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Abstract. The classical Hermite-Hermite matrix polynomials for commutative matrices
were first studied by Metwally et al. (2008). Our goal is to derive their basic properties in-
cluding the orthogonality properties and Rodrigues formula. Furthermore, we define a new
polynomial associated with the Hermite-Hermite matrix polynomials and establish the ma-
trix differential equation associated with these polynomials. We give the addition theorems,
multiplication theorems and summation formula for the Hermite-Hermite matrix polyno-
mials. Finally, we establish general families and several new results concerning generalized
Hermite-Hermite matrix polynomials.
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1. Introduction

Orthogonal matrix polynomials constitute a promising field whose development

leads to significant results both from the theoretical as well as the practical points

of view. Some results in the theory of classical orthogonal polynomials have been

extended to orthogonal matrix polynomials, for instance, see [3], [5], [8], [29]. Im-

portant connections between orthogonal matrix polynomials and matrix differential

equations of the second order appear in [2], [8], [6], [7]. Extensions to the ma-

trix framework of the classical families of Legendre, Laguerre, Hermite, Chebychev,

Hermite-Hermite and Gegenbauer polynomials have been introduced in [1], [9], [10],

[12], [14]–[31]. The interest in the family of Hermite polynomials is based on their

intrinsic mathematical properties due to which these polynomials have found wide-

ranging applications in physics.
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Our main aim in this paper is to consider a new system of Hermite-type matrix

polynomials. The organization of this paper is as follows. In Section 2, we discuss

the orthogonality properties and Rodrigues formula of the Hermite-Hermite matrix

polynomials in a fairly direct way. In Section 3, we define a polynomial associated

with the generalized Hermite-Hermite matrix polynomials and obtain the matrix

differential equation associated with these polynomials. A class of polynomials asso-

ciated with the generalized Hermite-Hermite polynomials is introduced and studied

in Section 4. Section 5 deals with some relations involving the addition theorems of

the Hermite-Hermite polynomials and the multiplication theorems discussed there

will hopefully provide the matter of forthcoming investigations in this and related

fields.

Throughout this paper, for a matrix A in C
N×N , its spectrum σ(A) denotes the

set of all the eigenvalues of A. Furthermore, the identity matrix and the null matrix

or zero matrix in CN×N will be denoted by I and 0, respectively. In this expression,

ℜ(z) is the real part of the complex number z. If A is a matrix in CN×N , its two-norm

is denoted by ‖A‖2, and is defined as

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

,

where for a vector x in C
N , ‖x‖2 = (xTx)1/2 is the Euclidean norm of x.

Notation 1.1 (Dunford and Schwartz [4]). If f(z) and g(z) are holomorphic

functions of the complex variable z which are defined in an open set Ω of the complex

plane, and A, B are matrices in C
N×N with σ(A) ⊂ Ω and σ(B) ⊂ Ω such that

AB = BA, then from the matrix functional calculus, it follows that

f(A)g(B) = g(B)f(A).

Definition 1.1 (Jódar and Defez [9]). A matrix A ∈ C
N×N is a positive stable

matrix if it satisfies

(1.1) ℜ(z) > 0 for every eigenvalue z ∈ σ(A).

Lemma 1.1. If A(k, n) and B(k, n) are matrices in C
N×N for n > 0, k > 0, it

follows in an analogous way to the proof of Lemma 11 and 10 of Rainville [13] that

∞
∑

n=0

∞
∑

k=0

A(k, n) =
∞
∑

n=0

[n/2]
∑

k=0

A(k, n− 2k),(1.2)
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∞
∑

n=0

∞
∑

k=0

A(k, n) =

∞
∑

n=0

[n/m]
∑

k=0

A(k, n−mk),

∞
∑

n=0

∞
∑

k=0

B(k, n) =
∞
∑

n=0

n
∑

k=0

B(k, n− k); m ∈ N.

Similarly, we can write

∞
∑

n=0

[n/2]
∑

k=0

A(k, n) =

∞
∑

n=0

∞
∑

k=0

A(k, n+ 2k),(1.3)

∞
∑

n=0

[n/m]
∑

k=0

A(k, n) =
∞
∑

n=0

∞
∑

k=0

A(k, n+mk),

∞
∑

n=0

n
∑

k=0

B(k, n) =

∞
∑

n=0

∞
∑

k=0

B(k, n+ k); m ∈ N.

In the following, we recall the main relations and some properties of the Hermite-

Hermite matrix polynomials mentioned in [11].

Definition 1.2. In [11], the Hermite-Hermite matrix polynomials are defined by

(1.4) HHn(x,A) = n!

[n/2]
∑

k=0

(−1)k(
√
2A)n−2kHn−2k(x,A)

k!(n− 2k)!
,

where A is a positive stable matrix in CN×N satisfying condition (1.1) and Hn(x,A)

are the Hermite matrix polynomials (see [6], [9])

Hn(x,A) = n!

[n/2]
∑

k=0

(−1)k

k!(n− 2k)!
(x
√
2A)n−2k, n > 0.

According to [11], we have

(1.5)

∞
∑

n=0

HHn(x,A)t
n

n!
= exp

(

xt(
√
2A)2 − t2(I + (

√
2A)2)

)

.

Theorem 1.1. Let A be a positive stable matrix in C
N×N satisfying condi-

tion (1.1). The Hermite-Hermite matrix polynomials HHn(x,A) satisfy the relation

(1.6)
dr

dxr HHn(x,A) =
(
√
2A)2rn!

(n− r)!
HHn−r(x,A)), 0 6 r 6 n.
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Theorem 1.2. Let A be a positive stable matrix in C
N×N satisfying condi-

tion (1.1). Then we have

(1.7) HHn(x,A) = x(
√
2A)2HHn−1(x,A) − 2(n− 1)HHn−2(x,A), n > 2.

Corollary 1.1. The Hermite-Hermite matrix polynomials are a solution of the

matrix differential equation of the second order

(1.8)
[ d2

dx2
I − 2x

d

dx
A2(I + 2A)−1 + 2nA2(I + 2A)−1

]

HHn(x,A) = 0, n > 0.

2. Orthogonality and Rodrigues formula of the Hermite-Hermite

matrix polynomials

In this section, we will discuss the orthogonality properties of the Hermite-Hermite

matrix polynomials.

From (1.8), we can write

e−A2x2(I+2A)−1 d2

dx2 HHn(x,A)(2.1)

− e−A2x2(I+2A)−1

2xA2(I + 2A)−1 d

dx
HHn(x,A)

+ e−2A2x2(I+2A)−1

2nA2(I + 2A)−1
HHn(x,A) = 0

⇒
[

e−A2x2(I+2A)−1 d

dx
HHn(x,A)

]′

+ e−A2x2(I+2A)−1

2nA2(I + 2A)−1
HHn(x,A) = 0.

Replacing the index n by m in (2.1), we get

(2.2)
[

e−A2x2(I+2A)−1 d

dx
HHm(x,A)

]′

+ e−A2x2(I+2A)−1

2mA2(I + 2A)−1
HHm(x,A) = 0.

If we multiply (2.1) by HHm(x,A) and (2.2) by HHn(x,A), and subtract, we obtain

(2.3) e−A2x2(I+2A)−1

2A2(I + 2A)−1(n−m)HHn(x,A)HHm(x,A)

=
[

e−A2x2(I+2A)−1
(

HHn(x,A)
d

dx
HHm(x,A)

− HHm(x,A)
d

dx
HHn(x,A)

)]′
.
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Integrating (2.3) over the interval [a, b], one gets

(2.4)

∫ b

a

e−2A(I+2A)−1x2

2A2(I + 2A)−1(n−m)HHn(x,A)HHm(x,A) dx

=
[

e−A2x2(I+2A)−1
(

HHn(x,A)
d

dx
HHm(x,A) − HHm(x,A)

d

dx
HHn(x,A)

)]∣

∣

∣

b

a
.

Since the multiple of any polynomial in x by e−A2x2(I+2A)−1 → 0 as x → ∞ or

x → −∞, and taking limits in (2.4) as a → −∞, b → ∞, it follows that
∫ ∞

−∞
e−A2x2(I+2A)−1

HHn(x,A)HHm(x,A) dx = 0; m 6= n.

We see therefore that the Hermite-Hermite matrix polynomials are an orthogonal

set over the interval (−∞,∞) with weight function e−A2x2(I+2A)−1

.

From (1.2) and (1.5), we obtain

(2.5)

∞
∑

m=0

m
∑

k=0

HHk(x,A)HHm−k(x,A)t
m−k

(m− k)!k!
= exp

(

4Axt− 2(I + 2A)t2
)

,

so

(2.6)

∫ ∞

−∞
e−A2x2(I+2A)−1

exp
(

4Axt− 2(I + 2A)t2
)

dx

=
∞
∑

m=0

m
∑

k=0

∫ ∞

−∞
e−A2x2(I+2A)−1 HHk(x,A)HHm−k(x,A)t

m−k

(m− k)!k!
dx.

Equation (2.6) is

(2.7)

∫ ∞

−∞
e−A2x2(I+2A)−1

exp
(

4Axt− 2(I + 2A)t2
)

dx

= e2t
2(I+2A)

∫ ∞

−∞
e−(xA(

√
I+2A)−1−2

√
I+2At)2 dx

=
√

πA−1
√
I + 2Ae2t

2(I+2A)

=
√

πA−1
√
I + 2A

∞
∑

n=0

2nt2n

n!
(I + 2A)n,

which can be written

(2.8)
√

πA−1
√
I + 2A

∞
∑

n=0

2nt2n

n!
(I + 2A)n

=
∞
∑

m=0

m
∑

k=0

∫ ∞

−∞
e−A2x2(I+2A)−1 HHk(x,A)HHm−k(x,A)t

m−k

(m− k)!k!
dx.
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Then m must be even, m = 2n and k = n. Therefore we have

2n

n!

√
πA−1

√
I + 2A(I + 2A)n =

∫ ∞

−∞
e−A2x2(I+2A)−1 HHn(x,A)HHn(x,A)

n!n!
dx,

which yields

∫ ∞

−∞
e−A2x2(I+2A)−1

HH
2
n(x,A) dx = 2nn!

√
πA−1

√
I + 2A(I + 2A)n.

Therefore, the following result has been established.

Theorem 2.1. Let A be a positive stable matrix in C
N×N satisfying condi-

tion (1.1), then the Hermite-Hermite matrix polynomials satisfy the following or-

thogonality formula:

(2.9)

∫ ∞

−∞
e−A2x2(I+2A)−1

HHn(x,A)HHm(x,A) dx

=

{

0, m 6= n;

2nn!
√

πA−1(I + 2A)n+1/2, m = n.

In the following theorem, we provide a Rodrigues formula for the Hermite-Hermite

matrix polynomials.

Theorem 2.2. Let A be a positive stable matrix in C
N×N satisfying condi-

tion (1.1), then the Hermite-Hermite matrix polynomials HHn(x,A) satisfy the Ro-

drigues formula:

(2.10) HHn(x,A) = (−1)n((I + 2A)A−1)n exp
(

x2A2(I + 2A)−1
)

× dn

dxn
exp

(

−x2A2(I + 2A)−1
)

.

P r o o f. We use (1.5) and Taylor’s theorem, which states that

(2.11) F (t) =

∞
∑

n=0

dnF (t)

dtn

∣

∣

∣

∣

t=0

tn

n!
.

The matrix generating function (2.11) with the aid of the Taylor’s theorem gives

(2.12) HHn(x,A) =
[ ∂n

∂tn
exp

(

xt(
√
2A)2 − t2(I + (

√
2A)2)

)

]∣

∣

∣

t=0

= exp
(

x2A2(I + 2A)−1
)

×
[ ∂n

∂tn
exp

(

−
[

xA(
√
I + 2A)−1 − t

√
I + 2A

]2)
]∣

∣

∣

t=0
.
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Setting f(x, t, A) = exp
(

−[xA(
√
I + 2A)−1 − t

√
I + 2A]2

)

in (2.12), we have

∂

∂t
f(x, t, A) = −(I + 2A)A−1 ∂

∂x
f(x, t, A),(2.13)

∂n

∂tn
f(x, t, A) = (−1)n((I + 2A)A−1)n

∂n

∂xn
f(x, t, A).

So

(2.14)
∂n

∂tn
[

exp
(

−[xA(
√
I + 2A)−1 − t

√
I + 2A]2

)]
∣

∣

t=0
= (−1)n((I + 2A)A−1)n

× ∂n

∂xn

[

exp
(

−[xA(
√
I + 2A)−1 − t

√
I + 2A]2

)]
∣

∣

t=0
,

and we have

(2.15) HHn(x,A) = (−1)n((I + 2A)A−1)n exp
(

x2A2(I + 2A)−1
)

×
[ ∂n

∂xn
exp

(

−
[

xA(
√
I + 2A)−1 − t

√
I + 2A

]2)
]
∣

∣

∣

t=0
.

Therefore, the result is established. �

3. Associated Hermite-Hermite matrix polynomials

The object of this section is to introduce an associated polynomial with the

Hermite-Hermite matrix polynomials. From (1.6), we can write

(3.1) Dp
HHn(x,A) = (

√
2A)2pn!

[(n−p)/2]
∑

k=0

(−1)k(
√
2A)n−p−2kHn−p−2k(x,A)

k!(n− p− 2k)!
;

0 6 p 6 n,

where p is non-negative integer.

The associated Hermite-Hermite matrix polynomials can be defined as

(3.2) HΦp
n(x,A) =

(
√
2A)−2p(n− p)!

n!
(xq − 1)p(n−p)Dp

HHn(x,A),

which can be written with the aid of (3.1) in the form

(3.3) HΦp
n(x,A) = (n− p)!(xq − 1)p(n−p)

×
[(n−p)/2]
∑

k=0

(−1)k(
√
2A)n−p−2kHn−p−2k(x,A)

k!(n− p− 2k)!
.
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Moreover, we have

(3.4) HΦp
n+p(x,A) = (xq − 1)pnn!

[n/2]
∑

k=0

(−1)k(
√
2A)n−2kHn−2k(x,A)

k!(n− 2k)!
,

i.e.,

(3.5) HΦp
n+p(x,A) = (xq − 1)pnHHn(x,A).

Clearly, if p = 0, HΦp
n+p(x,A) reduces to the Hermite-Hermite matrix polynomi-

als HHn(x,A).

Next, we obtain the matrix generating function for the associated Hermite-Hermite

matrix polynomials. From (3.4), (1.3) and (1.4), we have

∞
∑

n=0

HΦp
n+p(x,A)t

n

n!
=

∞
∑

n=0

[n/2]
∑

k=0

(−1)k(
√
2A)n−2k

k!(n− 2k)!
tn(xq − 1)pnHn−2k(x,A)

= exp
(

((xq − 1)pxt
√
2A)2 − (xq − 1)2pt2(

√
2A)2

)

× exp
(

−(xq − 1)2pt2I
)

.

Therefore, the matrix generating function concerning the associated Hermite-

Hermite matrix polynomials is given in the form

(3.6)

∞
∑

n=0

HΦp
n+p(x,A)t

n

n!
= exp

(

(xq − 1)pxt(
√
2A)2 − (xq − 1)2pt2(I + (

√
2A)2)

)

.

To derive the matrix differential equation satisfied by the associated Hermite-Hermite

matrix polynomials, let us take

(3.7) HHn(x,A) = (xq − 1)−pn
HΦp

n+p(x,A).

Differentiating with respect to x, we get

d

dx
HHn(x,A) = (xq − 1)−pn d

dx
HΦp

n+p(x,A) − pqnxq−1(xq − 1)−pn−1
HΦp

n+p(x,A)

and
d2

dx2 HHn(x,A) = (xq − 1)−pn d2

dx2 HΦp
n+p(x,A)

− 2pqnxq−1(xq − 1)−pn−1 d

dx
HΦp

n+p(x,A)

− pnq(q − 1)xq−2(xq − 1)−pn−1
HΦp

n+p(x,A)

+ q2pn(pn+ 1)x2q−2(xq − 1)−pn−2
HΦp

n+p(x,A)

Therefore, the following result is established:
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Theorem 3.1. Let p be a non-negative integer and let A be a positive stable

matrix in C
N×N satisfying condition (1.1). Then the associated Hermite-Hermite

matrix polynomials, HΦp
n+p(x,A), are a solution of the matrix differential equation

of the second order in the form

(3.8) (xq − 1)2(2A+ I)
d2

dx2 HΦp
n+p(x,A)

− (2pqnxq−1(xq − 1)(2A+ I) + 2x(xq − 1)2A2)
d

dx
HΦp

n+p(x,A)

+
[

pqnxq−2(xq − 1)(2x2A2 − (q − 1)(2A+ I))

+ q2pn(pn+ 1)x2q−2(2A+ I) + 2n(xq − 1)2A2
]

HΦp
n+p(x,A) = 0.

Note that when p = 0, the above matrix differential equation reduces to the

Hermite-Hermite matrix differential equation (1.8).

4. Some relations on Hermite-Hermite matrix polynomials

Here, let us recall some important properties of Hermite-Hermite matrix polyno-

mials, namely the addition theorems and multiplication theorems, which will be used

in this section.

Theorem 4.1. For a positive stable matrix A in CN×N satisfying condition (1.1),

the following addition formulas for the Hermite-Hermite matrix polynomials hold

true:

(4.1) HHn(x+ y,A) = n!

n
∑

k=0

(y(
√
2A)2)n−k

HHk(x,A)

k!(n− k)!

and

(4.2) HHn(x+ y,A) = n!

n
∑

k=0

HHk(x
√
2, A)HHn−k(y

√
2, A)

k!(n− k)!

( 1√
2

)n

.

P r o o f. From (1.5) and (1.2), we have

∞
∑

n=0

HHn(x+ y)tn

n!
= exp

(

xt(
√
2A)2 − t2(I + (

√
2A)2)

)

eyt(
√
2A)2

=

∞
∑

n=0

∞
∑

k=0

HHk(x,A)t
k

k!

(yt(
√
2A)2)n

n!

=
∞
∑

n=0

n
∑

k=0

HHk(x,A)t
k

k!

(yt(
√
2A)2)n−k

(n− k)!
.
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Comparing the coefficients of tn, we obtain (4.1). From (1.5) and (1.2), we find

∞
∑

n=0

HHn(x+ y)tn

n!
= exp

(

(x+ y)t(
√
2A)2 − t2(I + (

√
2A)2)

)

=

∞
∑

k=0

∞
∑

n=0

HHk(x
√
2, A)

k!
HHn(y

√
2, A)

n!

( t√
2

)n+k

=

∞
∑

n=0

n
∑

k=0

HHk(x
√
2, A)

k!
HHn−k(y

√
2, A)

(n− k)!

( t√
2

)n

,

by comparing the coefficients of tn, we get (4.2). The proof is completed. �

Theorem 4.2. For a positive stable matrix A in CN×N satisfying condition (1.1),

the following multiplication formulas for the Hermite-Hermite matrix polynomials

hold true:

(4.3) HHn(µx,A) = n!

n
∑

k=0

1

k!(n− k)!
(x(

√
2A)2)k(µ− 1)kHHn−k(x,A)

and

(4.4) HHn(µx,A) = n!µn

[n/2]
∑

k=0

1

k!(n− 2k)!
(I + (

√
2A)2)k

(

1− 1

µ2

)k

HHn−2k(x,A).

P r o o f. Using (1.2) and (1.5), we get

∞
∑

n=0

HHn(µx)t
n

n!
= exp

(

µxt(
√
2A)2 − t2(I + (

√
2A)2)

)

=

∞
∑

n=0

∞
∑

k=0

1

k!n!
(x(

√
2A)2)k(µ− 1)ktn+k

HHn(x,A)

=
∞
∑

n=0

n
∑

k=0

1

k!(n− k)!
(x(

√
2A)2)k(µ− 1)ktnHHn−k(x,A).
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Therefore, (4.3) follows. From (1.2) and (1.5), we have

∞
∑

n=0

HHn(µx,A)

n!

( t

µ

)n

= exp
(

xt(
√
2A)2 −

( t

µ

)2

(I + (
√
2A)2)

)

=

∞
∑

n=0

∞
∑

k=0

1

k!n!
(I + (

√
2A)2)k

(

1− 1

µ2

)k

tn+2k
HHn(x,A)

=

∞
∑

n=0

[n/2]
∑

k=0

1

k!(n− 2k)!
(I + (

√
2A)2)k

(

1− 1

µ2

)k

tnHHn−2k(x,A).

Therefore, the expression (4.4) is established and the proof is completed. �

Theorem 4.3. Let A be a positive stable matrix in C
N×N satisfying condi-

tion (1.1). Then the Hermite-Hermite matrix polynomials satisfy the following rela-

tions:

(4.5) HHn(αx,A) =
n!√
2n

n
∑

k=0

HHk(αx/
√
2, A)HHn−k(αx/

√
2, A)

k!(n− k)!

and

(4.6) HHn(αx + βy,A) =
n!√
2n

n
∑

k=0

HHn−k(βy
√
2, A)HHk(αx

√
2, A)

k!(n− k)!
,

where α and β are constants.

P r o o f. From (1.2) and (1.5), we get

∞
∑

n=0

n
∑

k=0

HHn−k(αx/
√
2, A)HHk(αx/

√
2, A)tn

k!(n− k)!

=
∞
∑

n=0

∞
∑

k=0

HHn(αx/
√
2, A)HHk(αx/

√
2, A)tn+k

k!n!

= exp
( 2α√

2
xt(

√
2A)2 − 2t2(I + (

√
2A)2)

)

= exp
(

αx(t
√
2)(

√
2A)2 − (t

√
2)2(I + (

√
2A)2)

)

=

∞
∑

n=0

HHn(αx,A)

n!
(t
√
2)n.

155



Comparing the coefficients of tn, we obtain (4.5). The series can be given as

∞
∑

n=0

n
∑

k=0

HHn−k(βy
√
2, A)HHk(αx

√
2, A)tn

k!(n− k)!

=

∞
∑

n=0

∞
∑

k=0

HHn(βy
√
2, A)HHk(αx

√
2, A)tn+k

k!n!

= exp
(

(αx + βy)(t
√
2)(

√
2A)2 − (t

√
2)2(I + (

√
2A)2)

)

=

∞
∑

n=0

HHn(αx + βy,A)

n!
(t
√
2)n.

By comparing the coefficients of tn, we get (4.6). The proof is completed. �

In the following corollary, we obtain the properties Hermite-Hermite matrix poly-

nomials as follows.

Corollary 4.1. For a positive stable matrix A in CN×N satisfying condition (1.1),

the following relation for the Hermite-Hermite matrix polynomials holds true:

(4.7) HHn

(x+ y√
2

, A
)

=
n!√
2n

n
∑

k=0

HHk(y,A)HHn−k(x,A)

k!(n− k)!
.

P r o o f. From (1.3) and (2.1), we can write

∞
∑

n=0

(t
√
2)n

n!
HHn

(x+ y√
2

, A
)

= exp
(x+ y√

2
t
√
2(
√
2A)2 − (t

√
2)2(I + (

√
2A)2)

)

=

∞
∑

n=0

∞
∑

k=0

1

n!k!
HHn(x,A)HHk(y,A)t

n+k

=

∞
∑

n=0

n
∑

k=0

1

k!(n− k)!
HHn−k(x,A)HHk(y,A)t

n.

By comparing the coefficients of tn, we get (4.7) and the proof is completed. �

Theorem 4.4. Let k ∈ N and A be a positive stable matrix in C
N×N satisfying

condition (1.1). Then the Hermite-Hermite matrix polynomials satisfy the following
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relation:

(4.8)

[n/2]
∑

s=0

(−k(I + (
√
2A)2))s(kx(

√
2A)2)n−2s

s!(n− 2s)!

=
∑

n1+n2+...+nk=n

HHn1
(x,A)HHn2

(x,A) . . .HHnk
(x,A)

n1!n2! . . . nk!
.

P r o o f. From (2.2), we can find that

∞
∑

n=0

(t
√
k)n

n!
HHn(x

√
k,A) = exp

(

kxt(
√
2A)2 − kt2(I + (

√
2A)2)

)

= exp
(

kxt(
√
2A)2

)

exp
(

−kt2(I + (
√
2A)2)

)

.

Using (1.2), we have

(4.9)

∞
∑

n=0

(kxt(
√
2A)2)n

n!

∞
∑

s=0

(−kt2(I + (
√
2A)2))s

s!

=
∞
∑

n=0

[n/2]
∑

s=0

(−k(I + (
√
2A)2))s(kx(

√
2A)2)n−2s

s!(n− 2s)!
tn.

On the other hand, we get

(4.10) exp
(

kxt(
√
2A)2 − kt2(I + (

√
2A)2)

)

=
[

exp
(

xt(
√
2A)2 − t2(I + (

√
2A)2)

)]k
=

[ ∞
∑

n=0

tn

n!
HHn(x,A)

]k

=

∞
∑

n=0

[

∑

n1+n2+...+nk=n

HHn1
(x,A)HHn2

(x,A) . . .HHnk
(x,A)

n1!n2! . . . nk!

]

tn.

If we combine (4.9) and (4.10), we obtain (4.8), the proof is completed. �

Theorem 4.5. For k ∈ N and A a positive stable matrix in C
N×N satisfying

condition (1.1), we get the following relation:

(4.11)

[n/2]
∑

s=0

(−(I + (
√
2A)2))skn−s((x1 + x2 + . . .+ xk)(

√
2A)2)n−2s

s!(n− 2s)!

=
∑

n1+n2+...+nk=n

HHn1
(x1, A)HHn2

(x2, A) . . .HHnk
(xk, A)

n1!n2! . . . nk!
.
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P r o o f. Let

W (x1, x2, . . . , xk, t, A) = exp
(

(x1 + x2 + . . .+ xk)t(
√
2A)2 − t2(I + (

√
2A)2)

)

.

Using (1.2), we can write

(4.12) W (x1

√
k, x2

√
k, . . . , xk

√
k, t

√
k,A)

= exp
(

k(x1 + x2 + . . .+ xk)t(
√
2A)2 − kt2(I + (

√
2A)2)

)

=

∞
∑

n=0

(k(x1 + x2 + . . .+ xk)(
√
2A)2t)n

n!

∞
∑

s=0

(−kt2(I + (
√
2A)2))s

s!

=

∞
∑

n=0

[n/2]
∑

s=0

(−k(I + (
√
2A)2))s(k(x1 + x2 + . . .+ xk)(

√
2A)2)n−2s

s!(n− 2s)!
tn.

On the other hand, we get

(4.13) exp
(

k(x1 + x2 + . . .+ xk)t(
√
2A)2 − kt2(I + (

√
2A)2)

)

=
[

exp
(

(x1 + x2 + . . .+ xk)t(
√
2A)2 − t2(I + (

√
2A)2)

)]k

=

∞
∑

n=0

[

∑

n1+n2+...+nk=n

HHn1
(x1, A)HHn2

(x2, A) . . .HHnk
(xk, A)

n1!n2! . . . nk!

]

tn.

Comparing (4.12) and (4.13), we obtain (4.11), the proof is completed. �

It is obvious that we can define the generalized Hermite-Hermite matrix polyno-

mials in the forms

(4.14) HHn(x1 + . . .+ xk, A) =

[n/2]
∑

s=0

(−1)s(
√
2A)n−2sHn−2s(x1 + . . .+ xk)

s!(n− 2s)!

and

(4.15) HHn(x1, . . . , xk, A) =

[n/2]
∑

s=0

(−1)s(
√
2A)n−2sHn−2s(x1, . . . , xk)

s!(n− 2s)!
; k ∈ N.
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5. Generalized Hermite-Hermite matrix polynomials

It is the purpose of this section to introduce a new matrix polynomial which

represents a generalization of the Hermite-Hermite matrix polynomials as given by

relation (1.1). For n = 0, 1, 2, . . ., λ ∈ R and m a positive integer, we define the

generalized Hermite-Hermite matrix polynomials by

(5.1) HH
λ
n,m(x,A) = n!

[n/m]
∑

k=0

(−1)kλk(
√
2A)n−mkHλ

n−mk,m(x,A)

k!(n−mk)!
.

The generalized Hermite matrix polynomials are defined by (see [14])

(5.2) Hλ
n,m(x,A) = n!λn

[n/m]
∑

k=0

(−1)k

λ(m−1)kk!(n−mk)!
(x
√
2A)n−mk

and

(5.3)

∞
∑

n=0

tn

n!
Hλ

n,m(x,A) = exp
(

λ(xt
√
2A− tmI)

)

.

Using (1.3), (5.1), (5.2) and (5.3), we arrange the series

∞
∑

n=0

HH
λ
n,m(x,A)tn

n!
=

∞
∑

n=0

[n/m]
∑

k=0

(−1)kλk(
√
2A)n−mkHλ

n−mk,m(x,A)

k!(n−mk)!
tn

=

∞
∑

n=0

(
√
2A)nHλ

n,m(x,A)

n!
tn

∞
∑

k=0

(−1)kλk

k!
tmk

= exp
(

λ(xt(
√
2A)2 − (t

√
2A)m)

)

exp(−λtmI).

Thus, we obtain an explicit representation for the matrix generating function of

generalized Hermite-Hermite matrix polynomials in the form

(5.4)
∞
∑

n=0

HH
λ
n,m(x,A)tn

n!
= exp

(

λ(xt(
√
2A)2 − (I + (

√
2A)m)tm)

)

.

The above examples prove the usefulness of the method adopted in this paper. Here,

we have obtained the matrix generating functions for associated Hermite-Hermite and

generalized Hermite-Hermite polynomials, from a known result for Hermite-Hermite

polynomials.

In a forthcoming paper, we will consider the problem of a unified approach to

the theory of new orthogonal matrix polynomials following the technique discussed
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in this paper. The used notations are implied by the following matrix generating

function for the generalized Hermite-Hermite matrix polynomials definitions: The

matrix generating functions of the generalized Hermite-Hermite matrix polynomials

of index two, three and p in terms of series are represented as follows:

∞
∑

n=0

∞
∑

m=0

HHn,m(x,A)tnum

n!m!

= exp
(

x(t+ u)(
√
2A)2 − (t+ u)2(I + (

√
2A)2)

)

,
∞
∑

n=0

∞
∑

m=0

∞
∑

p=0

HHn,m,p(x,A)t
numvp

n!m!p!

= exp
(

x(t+ u+ v)(
√
2A)2 − (t+ u+ v)2(I + (

√
2A)2)

)

and

∞
∑

n1=0

∞
∑

n2=0

. . .
∞
∑

np=0

HHn1,n2,...,np
(x,A)tn1

1 tn2

2 . . . t
np

p

n1!n2! . . . np!

= exp
(

x(t1 + t2 + . . .+ tp)(
√
2A)2 − (t1 + t2 + . . .+ tp)

2(I + (
√
2A)2)

)

.

6. Open problem

One can use the same class of new integral representation and operational methods

for some other matrix polynomials of several variables. Hence, new results and

further applications can be obtained.
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