals 0 80 160 240

Global minimum found 0 9 20 28

Success ratio in % 0.00% 11.25% 25.00% 35.00%

MDEA MDEA MDEA MDEA

R = 0.4 R = 0.5 R = 0.6 R = 0.7
Percentage of random individuals 40.0% 50.0% 60.0% 70.0%

Number of random individuals 320 400 480 560

Global minimum found 37 50 41 52

Success ratio in % 46.25% 62.50% 51.25% 65.00%

Table 1. Results of numerical testing of CDEA and MDEA.

It follows from Table 1 that for the specific cost function the algorithm CDEA

was not able to find the global minimum of the cost function in any of 80 attempts.

This is caused by a premature convergence of CDEA to the local minimum. As

soon as the population concentrates around the local minimum and is small with

respect to the distance from the local to global minimum, there is no chance for

the algorithm to converge to the global minimum even if we increase substantially

the number of populations. On the other hand MDEA was able to identify the

206



global minimum of the cost function with nonzero success ratio in all variants of

the algorithm. The success ratio increases with the increasing number of random

individuals in the population from 11.25% (R = 0.1) up to 65.00% (R = 0.7). It is

important to point out that the higher success ratio in finding the global minimum

is paid off by the decrease in the convergence speed. It implies that in practical

applications it is always important to strike a balance between the success ratio and

convergence speed.

7.4. A real optimization task. We also compared the performance of CDEA

and MDEA in a real optimization task. The aim of optimization is to locate a set

of infrared heaters above a relatively complicated shell metal mould, so that the

generated heat radiation intensity incident onto the mould surface is as uniform

as possible. For the detailed description of this problem see the references [2] and

[3]. Here we present only the results of CDEA and MDEA and their comparison

regarding the attained minimum of the cost function.

The parameters of the optimization are: D = 96 (dimension of the task), NP =

192 (number of individuals in each population), NG = 30000 (number of popula-

tions), CR = 0.98, and F = 0.6 (crossover and mutation constants). When using

MDEA we again tried several values of the parameter R representing the ratio of ran-

dom individuals in the population. Specifically, R = 0.02; 0.04; 0.08; 0.12; 0.16; 0.20.

The best optimized state was achieved by MDEA with parameter R = 0.12 and

the value of the cost function was by almost 9% lower than for the optimized state

located by CDEA, which is a significant difference.

8. Conclusions

We concentrated in this paper on the topic of global convergence of the classic

differential algorithm (CDEA).

In the first part we demonstrated by a counterexample that CDEA is not a global

optimizer in the sense of finding the global minimum of the cost function under

general circumstances. This does not exclude a possibility that using CDEA provides

the global minimum, but such a result is not guaranteed and depends strongly on

the specific cost function and optimization parameters.

Subsequently, we succeeded in designing a suitable simple modification of CDEA

improving substantially its global convergence. MDEA (in contrast to CDEA) guar-

antees the asymptotic convergence to the global minimum of the cost function. That

is, the probability that MDEA converges to the global minimum is increasing with

increasing number of populations. We also provided the concepts and theoretical

conclusions confirming the asymptotic convergence of MDEA.
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In the next part of the paper we summarized testing CDEA and MDEA in numer-

ical experiments. In these tests we verified better properties of MDEA concerning

the global convergence as compared with CDEA. The results of the numerical tests

are in conformity with theoretical expectations.

The last part describes the test of CDEA and MDEA in a real optimization task.

The results justify using MDEA for optimization problems where attaining the lowest

cost function value is essential.
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