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Abstract. We investigate the conditions of equivalence of a differential operator of infinite
order with constant coefficients to the operator of differentiation in one space of analytic
functions. We also study the conditions of continuity of a differential operator of infinite
order with variable coefficients in such space.
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1. Introduction

Two linear continuous operators A and B acting in a topological vector space H

are called equivalent if there exists an isomorphism T of H such that TA = BT . The

conditions of equivalence of differential operators from different classes that act in

functional spaces are frequent objects of investigation in functional analysis. These

studies were initiated by Delsarte [1] for spaces of functions of a real variable and

by Delsarte and Lions in [2] for spaces of entire functions. In the space of analytic

functions the conditions of equivalence of different classes of differential operators

were obtained by many mathematicians (see e.g. [3]–[6]). In particular, conditions of

equivalence of a differential operator of infinite order with constant coefficients to the

operator of multiple differentiation in spaces of analytic functions in circular domains

were studied in [5]. Maldonado, Prada, Senosiain in [7] investigated the conditions

of equivalence of a differential operator of infinite order with constant coefficients

to the operator of differentiation in the space of functions which is isomorphic to

the space s of rapidly decreasing sequences. In this paper we study some properties
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of differential operators of infinite order in the space s. We also fix the mistaken

statement of Theorem 3 from [7].

We denote by s the space of all functions of the form f(z) =
∞
∑

n=0
fnz

n of complex

variable, where fn ∈ C, n = 0, 1, . . ., and

‖f‖k = |f0|+
∞
∑

n=1

|fn|nk <∞

for all k ∈ N. The topology on the space s is generated by the system of norms

{‖·‖k : k ∈ N} (see [7], [8]). The symbol L(s) stands for the set of all linear continuous
operators in s. Note that any f of s is an analytic function in the unit disc |z| < 1.

We start with auxiliary properties of differential operators of infinite order in the

space s.

2. Applicability of differential operators of infinite order

Note that the product of any f, g of s belongs to the space s. Herewith,Mg ∈ L(s),
where Mgf = gf .

Theorem 2.1. Let (ψn)
∞
n=0 be a sequence of functions of s such that the operator

L : s→ s defined by the formula

(1) (Lf)(z) =

∞
∑

n=0

ψn(z)f
(n)(z)

is continuous and linear, and the series on the right-hand side of (1) is convergent

in s for any f ∈ s. Then there exists N ∈ N such that ψn = 0, n > N .

P r o o f. For each n = 0, 1, . . . the formula (Lnf)(z) = ψn(z)f
(n)(z) defines

a linear continuous operator on s. The condition of the theorem implies that the

sequence (Lnf)
∞
n=0 is bounded in s. Therefore the sequence of operators (Ln)

∞
n=0 is

pointwisely bounded in s. Since s is the Fréchet space [8], according to the Uniform

Boundedness Principle this sequence of operators is equicontinuous. Then we have

(2) ∀ p ∈ N ∃ q ∈ N ∃C > 0 ∀n > 0 ∀ f ∈ s : ‖Lnf‖p 6 C‖f‖q.

Setting f(z) = zk in (2), we get

(3) ∀ p ∈ N ∃ q ∈ N ∃C > 0 ∀n > 0 ∀ k > n : ‖ψn(z)z
k−n‖p 6 C

kq(k − n)!

k!
.
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Fix any p ∈ N and take q and C such that (3) holds. We show that ψn = 0 for all

n > q − p. Fix any n > q − p. Let ψn(z) =
∞
∑

j=0

ψj,nz
j. Then for all k > n we get

(4) ‖ψn(z)z
k−n‖p =

∞
∑

j=0

|ψj,n|(j + k − n)p.

Since (k − n)!/k! < 1/(k − n)n for k > n, using (3) and (4) we have

|ψj,n| 6
‖ψn(z)z

k−n‖p
(j + k − n)p

6 C
kq(k − n)!

(j + k − n)pk!
6 C

kq

(k − n)n+p

for all j = 0, 1, . . ., k > n. Thus,

(5) |ψj,n| 6 C
kq

(k − n)q
1

(k − n)n+p−q

for all j = 0, 1, . . . and k > n. Fix an arbitrary j > 0. Passing to the limit when

k → ∞ in (5) we get ψj,n = 0. Therefore ψn = 0. �

3. Commutant of D in s

Theorem 3.1. In order that the operator T belongs to the class L(s) and com-
mutes with the operator of differentiation D, it is necessary and sufficient that T has

the form

(6) T =

m
∑

j=0

cjD
j ,

where m is a positive integer, cj , j = 0,m are complex numbers.

P r o o f. Necessity. Let T ∈ L(s) commute with the operator of differentiation,
i.e.

(7) TD = DT.

Denote Tzn = tn(z), n = 0, 1, . . . We show that there is a sequence of complex

numbers (cn)
∞
n=0 such that

(8) tn(z) =

n
∑

j=0

n!

(n− j)!
cjz

n−j,
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n = 0, 1, . . . Applying (7) to zn, n = 0, 1, . . ., we get t0(z) = c0, where c0 ∈ C and

(9) t′n(z) = ntn−1(z),

n = 1, 2, . . . The validity of (8) is proved by induction using (9).

We show now that the sequence (cn)
∞
n=0 is finite. Since T ∈ L(s), we have

(10) ∀ p ∈ N ∃ q ∈ N ∃C > 0 ∀ f ∈ s : ‖Tf‖p 6 C‖f‖q.

Fix an arbitrary p ∈ N and find a q ∈ N and C > 0 using (10). Setting f(z) = zn

in (10), we get ‖tn‖p 6 Cnq, n ∈ N. Since

‖tn‖p = n!|cn|+
n−1
∑

j=0

n!

(n− j)!
|cj |(n− j)p >

n!

(n− j)!
|cj |(n− j)p,

|cj | 6
(n− j)!

(n− j)pn!
‖tn‖p 6 C

nq

(n− j)p
(n− j)!

n!
6 C

nq

(n− j)p+j

for all n ∈ N and j = 0, n− 1. Thus,

(11) |cj | 6 C
nq

(n− j)p+j

for all n ∈ N and j = 0, n− 1. We choose an arbitrary positive integer m such that

m > q − p. Fix an arbitrary j > m. Then j > q − p. Using (11) for n > j + 1 and

letting n tend to infinity in (11), we get that |cj | = 0. Thus, cj = 0 for all j > m.

Then (8) implies that

tn(z) =

min{m,n}
∑

j=0

n!

(n− j)!
cjz

n−j =

min{m,n}
∑

j=0

cjD
j(zn) =

( m
∑

j=0

cjD
j

)

(zn)

for all n = 0, 1, . . . Since the system (zn)∞n=0 forms a basis in s, the continuity of T

implies that for any f(z) =
∞
∑

j=0

fnz
n of s the equality

(Tf)(z) =

∞
∑

n=0

fn

( m
∑

j=0

cjD
j

)

(zn) =

( m
∑

j=0

cjD
j

)( ∞
∑

j=0

fnz
n

)

=

m
∑

j=0

cj(D
jf)(z)

holds. Thus, T can be represented in the form (6). The necessity of conditions of

Theorem 3.1 is proved. The sufficiency of conditions of the theorem is obvious. �
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Since the set of operators from L(s) which are commuting with the operator of dif-
ferentiation coincides with the set of polynomials with respect to the differentiation,

the operator of differentiation is the minimally commuting operator in the space s.

4. The main result

We proceed now to solve the main problem of studying conditions of equivalence

of the operator of differentiation of infinite order with constant coefficients to the

operator of differentiation in s.

Lemma 4.1. Let (ϕn)
∞
n=0 be a sequence of complex numbers such that the op-

erator ϕ(D) =
∞
∑

n=0
ϕnD

n acts in s linearly and continuously. If ϕ(D) is equivalent

to Dm in s for some m ∈ N, then ϕ(D) =
m
∑

n=0
ϕnD

n and ϕm 6= 0.

P r o o f. Since the operator of differentiation of infinite order with constant coeffi-

cients ϕ(D) =
∞
∑

n=0
ϕnD

n acts in the space s linearly and continuously, by Theorem 2.1

this operator has a finite order. Then there exists N ∈ N such that ϕ(D) =
N
∑

n=0
ϕnD

n

and ϕN 6= 0. Note that the dimension of the kernel of the operator of differentiation

of finite order acting in the space s is equal to the order of this operator. Since

equivalent operators have equal dimensions of kernels, N = m and ϕm 6= 0. �

R em a r k 4.1. The statement of Lemma 4.1 implies the correctness of the hy-

pothesis, which is formulated in Remark 1 of [7].

Theorem 4.1. Let (ϕn)
∞
n=0 be a sequence of complex numbers such that the

operator ϕ(D) =
∞
∑

n=0
ϕnD

n acts in s linearly and continuously. In order that ϕ(D)

is equivalent to D in s, it is necessary and sufficient that ϕ(D) = ϕ0I + ϕ1D and

|ϕ1| = 1.

P r o o f. Necessity. Assume that the operator ϕ(D) is equivalent to D in

the space s. Then Lemma 4.1 implies that ϕ(D) = ϕ0I + ϕ1D, ϕ1 6= 0. It

remains to prove that |ϕ1| = 1. The operator T0, which acts according to the

rule (T0f)(z) = exp(ϕ0z/ϕ1)f(z), is an isomorphism of s such that the equality

T0(ϕ0I + ϕ1D) = (ϕ1D)T0 holds. Then the operator ϕ0I + ϕ1D is equivalent to

ϕ1D in s. As a consequence of transitivity of equivalence we obtain that the op-

erator ϕ1D is equivalent to the operator D in the space s. Then there exists an

isomorphism T of s such that the equality T (ϕ1D) = DT holds. Let Tzn = tn(z),

n = 0, 1, . . . Then there exists a sequence of complex numbers (cn)
∞
n=0, such that
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tn(z) =
n
∑

k=0

(n!/k!)ϕk
1cn−kz

k, n = 0, 1, . . . These equalities can be proved by induc-

tion on n. Herewith T 1 = t0(z) = c0 6= 0, because the operator T is an isomorphism

of S. Since T ∈ L(s),

(12) ∀ p ∈ N ∃ q ∈ N ∃C > 0 ∀ f ∈ s : ‖Tf‖p 6 C‖f‖q.

Fix an arbitrary p ∈ N and find q ∈ N, C > 0 according to (12). Setting in (12)

f(z) = zn, we get ‖tn‖p 6 Cnq for n ∈ N. Since

‖tn‖p = n!|cn|+
n
∑

k=1

n!

k!
|ϕ1|k|cn−k|kp > |ϕ1|n|c0|np,

|ϕ1|n 6
‖tn‖p
|c0|np

6
C

|c0|
nq−p

for all n ∈ N. It follows that |ϕ1| 6 n

√

C/|c0|( n

√
n)q−p for all n ∈ N. Letting n→ ∞,

we get |ϕ1| 6 1. Since ϕ1D and D are equivalent in s, (1/ϕ1)D and D are equivalent

in s. Then, according to the above-proved, |1/ϕ1| 6 1, i.e. |ϕ1| > 1. Thus, |ϕ1| = 1

and the necessity of conditions of Theorem 4.1 is proved.

Sufficiency. Let ϕ(D) = ϕ0I + ϕ1D and |ϕ1| = 1. The operator T , which acts

according to the rule (Tf)(z) = exp(ϕ0z)f(ϕ1z), is an isomorphism of s such that

T (ϕ0I + ϕ1D) = DT . Thus, the operator ϕ0I + ϕ1D is equivalent to D in s. �

R em a r k 4.2. Theorem 3 in [7] asserts that the operator ϕ(D) =
∞
∑

n=0
ϕnD

n is

equivalent to D in the space s if and only if ϕ(D) = ϕ0I + ϕ1D, with ϕ1 6= 0. It

follows from the theorem we have proved above that this statement is not correct,

because the condition |ϕ1| = 1 is missed in Theorem 3 from [7].
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