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Abstract. A full multigrid finite element method is proposed for semilinear elliptic equa-
tions. The main idea is to transform the solution of the semilinear problem into a series
of solutions of the corresponding linear boundary value problems on the sequence of finite
element spaces and semilinear problems on a very low dimensional space. The linearized
boundary value problems are solved by some multigrid iterations. Besides the multigrid
iteration, all other efficient numerical methods can also serve as the linear solver for solving
boundary value problems. The optimality of the computational work is also proved. Com-
pared with the existing multigrid methods which need the bounded second order derivatives
of the nonlinear term, the proposed method only needs the Lipschitz continuation in some
sense of the nonlinear term.
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1. Introduction

The purpose of this paper is to study the multigird finite element method for semi-

linear elliptic problems. As we know, the multigrid and multilevel methods [2], [3],

[4], [5], [8], [13], [14], [15], [20] provide optimal order algorithms for solving boundary

value problems. The error bounds of the approximate solutions obtained from these

efficient numerical algorithms are comparable to the theoretical bounds determined

by the finite element discretization. In the past decade, some researches about multi-

grid method for nonlinear elliptic problem have been done to improve the efficiency
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of nonlinear elliptic problem solving, i.e. [14], [22], [21]. The Newton iteration has

been adopted to linearize the nonlinear equation in these existing multigrid methods

and then they need the bounded second order derivatives of the nonlinear terms. For

more information, we refer to [9], [14], [22], and the references therein.

Recently, a type of multigrid method with optimal efficiency for eigenvalue prob-

lems has been proposed in [10], [11], [16], [17], [18], [19]. The aim of this paper is

to present a full multigrid method for solving semilinear elliptic problems, based on

the multilevel correction scheme [16], [17]. The main idea is to design a special low

dimensional space to transform the solution of the semilinear problem into a series

of solutions of the corresponding linear boundary value problems on the sequence of

finite element spaces and semilinear problems on a very low dimensional space. For

the linearized elliptic problem, it is not necessary to solve the linear boundary value

problem exactly in each correction step. Here, we only do some multigrid iteration

steps for the linear boundary value problems. In this new version of the multigrid

method, solving a semilinear elliptic problem will not be much more difficult than the

multigrid scheme for the corresponding linear boundary value problems. Compared

with the existing multigrid methods for the semilinear problem, our method only

needs the Lipschitz continuation in some sense of the nonlinear term.

An outline of the paper goes as follows. In Section 2, we introduce the finite

element method for the semilinear elliptic problem. A type of full multigrid method

for the semilinear elliptic problem is given in Section 3. In Section 4, some numerical

examples are provided to illustrate the efficiency of the proposed numerical method.

Some concluding remarks are given in the last section.

2. Discretization by finite element method

In this paper, the letters C or c (with or without subscripts) are used to denote

constants which may be different at different places. For convenience, the symbols

x1 . y1, x2 & y2 and x3 ≈ y3 mean that x1 6 C1y1, x2 > c2y2 and c3x3 6 y3 6 C3x3.

Let Ω ⊂ R
d (d = 2, 3) denote a bounded convex domain with Lipschitz boundary ∂Ω.

We use the standard notation for Sobolev spacesW s,p(Ω) and their associated norms

‖·‖s,p,Ω and seminorms |·|s,p,Ω (see e.g. [1]). For p = 2, we denote Hs(Ω) = W s,2(Ω)

and H1
0 (Ω) = {v ∈ H1(Ω): v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace. For

simplicity, we use ‖·‖s to denote ‖·‖s,2,Ω and V to denote H1
0 (Ω) in the rest of the

paper.

Here, we consider the following type of semilinear elliptic equation:

(2.1)

{
−∇ · (A∇u) + f(x, u) = g in Ω,

u = 0 on ∂Ω,
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where A = (ai,j)d×d is a symmetric positive definite matrix with ai,j ∈ W 1,∞ (i, j =

1, 2, . . . , d), f(x, u) is a nonlinear function with respect to the second variable.

The weak form of the semilinear problem (2.1) can be described as: Find u ∈ V

such that

(2.2) a(u, v) + (f(x, u), v) = (g, v) ∀ v ∈ V,

where

(2.3) a(u, v) = (A∇u,∇v).

Obviously, a(u, v) is bounded and coercive on V , i.e.,

(2.4) a(u, v) 6 Ca‖u‖1,Ω‖v‖1,Ω and ca‖u‖
2
1,Ω 6 a(u, u) ∀u, v ∈ V.

Then we use the norm ‖w‖a :=
√
a(w,w) for any w ∈ V in this paper to replace the

standard norm ‖·‖1.

In order to guarantee the existence and uniqueness of the problem (2.2), we assume

the nonlinear term f(·, ·) satisfies the following assumption.

Assumption A. The nonlinear function f(x, ·) satisfies the convexity and Lip-

schitz continuous conditions as follows:

(2.5)

{
(f(x,w) − f(x, v), w − v) > 0 ∀w ∈ V, ∀ v ∈ V,

(f(x,w) − f(x, v), ϕ) 6 Cf‖w − v‖0‖ϕ‖1 ∀w ∈ V, ∀ v ∈ V, ∀ϕ ∈ V.

Now, we introduce the finite element method for the semilinear elliptic prob-

lem (2.2). First we generate a shape regular decomposition of the computing domain

Ω ⊂ R
d (d = 2, 3) into triangles or rectangles for d = 2, tetrahedrons or hexahedrons

for d = 3 (cf. [6], [7]). The mesh diameter h describes the maximum diameter of all

cells K ∈ Th. Based on the mesh Th, we construct the finite element space Vh ⊂ V .

For simplicity, we set Vh as the linear finite element space which is defined as

(2.6) Vh = {vh ∈ C(Ω): vh|K ∈ P1 ∀K ∈ Th} ∩H1
0 (Ω),

where P1 denotes the linear function space.

The standard finite element scheme for semilinear equation (2.2) is: Find ūh ∈ Vh

such that

(2.7) a(ūh, vh) + (f(x, ūh), vh) = (g, vh) ∀ vh ∈ Vh.
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Denote a linearized operator L : H1
0 (Ω) → H−1(Ω) by

(Lw, v) = (A∇w,∇v) ∀w ∈ V, ∀ v ∈ V.

In order to deduce the global a priori error estimates, we introduce ηa(Vh) as follows:

ηa(Vh) = sup
f∈L2(Ω),‖f‖0=1

inf
vh∈Vh

‖L−1f − vh‖a.

It is easy to know that ηa(Vh) → 0 as h → 0 (cf. [6], [7]).

In order to measure the error for the finite element approximations, we denote

δh(u) = inf
vh∈Vh

‖u− vh‖a.

From [14], we can give the following error estimates.

Lemma 2.1. When Assumption A is satisfied, equations (2.2) and (2.7) are

uniquely solvable and the following estimates hold:

‖u− ūh‖a 6 (1 + Cηa(Vh))δh(u),(2.8)

‖u− ūh‖0 . ηa(Vh)‖u− ūh‖a.(2.9)

P r o o f. From Theorem 6.1 in [14], we know that problems (2.2) and (2.7) are

uniquely solvable. Now, it is time to prove the error estimates. For this aim, we

define the finite element projection operator Ph by the equation

a(Phw, vh) = a(w, vh) ∀w ∈ V, ∀ vh ∈ Vh.

It is easy to know that ‖u − Phu‖a = δh(u) and ‖u − Phu‖0 . ηa(Vh)‖u − Phu‖a.

Let us define wh = Phu− ūh in this proof. From (2.2), (2.5), and (2.7), we have

a(Phu− ūh, wh) 6 a(Phu− ūh, wh) + (f(x, Phu)− f(x, ūh), wh)

= a(Phu,wh) + (f(x, Phu), wh)− (g, wh)

= a(Phu− u,wh) + (f(x, Phu)− f(x, u), wh)

= (f(x, Phu)− f(x, u), wh)

6 Cf‖u− Phu‖0‖wh‖a.

Then the following inequalities hold:

(2.10) ‖Phu− ūh‖a 6 Cf‖u− Phu‖0 6 Cfηa(Vh)‖u− Phu‖a.
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Combining (2.10) and the triangle inequality leads to the estimates

(2.11) ‖u− ūh‖a 6 ‖u− Phu‖a + ‖Phu− ūh‖a

6 δh(u) + Cfηa(Vh)‖u− Phu‖a

6 (1 + Cfηa(Vh))δh(u),

which is the desired result (2.8). From (2.10) and the triangle inequality, we have

‖u− ūh‖0 6 ‖u− Phu‖0 + ‖Phu− ūh‖0 6 ‖u− Phu‖0 + C‖Phu− ūh‖a

6 Cηa(Vh)‖u− Phu‖a + Cfηa(Vh)‖u− Phu‖a

6 (C + Cf )ηa(Vh)‖u− Phu‖a 6 (C + Cf )ηa(Vh)‖u− ūh‖a.

This is the desired result (2.9) and the proof is complete. �

3. Full multigrid method for semilinear elliptic equation

In this section, a full multigrid method for semilinear problems is proposed based

on the multilevel correction scheme in [16] and [17]. The key point is to transform the

solution of the semilinear problem into a series of solutions of the corresponding linear

boundary value problems on the sequence of finite element spaces and semilinear

problems on a very low dimensional space. In order to carry out the multigrid

method, we first generate a coarse mesh TH with the mesh size H and define the

linear finite element space VH on the mesh TH . Then a sequence of triangulations

Thk
of Ω ⊂ Rd is determined as follows. Suppose Th1

(produced from TH by regular

refinements) is given and let Thk
be obtained from Thk−1

via one regular refinement

step (producing βd subelements) such that

(3.1) hk =
1

β
hk−1, k = 2, . . . , n,

where the positive number β denotes the refinement index and is larger than 1 (always

equals 2). Based on this sequence of meshes, we construct the corresponding nested

linear finite element spaces such that

(3.2) VH ⊆ Vh1
⊂ Vh2

⊂ . . . ⊂ Vhn
.

Due to the convexity of the domain Ω, the sequence of finite element spaces Vh1
⊂

Vh2
⊂ . . . ⊂ Vhn

and the finite element space VH have the following relations of

approximation accuracy:

(3.3) ηa(Vhk
) ≈

1

β
ηa(Vhk−1

), δhk
(u) ≈

1

β
δhk−1

(u), k = 2, . . . , n.
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3.1. One correction step. In order to design the full multigrid method, first we

introduce one correction step in this subsection.

Assume we have obtained an approximate solution u
(l)
hk

∈ Vhk
. A correction step

is designed as follows to improve the accuracy of the given approximation u
(l)
hk
.

Algorithm 3.1. One Correction Step

(1) Define the following auxiliary boundary value problem: Find û
(l+1)
hk

∈ Vhk
such

that

(3.4) a(û
(l+1)
hk

, vhk
) = −(f(x, u

(l)
hk
), vhk

) + (g, vhk
) ∀ vhk

∈ Vhk
.

Perform m multigrid iteration steps for the second order elliptic equation to

obtain an approximate solution ũ
(l+1)
hk

with the error reduction rate

(3.5) ‖ũ
(l+1)
hk

− û
(l+1)
hk

‖a 6 θ‖u
(l)
hk

− û
(l+1)
hk

‖a,

where u
(l)
hk
is used as the initial value for the multigrid iteration and θ < 1 is

a fixed constant independent of the mesh size hk.

(2) Define a finite element space VH,hk
:= VH+span{ũ

(l+1)
hk

} and solve the following

semilinear elliptic equation: Find u
(l+1)
hk

∈ VH,hk
such that

(3.6) a(u
(l+1)
hk

, vH,hk
) + (f(x, u

(l+1)
hk

), vH,hk
) = (g, vH,hk

) ∀ vH,hk
∈ VH,hk

.

In order to simplify the notation and summarize the above two steps, we define

u
(l+1)
hk

= SemilinearMG(VH , u
(l)
hk
, Vhk

).

The error estimate of Algorithm 3.1 is studied in the next theorem.

Theorem 3.1. Assume the given solution u
(l)
hk
has the estimate

(3.7) ‖ūhk
− u

(l)
hk
‖0 . ηa(VH)‖ūhk

− u
(l)
hk
‖a.

After the one correction step defined by Algorithm 3.1, the resultant approximate

solution u
(l+1)
hk

has the estimates

‖ūhk
− u

(l+1)
hk

‖a 6 γ‖ūhk
− u

(l)
hk
‖a,(3.8)

‖ūhk
− u

(l+1)
hk

‖0 6 Cηa(VH)‖ūhk
− u

(l+1)
hk

‖a,(3.9)

where

γ := (θ + (1 + θ)Cηa(VH))(1 + Cηa(VH)).

230



P r o o f. From (2.5), (2.7) and (3.4), we have

(3.10) a(ūhk
− û

(l+1)
hk

, vhk
) = (f(x, u

(l)
hk
)− f(x, ūhk

), vhk
)

6 Cf‖ūhk
− u

(l)
hk
‖0‖vhk

‖a

6 Cηa(VH)‖ūhk
− u

(l)
hk
‖a‖vhk

‖a ∀ vhk
∈ Vhk

.

Combining (2.4) and (3.10) leads to

(3.11) ‖ūhk
− û

(l+1)
hk

‖a 6 Cηa(VH)‖ūhk
− u

(l)
hk
‖a.

After performing m multigrid iteration steps, due to (3.5) and (3.11), the following

estimates hold:

(3.12) ‖ũ
(l+1)
hk

− ūhk
‖a 6 ‖ũ

(l+1)
hk

− û
(l+1)
hk

‖a + ‖û
(l+1)
hk

− ūhk
‖a

6 θ‖u
(l)
hk

− û
(l+1)
hk

‖a + ‖û
(l+1)
hk

− ūhk
‖a

6 θ‖u
(l)
hk

− ūhk
‖a + θ‖û

(l+1)
hk

− ūhk
‖a + ‖û

(l+1)
hk

− ūhk
‖a

6
(
θ + (1 + θ)Cηa(VH)

)
‖ūhk

− u
(l)
hk
‖a.

Note that the semilinear elliptic problem (3.6) can be regarded as a finite dimensional

approximation of the semilinear elliptic problem (2.7). Let PH,hk
: V → VH,hk

denote

the finite element projection operator which is defined as

a(PH,hk
w, vH,hk

) = a(w, vH,hk
) ∀w ∈ V, ∀ vH,hk

∈ VH,hk
.

Since ũ
(l+1)
hk

∈ VH,hk
and VH ⊂ VH,hk

, it is obvious that ηa(VH,hk
) 6 ηa(VH) and

‖ūhk
− PH,hk

ūhk
‖a = inf

vH,hk
∈VH,hk

‖ūhk
− vH,hk

‖a 6 ‖ūhk
− ũ

(l+1)
hk

‖a,(3.13)

‖ūhk
− PH,hk

ūhk
‖0 6 Cηa(VH,hk

)‖ūhk
− PH,hk

ūhk
‖a(3.14)

6 Cηa(VH)‖ūhk
− PH,hk

ūhk
‖a.

Let us define whk
= PH,hk

ūhk
−u

(l+1)
hk

∈ VH,hk
in this proof. Based on problems (2.7)

and (3.6), the following estimates hold:

(3.15) a(PH,hk
ūhk

− u
(l+1)
hk

, whk
)

6 a(PH,hk
ūhk

− u
(l+1)
hk

, whk
) + (f(x, PH,hk

ūhk
)− f(x, u

(l+1)
hk

), whk
)

= a(PH,hk
ūhk

, wh) + (f(x, PH,hk
ūhk

), whk
)− (g, whk

)

= a(PH,hk
ūhk

− ūhk
, whk

) + (f(x, PH,hk
ūhk

)− f(x, ūhk
), whk

)

= (f(x, PH,hk
ūhk

)− f(x, ūhk
), whk

) 6 Cf‖ūhk
− PH,hk

ūhk
‖0‖whk

‖a.
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From (3.14) and (3.15), we have

(3.16) ‖PH,hk
ūhk

− u
(l+1)
hk

‖a 6 Cf‖ūhk
− PH,hk

ūhk
‖0

6 Cηa(VH)‖ūhk
− PH,hk

ūhk
‖a.

Combining (3.13), (3.16), and the triangle inequality leads to the inequalities

(3.17) ‖ūhk
− u

(l+1)
hk

‖a 6 ‖ūhk
− PH,hk

ūhk
‖a + ‖PH,hk

ūhk
− u

(l+1)
hk

‖a

6 (1 + Cηa(VH))‖ūhk
− PH,hk

ūhk
‖a

6 (1 + Cηa(VH))‖ūhk
− ũ

(l+1)
hk

‖a.

This is the desired result (3.8). From (3.15) and the triangle inequality, we have the

estimates

(3.18) ‖ūhk
− u

(l+1)
hk

‖0 6 ‖ūhk
− PH,hk

ūhk
‖0 + ‖PH,hk

ūhk
− u

(l+1)
hk

‖0

6 ‖ūhk
− PH,hk

ūhk
‖0 + C‖PH,hk

ūhk
− u

(l+1)
hk

‖a

6 Cηa(VH)‖ūhk
− PH,hk

ūhk
‖a

6 Cηa(VH)‖ūhk
− u

(l+1)
hk

‖a,

which is the desired result (3.9) and the proof is complete. �

R em a r k 3.1. The proof of Theorem 3.1 shows that the structure of the low

dimensional space VH,hk
plays the key role for Algorithm 3.1. This special space

makes the finite element projection PH,hk
has both the accuracy as in (3.13) and the

L2-norm estimate by duality argument as in (3.14).

3.2. Full multigrid method. In this subsection, a full multigrid method is pro-

posed based on the one correction step defined in Algorithm 3.1. This algorithm can

reach the optimal convergence rate with the optimal computational complexity.

Agorithm 3.2. Full Multigrid Scheme

(1) Solve the following semilinear problem in Vh1
: Find uh1

∈ Vh1
such that

a(uh1
, vh1

) + (f(x, uh1
), vh1

) = (g, vh1
) ∀ vh1

∈ Vh1
.

(2) For k = 2, . . . , n, do the following iteration:

(a) Set u
(0)
hk

= uhk−1
.

(b) For l = 0, . . . , p− 1, do the iterations

u
(l+1)
hk

= SemilinearMG(VH , u
(l)
hk
, Vhk

).

(c) Define uhk
= u

(p)
hk
.

End Do

Finally, we obtain an approximate solution uhn
∈ Vhn

.
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Theorem 3.2. After implementing Algorithm 3.2, we have the error estimates

for the final approximation uhn

‖ūhn
− uhn

‖a 6
2γpβ

1− γpβ
δhn

(u),(3.19)

‖ūhn
− uhn

‖0 6 Cηa(VH)‖ūhn
− uhn

‖a,(3.20)

under the condition that the coarsest mesh size H is small enough so that γpβ < 1.

P r o o f. From the first step of Algorithm 3.2, we have uh1
= ūh1

. Then from

Lemma 2.1 and the proof of Theorem 3.1, the following estimates hold:

‖ūh2
− uh2

‖a = ‖ūh2
− u

(p)
h2

‖a 6 γp‖ūh2
− u

(0)
h2

‖a(3.21)

= γp‖ūh2
− uh1

‖a = γp‖ūh2
− ūh1

‖a,

‖ūh2
− uh2

‖0 6 Cηa(VH)‖ūh2
− uh2

‖a.(3.22)

Based on (3.21), (3.22), Theorem 3.1, and a recursive argument, the final approxi-

mate solution has the error estimates

‖ūhn
− uhn

‖a 6 γp‖ūhn
− u

(0)
hn

‖a = γp‖ūhn
− uhn−1

‖a

6 γp(‖ūhn
− ūhn−1

‖a + ‖ūhn−1
− uhn−1

‖a)

6 γp‖ūhn
− ūhn−1

‖a + γ2p
(
‖ūhn−1

− ūhn−2
‖a + ‖ūhn−2

− uhn−2
‖a
)

6

n−1∑

k=1

γkp‖ūhn−k+1
− ūhn−k

‖a

6

n−1∑

k=1

γkp(‖ūhn−k+1
− u‖a + ‖u− ūhn−k

‖a)

6 2
n−1∑

k=1

γkpδhn−k
(u) 6 2

n−1∑

k=1

γkpβkδhn
(u) 6

2γpβ

1− γpβ
δhn

(u),

which is just the desired result (3.19). The second result (3.20) can be proved by an

argument similar to that in the proof of Theorem 3.1 and the proof is complete. �

Corollary 3.1. For the final approximation uhn
obtained by Algorithm 3.2, we

have the estimates

‖u− uhn
‖a . δhn

(u),(3.23)

‖u− uhn
‖0 . ηa(VH)δhn

(u).(3.24)
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P r o o f. This is a direct consequence of the combination of Lemma 2.1 and

Theorem 3.2. �

3.3. Estimate of the computational work. In this subsection, we turn our

attention to the estimate of computational work for the full multigrid method defined

in Algorithm 3.2. It will be shown that the full multigrid method makes solving

the semilinear elliptic problem almost as cheap as solving the corresponding linear

boundary value problems.

First, we define the dimension of each level finite element space as Nk := dimVhk
.

Then we have

(3.25) Nk ≈
( 1

β

)d(n−k)

Nn, k = 1, 2, . . . , n.

The computational work for the second step in Algorithm 3.2 is different from the

linear elliptic problems [3], [13], [14], [15], [20]. In this step, we need to solve the

semilinear elliptic problem (3.6). Always, some type of nonlinear iteration method

(fixed-point iteration or Newton type iteration) is adopted to solve this low dimen-

sional semilinear elliptic problem. In each nonlinear iteration step, it is required to

assemble the matrix on the finite element space VH,hk
(k = 2, . . . , n) which needs the

computational work O(Nk). Fortunately, the matrix assembling can be carried out

in the parallel way easily in the finite element space, since it has no data transfer.

Theorem 3.3. Assume we use ϑ computing nodes in Algorithm 3.2; the semi-

linear elliptic solving in the coarse spaces VH,hk
(k = 2, . . . , n) and Vh1

needs work

O(MH) and O(Mh1
), respectively, and the work of the multigrid iteration for the

boundary value problem in each level space Vhk
is O(Nk) for k = 2, 3, . . . , n. Let

̟ denote the nonlinear iteration times when we solve the semilinear elliptic prob-

lem (3.6). Then in each computational node, the work involved in Algorithm 3.2 has

the estimate

(3.26) Total work = O
((

1 +
̟

ϑ

)
Nn +MH logNn +Mh1

)
.

P r o o f. We use Wk to denote the work involved in each correction step on the

kth finite element space Vhk
. From the definition of Algorithm 3.2, we have the

estimate

(3.27) Wk = O
(
Nk +MH +̟

Nk

ϑ

)
.
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Based on the property (3.25), iterating (3.27) leads to

(3.28) Total work =

n∑

k=1

Wk = O

(
Mh1

+

n∑

k=2

(
Nk +MH +̟

Nk

ϑ

))

= O

( n∑

k=2

(
1 +

̟

ϑ

)
Nk + (n− 1)MH +Mh1

)

= O

( n∑

k=2

( 1

β

)d(n−k)(
1 +

̟

ϑ

)
Nn +MH logNn +Mh1

)

= O
((

1 +
̟

ϑ

)
Nn +MH logNn +Mh1

)
.

This is the desired result and we have completed the proof. �

R em a r k 3.2. Since we always have a good enough initial solution ũ
(l+1)
hk

in

the second step of Algorithm 3.1, solving the semilinear elliptic problem (3.6) never

needs many nonlinear iterations. In this case, the complexity in each computational

node will be O(Nn) providedMH ≪ Nn andMh1
6 Nn. For more difficult nonlinear

problems, the complexity in each computational node can also be bounded by O(Nn)

in the parallel way with enough computational nodes.

4. Numerical results

In this section, four numerical experiments are presented to verify the theoretical

analysis and the efficiency of Algorithm 3.2. We will check different nonlinear terms

which include polynomial, exponential functions and a function only having bounded

first order derivative. Furthermore, we also investigate the performance of the full

multigrid method on the adaptively refined meshes. In all examples, we choosem = 2

and p = 1.

E x am p l e 4.1. We consider the following semilinear elliptic problem:

(4.1)

{
−∆u+ u3 = g in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)3. We choose the right-hand side term g such that the exact solution

is given by

(4.2) u = sin(πx) sin(πy) sin(πz).
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Figure 1. The initial mesh for Example 4.1.

We give the numerical results for the approximate solutions by Algorithm 3.2.

Figure 1 shows the initial triangulation. Figure 2 shows the error estimates and

the CPU time in seconds. It is shown in Figure 2 that the approximate solution

by Algorithm 3.2 has the optimal convergence order and the linear computational

complexity which coincides with the theoretical results in Theorems 3.1, 3.2, and

Corollary 3.1.
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Figure 2. Errors and CPU time (in seconds) of Algorithm 3.2 for Example 4.1.

E x am p l e 4.2. In the second example, we solve the following semilinear elliptic

problem:

(4.3)

{
−∆u− e−u = 1 in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)3. Since the exact solution is not known, we choose an adequately

accurate approximate solution on a fine enough mesh as the exact one.
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Algorithm 3.2 is applied to this example. Figure 1 shows the initial mesh. Figure 3

gives the corresponding numerical results which also show the optimal convergence

rate and linear computational complexity of Algorithm 3.2.
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Figure 3. Errors and CPU time (in seconds) of Algorithm 3.2 for Example 4.2.

E x am p l e 4.3. In the third example, we solve the following semilinear elliptic

problem:

(4.4)

{
−∆u+ f(x, u) = g in Ω,

u = 0 on ∂Ω,

with

(4.5) f(x, u) =

{
u3/2 if u > 0,

−u3/2 if u < 0,

where Ω = (0, 1)3. We choose the right-hand side term g such that the exact solution

is given by

(4.6) u = sin(2πx) sin(2πy) sin(2πz).

In this example, the nonlinear term f(x, v) has bounded first order derivative

∂f(x, v)/∂v but unbounded second order derivative ∂2f(x, v)/∂2v. Then the meth-

ods given in [9], [14] cannot be used for this example.

Algorithm 3.2 is applied to this example. Figure 1 shows the initial mesh. Figure 4

gives the corresponding numerical results which also show the optimal convergence

rate and linear computational complexity of Algorithm 3.2.
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Figure 4. Errors and CPU time (in seconds) of Algorithm 3.2 for Example 4.3.

E x am p l e 4.4. In the last example, we solve the following semilinear elliptic

problem:

(4.7)

{
−∆u+ u3/2 = 1 in Ω,

u = 0 on ∂Ω,

where Ω = (−1, 1)3 \ [0, 1)3. Due to the reentrant corner of Ω, the exact solution

with singularities is expected. The convergence order for the approximate solution

is less than the order predicted by the theory for regular solutions. Thus, the adap-

tive refinement is adopted to couple with the full multigrid method described in

Algorithm 3.2 (cf. [12]).

Since the exact solution is not known, we also choose an adequately accurate

approximation on a fine enough mesh as the exact one. We give the numerical

results of the full multigrid method in which the sequence of meshes Th1
, . . . , Thn

is

produced by the adaptive refinement with the a posteriori error estimator

(4.8) η2(v,K) := h2
K‖RK(v)‖20,K +

∑

e∈EI ,e⊂∂K

he‖Je(v)‖
2
0,e,

where the element residual RK(v) and the jump residual Je(v) are defined as follows:

RK(v) := g − f(x, v) −∇ · (A∇v) in K ∈ Thk
,(4.9)

Je(v) := −A∇v+ · ν+ −A∇v− · ν− := [A∇v]e · νe on e ∈ EI .(4.10)

Here EI denotes the set of interior faces (edges or sides) of Thk
and e is the common

side of elements K+ and K− with the unit outward normals ν+ and ν−, respectively,

and νe = ν−.
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Figure 5 shows the mesh after 15 refinements and the corresponding cross section.

Figure 6 shows the numerical results by Algorithm 3.2. From Figure 6, we can find

that the full multigrid method can also work on the adaptive family of meshes and

obtain the optimal accuracy. The full multigrid method can be coupled with the

adaptive refinement naturally to produce a type of adaptive finite element method

for semilinear elliptic problem, where the direct nonlinear iteration in the adaptive

finite element space is not required. This can also improve the overall efficiency of

the adaptive finite element method for semilinear elliptic problem solving. For more

information, we refer to the paper [12].

Figure 5. The triangulations after 15 adaptive refinements and the corresponding cross
section for Example 4.4.
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Figure 6. Errors of Algorithm 3.2 for Example 4.4.
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5. Concluding remarks

In this paper, a full multigrid method is proposed for solving semilinear elliptic

equations by the finite element method. The corresponding estimates of error and

computational work are given. The main idea is to transform the solution of the

semilinear problem into a series of solutions of the corresponding linear boundary

value problems on the sequence of finite element spaces and semilinear problems on

a very low dimensional space. Compared with the existing multigrid methods which

require bounded second order derivatives of the nonlinear term, the proposed method

only needs the Lipschitz continuity in some sense of the nonlinear term. Based on

the full multigrid method, all existing efficient solvers for the linear elliptic problems

can serve as solvers for the semilinear equations. The idea and algorithm in this

paper can be extended to other nonlinear problems such as Navier-Stokes problems

and phase field models.
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