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Abstract. A ring R is (weakly) nil clean provided that every element in R is the sum of
a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over
abelian rings. Let R be abelian, and let n ∈ N. We prove that Mn(R) is nil clean if and
only if R/J(R) is Boolean and Mn(J(R)) is nil. Furthermore, we prove that R is weakly
nil clean if and only if R is periodic; R/J(R) is Z3, B or Z3⊕B where B is a Boolean ring,
and that Mn(R) is weakly nil clean if and only if Mn(R) is nil clean for all n > 2.
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Let R be a ring with an identity. An element a in a ring is called weak idempotent

if a or −a is an idempotent. An element in R is (weakly) nil clean provided that it

is the sum of a (weak) idempotent and a nilpotent element [3], [5], [9], [10], and [12].

A ring R is (weakly) nil clean if every element in R is (weakly) nil clean. Many

fundamental properties about commutative (weakly) nil clean rings were obtained

in [1] and [2], and weakly nil clean rings were studied by Breaz et al. in [5].

In [10], Question 3, Diesl asked: Let R be a nil clean ring, and let n be a positive

integer. Is Mn(R) nil clean? In [4], Theorem 3, Breaz et al. proved their main

theorem: for a field K, Mn(K) is nil clean if and only if K ∼= Z2. They also asked if

this result could be extended to division rings. As a main result in [11], Koşan et al.

gave an affirmative answer to this problem. They showed the preceding equivalence

holds for any division ring. We shall extend [4], Theorem 3, and [11], Theorem 3, to

an arbitrary abelian ring.

Huanyin Chen was supported by the Natural Science Foundation of Zhejiang Province,
China (No. LY17A010018).
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A ring R is abelian if every idempotent in R is central. In this note, we are con-

cerned with nil and weakly nil clean matrix rings over abelian rings, and investigate

when a matrix over an abelian ring can be written as the sum of a (weak) idempotent

matrix and a nilpotent matrix. We prove that if R is abelian thenMn(R) is nil clean

if and only if R/J(R) is Boolean andMn(J(R)) is nil. This extends the main results

of Breaz et al. [4] and that of Koşan et al. [11]. A ring R is periodic if for any a ∈ R

there exist distinct m,n ∈ N such that am = an. Furthermore, we prove that if R is

abelian then R is weakly nil clean if and only if R is periodic; R/J(R) is Z3, B or

Z3 ⊕B where B is a Boolean ring, and that Mn(R) is weakly nil clean if and only if

Mn(R) is nil clean for all n > 2.

Throughout, all rings are associative with an identity. We use Mn(R) and Tn(R)

to stand for the rings of all n × n full matrices and triangular matrices over R,

respectively. The Jacobson radical of R is denoted by J(R), Id(R) = {e ∈ R : e2 =

e ∈ R}, −Id(R) = {e ∈ R : e2 = −e ∈ R}, U(R) is the set of all units in R, and

N(R) is the set of all nilpotent elements in R.

Recall that a ring R is an exchange ring if for every a ∈ R there exists an idem-

potent e ∈ aR such that 1 − e ∈ (1 − a)R. Clearly, every nil clean ring is an

exchange ring. Let BM(R) denote the Brown-McCoy radical of the ring R. Then

BM(R) is just the intersection of all maximal two-sided ideals of R. Obviously,

J(R) ⊆ BM(R). In general, they are not the same, e.g., EndF (V ) and V is an

infinite-dimensional vector space over a field F . A ring R is right (left) quasi-duo if

every right (left) maximal ideal of R is two-sided. By Burgess and Stephenson [6],

Theorem 3.1, (ii) (b), every abelian exchange ring R is a left and right quasi-duo

ring. This would imply immediately the equality of the Brown-McCoy radical and

the Jacobson radical of R. That is,

Lemma 1. Let R be an abelian exchange ring. Then BM(R) = J(R).

Lemma 2. Let R be a ring, and let n ∈ N. Then the following assertions are

equivalent:

(1) Mn(R) is nil clean and R has no nontrivial idempotents.

(2) R/J(R) ∼= Z2 and Mn(J(R)) is nil.

P r o o f. (1) ⇒ (2) In view of [10], Proposition 3.16, J(Mn(R)) is nil, and then

so is Mn(J(R)).

Let a ∈ R. By hypothesis, Mn(R) is nil clean. If n = 1, then R is nil clean. Then

a ∈ N(R) or a − 1 ∈ N(R). This shows that a ∈ U(R) or 1 − a ∈ U(R), and so R

is local. That is, R/J(R) is a division ring. As R/J(R) is nil clean, we easily see

that R/J(R) ∼= Z2. We now assume that n > 2. Then there exist an idempotent
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E ∈ Mn(R) and a nilpotent W ∈ Mn(R) such that

In +











a

0
. . .

0











= E +W.

Set U = −In +W . Then U ∈ GLn(R). Hence,

U−1











a

0
. . .

0











= U−1E + In = (U−1EU)U−1 + In.

Set F = U−1EU . Then F = F 2 ∈ Mn(R), and that

(In − F )U−1











a

0
. . .

0











= In − F.

By computing the left side of this equality, we may write

In − F =











e 0 . . . 0

∗ 0 . . . 0
...
...
. . .

...

∗ 0 . . . 0











.

As R possesses no nontrivial idempotents, e = 0 or 1. If e = 0, then In − F is both

idempotent and nilpotent. This shows that In − F = 0, and so E = In. This shows

that










a

0
. . .

0











= W

is nilpotent; hence a ∈ R is nilpotent. Thus, 1− a ∈ U(R).

If e = 1, then

F =











0 0 . . . 0

∗ 1 . . . 0
...
...
. . .

...

∗ 0 . . . 1











.
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Write

U−1 =

(

α β

γ δ

)

,

α ∈ R, β ∈ M1×(n−1)(R), γ ∈ M(n−1)×1(R), δ ∈ M(n−1)×(n−1)(R). Then

(

α β

γ δ

)











a

0
. . .

0











=

(

0 0

x In−1

)(

α β

γ δ

)

+ In,

where x ∈ M(n−1)×1(R). Thus, we get

αa = 1, γa = xα+ γ, 0 = xβ + δ + In−1.

One easily checks that

(

1 β

0 In−1

)(

1 0

x In−1

)

U−1

(

1 0

γa In−1

)

=

(

α+ βγa 0

0 −In−1

)

.

This implies that u := α+βγa ∈ U(R). Hence, α = u−βγa. It follows from αa = 1

that (u−βγa)a = 1. As R has no nontrivial idempotents, we see that a(u−βγa) = 1,

and so a ∈ U(R). This shows that a ∈ U(R) or 1− a ∈ U(R). Therefore R is local,

and then R/J(R) is a division ring. Since Mn(R) is nil clean, we see hence so is

Mn(R/J(R)). Therefore, R/J(R) ∼= Z2, as desired.

(2) ⇒ (1) In light of [4], Theorem 3, Mn(R/J(R)) is nil clean.

Since Mn(R)/J(Mn(R)) ∼= Mn(R/J(R)) and J(Mn(R)) = Mn(J(R)) is nil, it

follows from [10], Corollary 3.17, that Mn(R) is nil clean, as asserted. �

Example 3. Let K be a field, and let R = K[x, y]/(x, y)2. Then Mn(R) is

nil clean if and only if K ∼= Z2. As J(R) = (x, y)/(x, y)2, R/J(R) ∼= K. Thus,

R is a local ring with a nilpotent Jacobson radical. Hence, R has no nontrivial

idempotents. Thus, we are done by Lemma 2.

We are now ready to prove

Theorem 4. Let R be abelian, and let n ∈ N. Then the following assertions are

equivalent:

(1) Mn(R) is nil clean.

(2) R/J(R) is Boolean and Mn(J(R)) is nil.

P r o o f. (1) ⇒ (2) Clearly,Mn(J(R)) is nil. LetM be a maximal ideal of R, and

let ϕM : R → R/M. SinceMn(R) is nil clean, it follows by [10], Proposition 3.4, that
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Mn(R) is clean. Thus, Mn(R) is an exchange ring in terms of [13], Proposition 1.8.

By [13], Proposition 1.10, R is an exchange ring; hence, so is R/M . In light of [13],

Corollary 1.3, we see that every idempotent lifts modulo M , and hence R/M is

abelian. Therefore R/M is an exchange ring with all idempotents central. In view

of [8], Lemma 17.2.5, R/M is local, and so R/M has only trivial idempotents. It

follows from Lemma 2 that R/M/J(R/M) ∼= Z2. Write J(R/M) = K/M . Then K

is a maximal ideal of R, and M ⊆ K. This implies that M = K; hence, R/M ∼= Z2.

Construct a map ϕM : R/BM(R) → R/M , r +BM(R) 7→ r +M . Here, BM(R) is

the Brown-McCoy radical of R. Then

⋂

M

KerϕM =
⋂

M

{r +BM(R) : r ∈ M} = 0,

and so R/BM(R) is isomorphic to a subdirect product of some Z2. Thus, R/BM(R)

is Boolean. In light of Lemma 1, R/J(R) is Boolean, as desired.

(2) ⇒ (1) SinceR/J(R) is Boolean, it follows by [4], Corollary 6, thatMn(R/J(R))

is nil clean. That is, Mn(R)/J(Mn(R)) is nil clean. But J(Mn(R)) = Mn(J(R)) is

nil. Therefore we complete the proof by virtue of [10], Corollary 3.17. �

We note that the “(2) ⇒ (1)” in Theorem 4 always holds, but “abelian” condition

is necessary in “(1) ⇒ (2)”. Let R = Mn(Z2), n > 2. Then R is nil clean. But

R/J(R) is not Boolean. Here, R is not abelian.

Corollary 5. Let R be (left) right quasi-duo, and let n ∈ N. Then the following

conditions are equivalent:

(1) Mn(R) is nil clean.

(2) R/J(R) is Boolean and Mn(J(R)) is nil.

P r o o f. (1) ⇒ (2) By hypothesis, Mn(R) is nil clean, and then Mn(R) is

exchange. This implies that R is exchange. Set S = R/J(R). Let e ∈ S be an

idempotent and let x ∈ S. Then we may assume that e ∈ R is an idempotent. In

view of [14], Lemma 2.3, ex(1 − e), (1 − e)xe ∈ J(R). Hence, ex = exe = xe. That

is, S is abelian. As Mn(R) is nil clean, so is Mn(S). In light of Theorem 4, S/J(S)

is Boolean. But J(S) = 0, so we proved that R/J(R) is Boolean. Furthermore,

Mn(J(R)) is nil, by virtue of [10], Corollary 3.17.

(2) ⇒ (1) As R/J(R) is abelian, it follows from Theorem 4 that Mn(R/J(R)) is

nil clean. By hypothesis, J(Mn(R)) is nil, thus yielding the result, by virtue of [10],

Corollary 3.17. �

We note that the class of (left) right quasi-duo rings is much larger. Evidently,

commutative rings, duo rings, uniquely clean rings, uniquely π-clean rings and
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strongly nil clean rings are all (left) right quasi-duo. If R/J(R) is commutative,

then Mn(R) is nil clean if and only if Mn(J(R)) is nil. Since R is (left) right quasi-

duo, we are through by Corollary 5.

Corollary 6. Let R be a commutative ring, and let n ∈ N. Then the following

conditions are equivalent:

(1) Mn(R) is nil clean.

(2) R/J(R) is Boolean and J(R) is nil.

(3) For any a ∈ R, a− a2 ∈ R is nilpotent.

P r o o f. (1) ⇒ (3) Let a ∈ R. In view of Theorem 4, a − a2 ∈ J(R). Since R

is commutative, J(R) is nil if and only if J(Mn(R)) is nil. Therefore a − a2 ∈ R is

nilpotent.

(3) ⇒ (2) Clearly, R/J(R) is Boolean. For any a ∈ J(R), we have (a − a2)n = 0

for some n > 1. Hence, an(1− a)n = 0, and so an = 0. This implies that J(R) is nil.

(2) ⇒ (1) As R is commutative, we see that Mn(J(R)) is nil. This completes the

proof, by Theorem 4. �

In [4], Corollary 7, Breaz et al. proved that if R is any commutative nil clean ring

then Mn(R) is nil clean. We indeed have

Corollary 7. A commutative ring R is nil clean if and only if Mn(R) is nil clean.

P r o o f. One direction is obvious by [10], Corollary 7. Suppose that Mn(R) is

nil clean. In view of Corollary 5, R/J(R) is Boolean, and J(R) is nil. Therefore R

is nil clean, by [10], Corollary 3.17. �

Example 8. Let m,n ∈ N. Then Mn(Zm) is nil clean if and only if m = 2r

for some r ∈ N. Write m = pr11 . . . prss , where p1, . . . , ps are distinct primes,

r1, . . . , rs ∈ N. Then Zm
∼= Zp

r1

1

⊕ . . .⊕ Zp
rs

m

. In light of Corollary 7, Mn(Zm) is nil

clean if and only if s = 1 and Zp
r1

1

is nil clean. Therefore we are done by Lemma 2.

We now pass to consideration of the weakly nil clean rings. For the reader’s

convenience, we include the main theorem of [5].

Lemma 9 ([5], Theorem 20). Let D be a division ring, and let n ∈ N. Then

Mn(D) is weakly nil clean if and only if

(1) D ∼= Z2; or

(2) D ∼= Z3 and n = 1.
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Lemma 10. Let R be a ring, and let n ∈ N. Then Mn(R) is weakly nil clean and

R has no nontrivial idempotents if and only if

(1) Mn(J(R)) is nil;

(2) R/J(R) ∼= Z2 or R/J(R) ∼= Z3, n = 1.

P r o o f. ⇒: In view of [10], Proposition 3.16, Mn(J(R))) is nil.

Since Mn(R) is weakly nil clean, it is clean by [5], Corollary 8, and then R is

exchange. As in the proof of Lemma 2, R is local. Clearly, Mn(R/J(R)) is weakly

nil clean. It follows by Lemma 9 that R/J(R) ∼= Z2 or R/J(R) ∼= Z3 and n = 1.

⇐: In view of Lemma 9, Mn(R/J(R)) is weakly nil clean. Therefore we complete

the proof by [5], Proposition 3.15. �

We have at our disposal all the information necessary to prove the following result.

Theorem 11. Let R be abelian. Then

(1) R is weakly nil clean if and only if

(a) R is periodic;

(b) R/J(R) is Z3, B or Z3 ⊕B where B is a Boolean ring.

(2) Mn(R) is weakly nil clean if and only if Mn(R) is nil clean for all n > 2.

P r o o f. (1) ⇒: (a) Let a ∈ R. Then there exists an idempotent e ∈ R such

that a − e or a + e ∈ N(R). Hence, a − a2 or a + a2 ∈ N(R). This shows that

an = an+1f(a) for some n ∈ N, where f(t) ∈ Z[t]. By virtue of Chacron’s theorem,

R is periodic (see [7]). (b) This could be proved by [5], Theorem 12. We include an

alternative proof. Let M be a maximal ideal of R, and let ϕM : R → R/M. Since

R is weakly nil clean, it is clean, by [5], Corollary 7, and then R/M is an exchange

ring with all idempotents central. As in the proof of Theorem 4, R/M has only

trivial idempotents. According to Lemma 10, R/M/J(R/M) ∼= Z2 or Z3. Write

J(R/M) = K/M . Then K is a maximal ideal of R, and so M = K. This shows that

R/M ∼= Z2,Z3.

Let P and Q be distinct maximal ideals of R such that R/P,R/Q ∼= Z3. As

P +Q = R, by the Chinese remainder theorem we get

R/(P ∩Q) ∼= R/P ⊕R/Q ∼= Z3 ⊕ Z3.

Since R is weakly nil clean, so is R/(P ∩Q). This shows that Z3 ⊕ Z3 is weakly nil

clean. Hence, (1,−1) or (−1, 1) is nil clean in Z3 ⊕ Z3, a contradiction. Thus, there

is at most one maximal ideal M such that R/M ∼= Z3. Similarly to the discussion

in Theorem 4, R/J(R) is isomorphic to the subdirect product of finitely many Z2

and/or one Z3. Accordingly, for any a ∈ R/J(R), a = a2 or −a2. In light of [1],

Theorem 1.12, R/J(R) is Z3, B or Z3 ⊕B where B is a Boolean ring.
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⇐: In view of Lemma 10, R/J(R) is weakly nil clean. Since R is periodic, J(R)

is nil, and therefore R is weakly nil clean, by [5], Theorem 2.

(2) ⇒: Let M be a maximal ideal of R and n > 2. Then Mn(R/M) is weakly

nil clean. As in the previous discussion, it follows by Lemma 10 that R/M ∼= Z2.

Thus, R/J(R) is isomorphic to the subdirect product of some Z2’s. Hence, R/J(R)

is Boolean. Clearly, J(Mn(R)) is nil. Accordingly,Mn(R) is nil clean, by Theorem 4.

⇐: This is obvious. �

As in the proof of Corollary 5, applying Theorem 11 to R/J(R), we now derive

Corollary 12. Let R be (left) right quasi-duo. Then

(1) R is weakly nil clean if and only if

(a) R is periodic;

(b) R/J(R) is Z3, B or Z3 ⊕B where B is a Boolean ring;

(2) Mn(R) is weakly nil clean if and only if Mn(R) is nil clean for all n > 2.

Corollary 13. Let R be a commutative ring. Then

(1) R is weakly nil clean if and only if for any a ∈ R, a− a2 or a+ a2 is nilpotent.

(2) Mn(R), n > 2, is weakly nil clean if and only if for any a ∈ R, a−a2 is nilpotent.

Acknowledgement. The authors are grateful to the referee for his/her helpful

suggestions which make the new version clearer.
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