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Abstract. As a generalization of anti-invariant Riemannian submersions and Lagrangian
Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-
Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian
manifolds. We obtain characterizations and investigate some properties: the integrability
of distributions, the geometry of foliations, and the harmonicity of such maps. We also
find a condition for such maps to be totally geodesic and give some examples of such maps.
Finally, we obtain some types of decomposition theorems.
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1. Introduction

In 1960s, O’Neill in [17] and Gray in [10] introduced independently the notion of

a Riemannian submersion, which is useful in many areas: physics ([6], [25], [5], [12],

[13], [16]), medical imaging [15], robotic theory [1] (see [23]).

In 1976, Watson in [24] defined almost Hermitian submersions, which are Rieman-

nian submersions from almost Hermitian manifolds onto almost Hermitian manifolds.

Using this notion, he investigates a kind of structural problems among base manifold,

fibers, total manifold. This notion was extended to almost contact manifolds in [7],

locally conformal Kähler manifolds in [14], and quaternion Kähler manifolds in [11].

In 2010, Sahin in [22] introduced the notions of anti-invariant Riemannian sub-

mersions and Lagrangian Riemannian submersions from almost Hermitian manifolds

onto Riemannian manifolds. Using this notions, he studies total manifolds. In par-

ticular, he investigates some kinds of decomposition theorems.
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We know that Riemannian submersions are related with physics and have appli-

cations in Yang-Mills theory ([6], [25]), Kaluza-Klein theory ([5], [12]), supergravity

and superstring theories ([13], [16]). And quaternionic Kähler manifolds have appli-

cations in physics as the target spaces for nonlinear σ-models with supersymmetry,

see [8].

The paper is organized as follows. In Section 2 we recall some notions, which

are needed in the later sections. In Section 3 we introduce the notions of h-anti-

invariant submersions and h-Lagrangian submersions from almost quaternionic Her-

mitian manifolds onto Riemannian manifolds, give examples, and investigate some

properties: the integrability of distributions, the geometry of foliations, the condition

for such maps to be totally geodesic, and the condition for such maps to be harmonic.

In Section 4 under h-anti-invariant submersions and h-Lagrangian submersions, we

consider some decomposition theorems.

2. Preliminaries

Let (M, g, J) be an almost Hermitian manifold, where M is a C∞-manifold, g is

a Riemannian metric on M , and J is a compatible almost complex structure on

(M, g) (i.e., J ∈ End(TM), J2 = −id, g(JX, JY ) = g(X,Y ) for X,Y ∈ Γ(TM)).

We call (M, g, J) a Kähler manifold if ∇J = 0, where ∇ is the Levi-Civita con-
nection of g.

Let (M, gM ) and (N, gN ) be Riemannian manifolds.

Let F : (M, gM ) → (N, gN ) be a C∞-map.

The second fundamental form of F is given by

(∇F∗)(U, V ) := ∇F
UF∗V − F∗(∇UV ) for U, V ∈ Γ(TM),

where ∇F is the pullback connection along F and ∇ is the Levi-Civita connection
of gM , see [3].

Then the map F is harmonic if and only if trace (∇F∗) = 0, see [3].

We call F a totally geodesic map if (∇F∗)(U, V ) = 0 for U, V ∈ Γ(TM), see [3].

The map F is said to be a C∞-submersion if F is surjective and the differential

(F∗)p has maximal rank for any p ∈ M .

We call F a Riemannian submersion ([17], [9]) if F is a C∞-submersion and

(2.1) (F∗)p : ((ker(F∗)p)
⊥, (gM )p) → (TF (p)N, (gN )F (p))

is a linear isometry for any p ∈ M , where (ker(F∗)p)
⊥ is the orthogonal complement

of the space ker(F∗)p in the tangent space TpM to M at p.
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Let F : (M, gM ) → (N, gN ) be a Riemannian submersion.

For any vector field U ∈ Γ(TM) we write

(2.2) U = VU +HU,

where VU ∈ Γ(kerF∗) and HU ∈ Γ((kerF∗)
⊥).

Define the O’Neill tensors T and A by

AUV = H∇HUVV + V∇HUHV,(2.3)

TUV = H∇VUVV + V∇VUHV(2.4)

for U, V ∈ Γ(TM), where ∇ is the Levi-Civita connection of gM ([17], [9]).
Let

(2.5) ∇̂V W := V∇V W for V,W ∈ Γ(kerF∗).

Then we have

AXY = −AY X =
1

2
V [X,Y ],(2.6)

TUV = TV U(2.7)

for X,Y ∈ Γ((kerF∗)
⊥) and U, V ∈ Γ(kerF∗).

Proposition 2.1 ([17], [9]). Let F be a Riemannian submersion from a Rieman-

nian manifold (M, gM ) onto a Riemannian manifold (N, gN). Then we obtain

gM (TUV,W ) = − gM (V, TUW ),(2.8)

gM (AUV,W ) = − gM (V,AUW ),(2.9)

(∇F∗)(U, V ) = (∇F∗)(V, U),(2.10)

(∇F∗)(X,Y ) = 0(2.11)

for U, V,W ∈ Γ(TM) and X,Y ∈ Γ((kerF∗)
⊥).

We recall the notions of an anti-invariant Riemannian submersion and a La-

grangian Riemannian submersion.

Let F be a Riemannian submersion from an almost Hermitian manifold (M, gM , J)

onto a Riemannian manifold (N, gN). The map F is said to be an anti-invariant

Riemannian submersion, see [22], if J(kerF∗) ⊂ (kerF∗)
⊥.

We call F a Lagrangian Riemannian submersion, see [22], if J(kerF∗) = (kerF∗)
⊥.
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Let M be a 4m-dimensional C∞-manifold and let E be a rank 3 subbundle of

End(TM) such that for any point p ∈ M with a neighborhood U there exists a local

basis {J1, J2, J3} of sections of E on U satisfying for all α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

where the indices are taken from {1, 2, 3} modulo 3.
Then we call E an almost quaternionic structure on M and (M,E) an almost

quaternionic manifold, see [2].

Moreover, let g be a Riemannian metric on M such that for any point p ∈ M

with a neighborhood U there exists a local basis {J1, J2, J3} of sections of E on U

satisfying for all α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,(2.12)

g(JαX, JαY ) = g(X,Y )(2.13)

for X,Y ∈ Γ(TM), where the indices are taken from {1, 2, 3} modulo 3.
Then we call (M,E, g) an almost quaternionic Hermitian manifold, see [11].

For convenience, the above basis {J1, J2, J3} satisfying (2.12) and (2.13) is said to
be a quaternionic Hermitian basis.

Let (M,E, g) be an almost quaternionic Hermitian manifold.

We call (M,E, g) a quaternionic Kähler manifold if given a point p ∈ M with

a neighborhood U , there exist 1-forms ω1, ω2, ω3 on U such that for any α ∈ {1, 2, 3},

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for X ∈ Γ(TM), where the indices are taken from {1, 2, 3} modulo 3, see [11].
If there exists a global parallel quaternionic Hermitian basis {J1, J2, J3} of sections

of E on M (i.e., ∇Jα = 0 for α ∈ {1, 2, 3}, where ∇ is the Levi-Civita connection
of g), then (M,E, g) is said to be a hyperkähler manifold. Furthermore, we call

(J1, J2, J3, g) a hyperkähler structure on M and g a hyperkähler metric, see [4].

Now, we recall the notions of almost h-slant submersions, almost h-semi-invariant

submersions, and almost h-semi-slant submersions.

Let (M,E, gM ) be an almost quaternionic Hermitian manifold and (N, gN ) a Rie-

mannian manifold.

A Riemannian submersion F : (M,E, gM ) → (N, gN ) is said to be an almost

h-slant submersion if given a point p ∈ M with a neighborhood U , there exists

a quaternionic Hermitian basis {I, J,K} of sections of E on U such that for R ∈
{I, J,K} the angle θR(X) between RX and the space ker(F∗)q is constant for nonzero

X ∈ ker(F∗)q and q ∈ U , see [19].
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A Riemannian submersion F : (M,E, gM ) → (N, gN ) is called an almost h-semi-

invariant submersion if given a point p ∈ M with a neighborhood U , there exists

a quaternionic Hermitian basis {I, J,K} of sections of E on U such that for each

R ∈ {I, J,K} there is a distribution DR
1 ⊂ kerF∗ on U such that

kerF∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 , R(DR
2 ) ⊂ (kerF∗)

⊥,

where DR
2 is the orthogonal complement of DR

1 in kerF∗, see [18].

A Riemannian submersion F : (M,E, gM ) → (N, gN ) is called an almost h-semi-

slant submersions if given a point p ∈ M with a neighborhood U , there exists

a quaternionic Hermitian basis {I, J,K} of sections of E on U such that for each

R ∈ {I, J,K} there is a distribution DR
1 ⊂ kerF∗ on U such that

kerF∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for nonzero

X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1 in kerF∗,

see [20].

Throughout this paper, we will use the above notation.

3. H-anti-invariant submersions

In this section, we introduce the notions of h-anti-invariant submersions and h-

Lagrangian submersions from almost quaternionic Hermitian manifolds onto Rie-

mannian manifolds and investigate their properties.

Definition 3.1. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Let F : (M,E, gM ) → (N, gN) be a Riemannian

submersion. We call the map F an h-anti-invariant submersion if given a point

p ∈ M with a neighborhood U , there exists a quaternionic Hermitian basis {I, J,K}
of sections of E on U such that R(kerF∗) ⊂ (kerF∗)

⊥ for R ∈ {I, J,K}.

We call such a basis {I, J,K} an h-anti-invariant basis.

Remark 3.2. As we see, an h-anti-invariant submersion is one of the particular

cases of an almost h-slant submersion, an almost h-semi-invariant submersion, and

an almost h-semi-slant submersion.

Remark 3.3. Let F be an h-anti-invariant submersion from an almost quater-

nionic Hermitian manifold (M,E, gM ) onto a Riemannian manifold (N, gN ). Then

there does not exist a map F such that dim(kerF∗) = dim((kerF∗)
⊥). If it did, then
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given a local quaternionic Hermitian basis {I, J,K} of E with R(kerF∗) ⊂ (kerF∗)
⊥

for R ∈ {I, J,K}, we should have

R(kerF∗) = (kerF∗)
⊥ for R ∈ {I, J,K}

so that

K(kerF∗) = IJ(kerF∗) = I((kerF∗)
⊥) = (kerF∗),

contradiction!

Due to Remark 3.3, we need to define another type of such a map.

Definition 3.4. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Let F : (M,E, gM ) → (N, gN ) be a Rieman-

nian submersion. We call the map F a h-Lagrangian submersion if given a point

p ∈ M with a neighborhood U , there exists a quaternionic Hermitian basis {I, J,K}
of sections of E on U such that I(kerF∗) = (kerF∗)

⊥, J(kerF∗) = kerF∗, and

K(kerF∗) = (kerF∗)
⊥.

We call such a basis {I, J,K} an h-Lagrangian basis.

Remark 3.5. (a) It is easy to check that J(kerF∗) = kerF∗ implies J((kerF∗)
⊥) =

(kerF∗)
⊥.

(b) Let F be a Riemannian submersion from an almost quaternionic Hermitian

manifold (M,E, gM ) onto a Riemannian manifold (N, gN ) such that dim(kerF∗) =

dim((kerF∗)
⊥). Then there does not exist a map F that for some local quaternionic

Hermitian basis {I, J,K} of E we have

I(kerF∗) = kerF∗, J(kerF∗) = kerF∗, K(kerF∗) = (kerF∗)
⊥.

If it did, then K(kerF∗) = IJ(kerF∗) = I(kerF∗) = kerF∗, contradiction!

Now, we give some examples. Note that given a Euclidean space R4m with co-

ordinates (x1, x2, . . . , x4m), we can canonically choose complex structures I, J,K on

R
4m as follows:

I
( ∂

∂x4k+1

)
=

∂

∂x4k+2
, I

( ∂

∂x4k+2

)
= − ∂

∂x4k+1
, I

( ∂

∂x4k+3

)
=

∂

∂x4k+4
,

I
( ∂

∂x4k+4

)
= − ∂

∂x4k+3
, J

( ∂

∂x4k+1

)
=

∂

∂x4k+3
, J

( ∂

∂x4k+2

)
= − ∂

∂x4k+4
,

J
( ∂

∂x4k+3

)
= − ∂

∂x4k+1
, J

( ∂

∂x4k+4

)
=

∂

∂x4k+2
, K

( ∂

∂x4k+1

)
=

∂

∂x4k+4
,

K
( ∂

∂x4k+2

)
=

∂

∂x4k+3
, K

( ∂

∂x4k+3

)
= − ∂

∂x4k+2
, K

( ∂

∂x4k+4

)
= − ∂

∂x4k+1

for k ∈ {0, 1, . . . ,m− 1}.

562



Then we easily check that (I, J,K, 〈 , 〉) is a hyperkähler structure on R
4m, where

〈 , 〉 denotes the Euclidean metric on R
4m.

Example 3.6. Define a map F : R
12 → R

9 by

F (x1, . . . , x12) = (x10, x11, x12, x4, x3, x2, x8, x6, x7).

Then the map F is an h-anti-invariant submersion such that

kerF∗ =
〈 ∂

∂x1
,

∂

∂x5
,

∂

∂x9

〉
,

(kerF∗)
⊥ =

〈 ∂

∂x2
,

∂

∂x3
,

∂

∂x4
,

∂

∂x6
,

∂

∂x7
,

∂

∂x8
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12

〉
,

I
( ∂

∂x1

)
=

∂

∂x2
, I

( ∂

∂x5

)
=

∂

∂x6
, I

( ∂

∂x9

)
=

∂

∂x10
,

J
( ∂

∂x1

)
=

∂

∂x3
, J

( ∂

∂x5

)
=

∂

∂x7
, J

( ∂

∂x9

)
=

∂

∂x11
,

K
( ∂

∂x1

)
=

∂

∂x4
, K

( ∂

∂x5

)
=

∂

∂x8
, K

( ∂

∂x9

)
=

∂

∂x12
.

Example 3.7. Define a map F : R
4 → R

2 by

F (x1, . . . , x4) =
(x2 + x3√

2
,
x1 + x4√

2

)
.

Then the map F is an h-Lagrangian submersion such that

kerF∗ =
〈
V1 =

∂

∂x2
− ∂

∂x3
, V2 =

∂

∂x1
− ∂

∂x4

〉
,

(kerF∗)
⊥ =

〈
X1 =

∂

∂x2
+

∂

∂x3
, X2 =

∂

∂x1
+

∂

∂x4

〉
,

I(V1) = −X2, I(V2) = X1,

J(V1) = V2, J(V2) = −V1,

K(V1) = X1, K(V2) = X2.

Let F be an h-anti-invariant submersion (or an h-Lagrangian submersion) from

an almost quaternionic Hermitian manifold (M,E, gM ) onto a Riemannian manifold

(N, gN ). Given a point p ∈ M with a neighborhood U , we have an h-anti-invariant

basis (or an h-Lagrangian basis, respectively) {I, J,K} of sections of E on U .

Then given X ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K}, we write

(3.1) RX = BRX + CRX,

where BRX ∈ Γ(kerF∗) and CRX ∈ Γ((kerF∗)
⊥).
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If F : (M,E, gM ) → (N, gN ) is an h-anti-invariant submersion, then we get

(3.2) (kerF∗)
⊥ = R(kerF∗)⊕ µR for R ∈ {I, J,K}.

Then it is easy to check that µR is R-invariant for R ∈ {I, J,K}.
Given X ∈ Γ((kerF∗)

⊥) and R ∈ {I, J,K}, we have

(3.3) X = PRX +QRX,

where PRX ∈ Γ(R(kerF∗)) and QRX ∈ Γ(µR).

Furthermore, given R ∈ {I, J,K}, we obtain

(3.4) CRX ∈ Γ(µR) for X ∈ Γ((kerF∗)
⊥)

and

(3.5) gM (CRX,RV ) = 0 for V ∈ Γ(kerF∗).

Then it is easy to have

Lemma 3.8. Let F be an h-anti-invariant submersion from a hyperkähler mani-

fold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an

h-anti-invariant basis. Then we get

(1)

TV RW = BRTV W
H∇V RW = CRTV W +R∇̂V W

for V,W ∈ Γ(kerF∗) and R ∈ {I, J,K};
(2)

AXCRY + V∇XBRY = BRH∇XY

H∇XCRY +AXBRY = RAXY + CRH∇XY

for X,Y ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K};

(3)

AXRV = BRAXV

H∇XRV = CRAXV +RV∇XV

for V ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}.
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Theorem 3.9. Let F be an h-anti-invariant submersion from a hyperkähler mani-

fold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an

h-anti-invariant basis. Then the following conditions are equivalent:

(a) the distribution (kerF∗)
⊥ is integrable.

(b)
gM (AXBIY −AY BIX, IV ) = gM (CIY, IAXV )− gM (CIX, IAY V )

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(c)
gM (AXBJY −AY BJX, JV ) = gM (CJY, JAXV )− gM (CJX, JAY V )

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(d)
gM (AXBKY −AY BKX,KV ) = gM (CKY,KAXV )− gM (CKX,KAY V )

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

P r o o f. Given V ∈ Γ(kerF∗), X,Y ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}, us-

ing (3.5) we get

gM ([X,Y ], V ) = gM (∇XRY −∇Y RX,RV )

= gM (∇XBRY +∇XCRY −∇Y BRX −∇Y CRX,RV )

= gM (AXBRY −AY BRX,RV )− gM (CRY,∇XRV ) + gM (CRX,∇Y RV )

= gM (AXBRY −AY BRX,RV )− gM (CRY,RAXV ) + gM (CRX,RAY V ).

Hence,

(a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d).

Therefore, the result follows. �

Lemma 3.10. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution (kerF∗)
⊥ is integrable.

(b) AXIY = AY IX for X,Y ∈ Γ((kerF∗)
⊥).

(c) AXKY = AY KX for X,Y ∈ Γ((kerF∗)
⊥).

(d) AXJY = AY JX for X,Y ∈ Γ((kerF∗)
⊥).

P r o o f. By the proof of Theorem 3.9, we get (a) ⇔ (b) and (a) ⇔ (c).
Given V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)

⊥), since J(kerF∗) = kerF∗, we obtain

gM ([X,Y ], JV ) = −gM (∇XJY −∇Y JX, V )

= gM (AY JX −AXJY, V ),

which implies (a) ⇔ (d).
Therefore, the result follows. �
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We consider equivalent conditions for distributions to be totally geodesic.

Theorem 3.11. Let F be an h-anti-invariant submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN) such that (I, J,K) is

an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The distribution (kerF∗)
⊥ defines a totally geodesic foliation on M .

(b)
gM (AXBIY, IV ) = gM (CIY, IAXV )

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(c)
gM (AXBJY, JV ) = gM (CJY, JAXV )

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(d)
gM (AXBKY,KV ) = gM (CKY,KAXV )

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

P r o o f. Given V ∈ Γ(kerF∗), X,Y ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}, us-

ing (3.5) we have

gM (∇XY, V ) = gM (∇XBRY +∇XCRY,RV )

= gM (AXBRY,RV )− gM (CRY,∇XRV )

= gM (AXBRY,RV )− gM (CRY,RAXV ),

which implies (a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d).
Therefore, the result follows. �

Lemma 3.12. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution (kerF∗)
⊥ defines a totally geodesic foliation on M .

(b) AXIY = 0 for X,Y ∈ Γ((kerF∗)
⊥).

(c) AXKY = 0 for X,Y ∈ Γ((kerF∗)
⊥).

(d) AXJY = 0 for X,Y ∈ Γ((kerF∗)
⊥).

P r o o f. By the proof of Theorem 3.11, we get (a) ⇔ (b) and (a) ⇔ (c).
Given V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)

⊥), we obtain

gM (∇XY, JV ) = −gM (∇XJY, V ) = −gM (AXJY, V ),

which implies (a) ⇔ (d).
Therefore, the result follows. �
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Theorem 3.13. Let F be an h-anti-invariant submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN) such that (I, J,K) is

an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The distribution kerF∗ defines a totally geodesic foliation on M .

(b) TV BIX +ACIXV ∈ Γ(µI)

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(c) TV BJX +ACJXV ∈ Γ(µJ)

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(d) TV BKX +ACKXV ∈ Γ(µK)

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

P r o o f. Given V,W ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}, us-

ing (3.5) we get

gM (∇V W,X) = gM (∇V RW,RX)

= −gM (RW,∇V BRX +∇V CRX)

= −gM (RW, TV BRX)− gM (RW,∇V CRX).

However,

gM (RW,∇V CRX) = gN (F∗RW,F∗∇V CRX) (since RW ∈ Γ((kerF∗)
⊥))

= −gN(F∗RW, (∇F∗)(V,CRX))

= −gN(F∗RW, (∇F∗)(CRX,V )) (by (2.10))

= gM (RW,∇CRXV )

= gM (RW,ACRXV ).

Hence,

gM (∇V W,X) = −gM (RW, TV BRX +ACRXV ),

which implies (a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d).
Therefore, we obtain the result. �
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Lemma 3.14. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution kerF∗ defines a totally geodesic foliation on M .

(b) TV IX = 0 for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(c) TV KX = 0 for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(d) TV JX = 0 for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

P r o o f. By the proof of Theorem 3.13, we have (a) ⇔ (b) and (a) ⇔ (c).
Given V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)

⊥), we get

gM (∇V W,JX) = −gM (W,∇V JX)

= −gM (W, TV JX) (since JX ∈ Γ((kerF∗)
⊥)),

which implies (a) ⇔ (d).
Therefore, the result follows. �

Now, we consider equivalent conditions for such maps to be either totally geodesic

or harmonic.

Theorem 3.15. Let F be an h-anti-invariant submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN) such that (I, J,K) is

an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The map F is a totally geodesic map.

(b) AXIV = 0, QIH∇XIV = 0, TV IW = 0, QIH∇V IW = 0

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(c)

AXJV = 0, QJH∇XJV = 0, TV JW = 0, QJH∇V JW = 0

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(d)

AXKV = 0, QKH∇XKV = 0, TV KW = 0, QKH∇V KW = 0

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

P r o o f. By (2.11) we have (∇F∗)(X,Y ) = 0 for X,Y ∈ Γ((kerF∗)
⊥).

Given V,W ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}, by using (3.2)

and (3.3) we obtain

(∇F∗)(X,V ) = −F∗(∇XV ) = F∗(R∇XRV )

= F∗(R(AXRV +H∇XRV )) = 0
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⇔ R(AXRV +QRH∇XRV ) = 0 ⇔ AXRV = 0, QRH∇XRV = 0 and

(∇F∗)(V,W ) = −F∗(∇V W ) = F∗(R∇V RW )

= F∗(R(TV RW +H∇V RW )) = 0

⇔ R(TV RW +QRH∇V RW ) = 0 ⇔ TV RW = 0, QRH∇V RW = 0.

Hence,

(a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d).

Therefore, the result follows. �

Lemma 3.16. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the following conditions are equivalent:

(a) The map F is a totally geodesic map.

(b) AXIV = 0 and TV IW = 0 for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(c) AXKV = 0 and TV KW = 0 for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(d) AXJV = 0 and TV JW = 0 for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

P r o o f. By the proof of Theorem 3.15, we have (a) ⇔ (b) and (a) ⇔ (c).
Given V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)

⊥), we get

(∇F∗)(X,V ) = −F∗(∇XV ) = F∗(J∇XJV )

= F∗(J(AXJV + V∇XJV )) = F∗JAXJV = 0

⇔ AXJV = 0 and

(∇F∗)(V,W ) = −F∗(∇V W ) = F∗(J∇V JW )

= F∗(J(TV JW + V∇V JW ))

= F∗JTV JW = 0

⇔ TV JW = 0, which implies (a) ⇔ (d).
Therefore, we obtain the result. �

Theorem 3.17. Let F be an h-anti-invariant submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN) such that (I, J,K) is

an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The map F is harmonic.

(b) QI(trace (T )) = 0 on kerF∗ and trace (ITV ) = 0 on kerF∗ for V ∈ Γ(kerF∗).
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(c) QJ(trace (T )) = 0 on kerF∗ and trace (JTV ) = 0 on kerF∗ for V ∈ Γ(kerF∗).

(d) QK(trace (T )) = 0 on kerF∗ and trace (KTV ) = 0 on kerF∗ for V ∈ Γ(kerF∗).

P r o o f. By (2.11) we know that the map F is harmonic if and only if
m∑
i=1

Teiei = 0

for any local orthonormal frame {e1, e2, . . . , em} of kerF∗.

Given V,W ∈ Γ(kerF∗), R ∈ {I, J,K}, and a local orthonormal frame
{e1, e2, . . . , em} of kerF∗, using (3.2) and (3.3) we obtain

TV RW = V∇V RW = VR∇V W

= VR(TV W + V∇V W ) = VRPRTV W

so that using (2.7) and (2.8) we get

gM

( m∑

i=1

Teiei, RV

)
=

m∑

i=1

gM (Teiei, RV ) =

m∑

i=1

gM (PRTeiei, RV )

= −
m∑

i=1

gM (RPRTeiei, V ) = −
m∑

i=1

gM (VRPRTeiei, V )

= −
m∑

i=1

gM (TeiRei, V ) =
m∑

i=1

gM (Rei, TeiV )

=

m∑

i=1

gM (Rei, TV ei) = −
m∑

i=1

gM (ei, RTV ei) = 0

⇔ trace (RTV ) = 0 for V ∈ Γ(kerF∗).

Hence,

(a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d).

Therefore, the result follows. �

Lemma 3.18. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the map F is harmonic.

P r o o f. Since J(kerF∗) = kerF∗, we can choose a local orthonormal frame

{e1, Je1, . . . , ek, Jek} of kerF∗.

Given V,W ∈ Γ(kerF∗), we have

TV JW = H∇V JW = HJ∇V W

= HJ(TV W + V∇V W ) = JTV W
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so that

k∑

i=1

(Teiei + TJeiJei) =
k∑

i=1

(Teiei + JTJeiei) =
k∑

i=1

(Teiei + JTeiJei)

=
k∑

i=1

(Teiei + J2Teiei) =
k∑

i=1

(Teiei − Teiei) = 0.

Therefore, the result follows. �

4. Decomposition theorems

First of all, we recall some notions. Let (M, g) be a Riemannian manifold and L

a foliation of M . Let ξ be the tangent bundle of L considered as a subbundle of the

tangent bundle TM of M .

We call L a totally umbilic foliation, see [21], of M if

(4.1) h(X,Y ) = g(X,Y )H for X,Y ∈ Γ(ξ),

where h is the second fundamental form of L in M and H is the mean curvature

vector field of L in M .

The foliation L is said to be a spheric foliation, see [21], if it is a totally umbilic

foliation and

(4.2) ∇XH ∈ Γ(ξ) for X ∈ Γ(ξ),

where ∇ is the Levi-Civita connection of g.
We call L a totally geodesic foliation, see [21], of M if

(4.3) ∇XY ∈ Γ(ξ) for X,Y ∈ Γ(ξ).

Let (M1, g1) and (M2, g2) be Riemannian manifolds, fi : M1 × M2 → R a positive

C∞-function, and πi : M1 ×M2 → Mi the canonical projection for i = 1, 2.

We callM1×(f1,f2)M2 a double-twisted product manifold, see [21], of (M1, g1) and

(M2, g2) if it is the product manifold M := M1 ×M2 with the Riemannian metric g

such that

(4.4) g(X,Y ) = f2
1 g1(π1∗X, π1∗Y ) + f2

2 g2(π2∗X, π2∗Y ) for X,Y ∈ Γ(TM).

We call M1 ×(f1,f2) M2 nontrivial if neither f1 nor f2 are constant functions.
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The Riemannian manifold M1 ×f M2 is said to be a twisted product manifold,

see [21], of (M1, g1) and (M2, g2) if M1 ×f M2 = M1 ×(1,f) M2.

We call M1 ×f M2 nontrivial if f is not a constant function.

The twisted product manifold M1 ×f M2 is said to be a warped product manifold,

see [21], of (M1, g1) and (M2, g2) if f depends only on the points of M1. (i.e.,

f ∈ C∞(M1,R))

LetM1 andM2 be connected C
∞-manifolds andM the product manifoldM1×M2.

Let πi : M → Mi be the canonical projection for i = 1, 2. Let ξi := kerπ3−i∗ and let

Pi : TM → ξi be the vector bundle projection such that TM = ξ1 ⊕ ξ2. And let Li

be the canonical foliation of M by the integral manifolds of ξi for i = 1, 2.

Proposition 4.1 ([21]). Let g be a Riemannian metric on the product manifold

M1×M2 and assume that the canonical foliations L1 and L2 intersect perpendicularly

everywhere. Then g is a metric of

(a) a double-twisted product manifold M1 ×(f1,f2) M2 if and only if L1 and L2 are

totally umbilic foliations,

(b) a twisted product manifold M1 ×f M2 if and only if L1 is a totally geodesic

foliation and L2 is a totally umbilic foliation,

(c) a warped product manifold M1 ×f M2 if and only if L1 is a totally geodesic

foliation and L2 is a spheric foliation,

(d) a (usual) Riemannian product manifold M1 ×M2 if and only if L1 and L2 are

totally geodesic foliations.

Let F be a Riemannian submersion from a Riemannian manifold (M, gM ) onto

a Riemannian manifold (N, gN ) such that the distributions kerF∗ and (kerF∗)
⊥

are integrable. Then we denote by MkerF∗
and M(kerF∗)⊥ the integral manifolds of

kerF∗ and (kerF∗)
⊥, respectively. We also denote by H and H⊥ the mean curva-

ture vector fields of kerF∗ and (kerF∗)
⊥, respectively, i.e., H = m−1

m∑
i=1

Teiei and

H⊥ = n−1
n∑

i=1

Avivi for a local orthonormal frame {e1, . . . , em} of kerF∗ and a local

orthonormal frame {v1, . . . , vn} of (kerF∗)
⊥.

Using Proposition 4.1, Theorem 3.11, and Theorem 3.13, we get

Theorem 4.2. Let F be an h-anti-invariant submersion from a hyperkähler mani-

fold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an

h-anti-invariant basis. Then the following conditions are equivalent:

(a) (M, gM ) is locally a Riemannian product manifold of the form M(kerF∗)⊥ ×
MkerF∗

.
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(b)

gM (AXBIY, IV ) = gM (CIY, IAXV ) and TV BIX +ACIXV ∈ Γ(µI)

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(c)

gM (AXBJY, JV ) = gM (CJY, JAXV ) and TV BJX +ACJXV ∈ Γ(µJ)

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(d)

gM (AXBKY,KV ) = gM (CKY,KAXV ) and TV BKX +ACKXV ∈ Γ(µK)

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

Using Proposition 4.1, Lemma 3.12, and Lemma 3.14, we obtain

Lemma 4.3. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the following conditions are equivalent:

(a) (M, gM ) is locally a Riemannian product manifold of the form M(kerF∗)⊥ ×
MkerF∗

.

(b) AXIY = 0 and TV IX = 0

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(c) AXKY = 0 and TV KX = 0

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(d) AXJY = 0 and TV JX = 0

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Now, we deal with the geometry of distributions kerF∗ and (kerF∗)
⊥.

Theorem 4.4. Let F be a Riemannian submersion from a Riemannian mani-

fold (M, gM ) onto a Riemannian manifold (N, gN ). Assume that the distribution

(kerF∗)
⊥ defines a totally umbilic foliation on M . Then the distribution (kerF∗)

⊥

also defines a totally geodesic foliation on M .

P r o o f. Given X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), we get

(4.5) gM (∇XY, V ) = gM (AXY, V ) = gM (X,Y )gM (H⊥, V )
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and

(4.6) gM (∇XY, V ) = −gM (Y,∇XV ) = −gM (Y,AXV ).

Comparing (4.5) and (4.6), we obtain AXV = −gM (H⊥, V )X .

Hence,

(4.7) gM (AXV,X) = −gM (H⊥, V )||X ||2.

But
gM (AXV,X) = gM (∇XV,X) = −gM (V,∇XX)

= −gM(V,AXX) = 0 (by (2.6))

so that from (4.7), we have H⊥ = 0.

Therefore, the result follows. �

Remark 4.5. From the equation AXY = −AY X for X,Y ∈ Γ((kerF∗)
⊥), we

can obtain Theorem 4.4. But the equation TV W = TWV for V,W ∈ Γ(kerF∗), yields

no theorems like Theorem 4.4 on kerF∗.

Theorem 4.6. Let F be an h-anti-invariant submersion from a hyperkähler mani-

fold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an

h-anti-invariant basis. Then the following conditions are equivalent:

(a) the distribution kerF∗ defines a totally umbilic foliation on M .

(b) TV BIX +H∇V CIX = −gM (H,X)IV

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(c) TV BJX +H∇V CJX = −gM (H,X)JV

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

(d) TV BKX +H∇V CKX = −gM (H,X)KV

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

P r o o f. Given V,W ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}, we

obtain
gM (TV W,X) = gM (∇V RW,RX)

= −gM (RW,∇V BRX +∇V CRX)

= −gM (RW, TV BRX +H∇V CRX)

so that it is easy to check that

TV W = gM (V,W )H ⇔ TV BRX +H∇V CRX = −gM (H,X)RV.

574



Hence,

(a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d).

Therefore, we get the result. �

Lemma 4.7. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution kerF∗ defines a totally umbilic foliation on M .

(b) TV IX = −gM(H,X)IV for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(c) TV KX = −gM (H,X)KV for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(d) TV JX = −gM(H,X)JV for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

P r o o f. By the proof of Theorem 4.6, we have (a) ⇔ (b) and (a) ⇔ (c).
Given V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)

⊥), we get

gM (TV W,X) = gM (∇V JW, JX)

= −gM (JW,∇V JX)

= −gM (JW, TV JX)

so that we easily check that

TV W = gM (V,W )H ⇔ TV JX = −gM(H,X)JV.

Hence, (a) ⇔ (d).
Therefore, the result follows. �

Using Proposition 4.1, Theorem 3.11, and Theorem 4.6, we get

Theorem 4.8. Let F be an h-anti-invariant submersion from a hyperkähler mani-

fold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an

h-anti-invariant basis. Then the following conditions are equivalent:

(a) (M, gM ) is locally a twisted product manifold of the form M(kerF∗)⊥ ×MkerF∗
.

(b)
gM (AXBIY, IV ) = gM (CIY, IAXV )

and

TV BIX +H∇V CIX = −gM (H,X)IV

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(c)
gM (AXBJY, JV ) = gM (CJY, JAXV )
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and

TV BJX +H∇V CJX = −gM (H,X)JV

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

(d)
gM (AXBKY,KV ) = gM (CKY,KAXV )

and

TV BKX +H∇V CKX = −gM (H,X)KV

for V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

Using Proposition 4.1, Lemma 3.12, and Lemma 4.7, we have

Lemma 4.9. Let F be an h-Lagrangian submersion from a hyperkähler manifold

(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an h-

Lagrangian basis. Then the following conditions are equivalent:

(a) (M, gM ) is locally a twisted product manifold of the form M(kerF∗)⊥ ×MkerF∗
.

(b)
AXIY = 0 and TV IX = −gM (H,X)IV

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(c)
AXKY = 0 and TV KX = −gM (H,X)KV

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

(d)
AXJY = 0 and TV JX = −gM (H,X)JV

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Now, we consider the non-existence of some types of Riemannian submersions.

Using Proposition 4.1 and Theorem 4.4, we get

Theorem 4.10. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Then there exists no h-anti-invariant sub-

mersion from M = (M,E, gM ) onto (N, gN ) such that M is locally a nontrivial

double-twisted product manifold of the form M(kerF∗)⊥ ×MkerF∗
.

Lemma 4.11. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Then there exists no h-Lagrangian submersion

fromM = (M,E, gM ) onto (N, gN ) such thatM is locally a nontrivial double-twisted

product manifold of the form M(kerF∗)⊥ ×MkerF∗
.
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Theorem 4.12. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Then there exists no h-anti-invariant submer-

sion from M = (M,E, gM ) onto (N, gN ) such that M is locally a nontrivial twisted

product manifold of the form MkerF∗
×M(kerF∗)⊥ .

Lemma 4.13. Let (M,E, gM ) be an almost quaternionic Hermitian manifold and

(N, gN ) a Riemannian manifold. Then there exists no h-Lagrangian submersion from

M = (M,E, gM ) onto (N, gN ) such that M is locally a nontrivial twisted product

manifold of the form MkerF∗
×M(kerF∗)⊥ .
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