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Order-theoretic properties

of some sets of quasi-measures

Zbigniew Lipecki

Abstract. Let M and R be algebras of subsets of a set Ω with M⊂ R, and denote
by E(µ) the set of all quasi-measure extensions of a given quasi-measure µ on
M to R. We show that E(µ) is order bounded if and only if it is contained in
a principal ideal in ba(R) if and only if it is weakly compact and extr E(µ) is
contained in a principal ideal in ba(R). We also establish some criteria for the
coincidence of the ideals, in ba(R), generated by E(µ) and extr E(µ).

Keywords: linear lattice; ideal; order bounded; ideal dominated; order unit; Ba-
nach lattice; AM-space; convex set; extreme point; weakly compact; additive set
function; quasi-measure; atomic; extension

Classification: 06F20, 28A12, 28A33, 46A55, 46B42

1. Introduction

By a quasi-measure we mean a positive additive function on an algebra of sets.
Let M and R be algebras of subsets of a set Ω with M ⊂ R and let µ be a quasi-
measure on M. The ‘sets’ appearing in the title of the paper1 are the convex set
E(µ) of all quasi-measure extensions of µ to R and the set extrE(µ) of its ex-
treme points. These sets have been studied in many earlier papers by the author,
including [4]–[7]. So far, their topological and linear-topological properties as sub-
sets of the dual Banach lattice ba(R) have been of main concern. A systematic
presentation of most of the results obtained is given in the memoir [8].

This paper is a continuation of [9]. Its starting point is the following conse-
quence of classical results: if E(µ) is order bounded, then it is weakly compact
([9, Proposition 2(c)]). To fill the gap between order boundedness and weak com-
pactness, we introduce, in Section 2, a property of subsets of a general linear
lattice X , which we call ideal domination. (By definition, V ⊂ X is ideal domi-

nated if it is contained in a principal ideal in X .) This property is weaker than
order boundedness, in general, but coincides with it for compact convex subsets
of X , the topology involved being compatible with the linear structure and order
of X (Theorem 1 in Section 2). Compactness alone does not suffice here; see
the passage introducing Proposition 1 in Section 2. It follows from Theorem 1

DOI 10.14712/1213-7243.2015.208
1Some results of Section 2 of the paper were presented at the 43rd Winter School in Abstract

Analysis (Svratka, Czech Republic, 2015).
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that E(µ) is order bounded if and only if it is ideal dominated (Theorem 4 in
Section 6). A further equivalent condition is the following one: E(µ) is weakly
compact and extrE(µ) is ideal dominated (Theorem 6 in Section 6).

Order boundedness of E(µ) is equivalent to that of extrE(µ), according to
[9, Theorem 2, (i) ⇔ (ii)]. This is still true for ideal domination provided µ
is nonatomic (see Theorem 5 in Section 6), but not in general. Therefore, we
establish some criteria for ideal domination of extrE(µ). One of them is concerned
with the case where µ has finite range or, more generally, is atomic (Proposition 3
and Theorem 3 in Section 5). Another one applies in the situation where M, R

and µ are related in a special way (Theorem 7 in Section 6).
Finally, Section 7 is concerned with the question when the ideals, in ba(R),

generated by E(µ) and extrE(µ) coincide. A necessary and sufficient condition is
provided in the case where µ has finite range or is atomic (Proposition 4 and The-
orem 8). The answer is, moreover, affirmative when R is generated, as an algebra,
by M and a finite family of subsets of Ω, and µ is arbitrary (Proposition 6(b)).

Many results of [8] and [9] are applied extensively in the paper. We also
frequently appeal to the Baire category theorem, both for compact topological
spaces and complete metric spaces (see the proofs of Theorem 1 in Section 2, and
of Lemma 2 in Section 4 and Theorem 5 in Section 6, respectively).

The measure-theoretic notation and terminology we use are explained in Sec-
tion 3. They are mostly standard and coincide with those of [8]. Section 3 also
contains a few auxiliary results on E(µ) and extrE(µ). More auxiliary results on
these sets are presented in Section 4.

2. Ideal domination in linear lattices and in Banach lattices

Let X be a real linear lattice (= Riesz space in the terminology of [2]), with
the order and lattice operations denoted by ≤ and ∧, ∨, respectively. As usual,
|x| stands for the modulus or absolute value of x ∈ X and X+ for the positive
cone of X .

The order interval [x, y], where x, y ∈ X and x ≤ y, is the set

{z ∈ X : x ≤ z ≤ y}.

Let V be a subset of X . Recall that V is order bounded if V ⊂ [x, y] for some
x and y as above. We denote by AV the ideal in X generated by V . The notation
A{x}, where x ∈ X , is abbreviated to Ax. Such ideals are called principal . We
have

Ax =
⋃

n∈N

[−n|x|, n|x|].

We shall tacitly make use of this simple formula, combined with the Baire category
theorem, in some proofs.

We call V ideal dominated if V ⊂ Ax for some x ∈ X . Clearly, every principal
ideal is ideal dominated. Also, every order interval [x, y] is ideal dominated since
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x, y ∈ A|x|∨|y|. Note that X is itself ideal dominated if and only if it has a (strong)
order unit e, i.e., e ∈ X and for every x ∈ X there exists n ∈ N with |x| ≤ ne.

We start by a result which will be used in establishing Proposition 2 in this
section and Theorem 4 in Section 6. For a special case see [2, Chapter 6, Exer-
cise 5].

Theorem 1. Let τ be a linear topology on X with X+ closed. For a compact

convex subset W of X the following two conditions are equivalent:

(i) W is order bounded;

(ii) W is ideal dominated.

Proof: Suppose (ii) holds. The order intervals in X being τ -closed, the Baire
category theorem for compact spaces applied in W yields a nonempty relatively
τ -open and order bounded subset U of W . A translation argument allows us to
assume that 0 ∈ U . Using the continuity of the mapping

[0, 1] ∋ t 7−→ tx ∈ W, x ∈ W,

we can find for each x ∈ W some 0 < εx < 1 with εxx ∈ U . We then have

W =
⋃

x∈W

(

1

εx

U

)

∩ W.

The sets (tU)∩W , where t > 1, being relatively τ -open in W , there exist x1, . . . ,
xn ∈ W with

W ⊂
n
⋃

i=1

1

εxi

U.

This yields (i). �

Clearly, the compactness assumption in Theorem 1 cannot be dispensed with.
That this is also the case for the convexity assumption is seen from Theorem 2,
(ii) ⇒ (i), and Proposition 1 below. The latter will be also used in establish-
ing Proposition 2 in this section and Lemma 1 in Section 3. Needless to say,
Proposition 1 is surely known.

Proposition 1. Every countable subset V of a Banach lattice X is ideal domi-

nated.

Proof: Let V = {x1, x2, . . .}. We may assume that 0 /∈ V . Set

x =
∞
∑

i=1

2−i |xi|

‖xi‖
.

Clearly, we then have V ⊂ Ax. �

The next result is also known. The equivalence of conditions (i) and (ii) thereof
is due to V. Schlotterbeck (see [14, Theorem IV.2.8]). The original proof of the
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implication (ii) ⇒ (i) is somewhat involved. Therefore, we shall present below
a simple and elementary proof based on a known idea (see [1, proof of Theorem 1];
cf. also [11, proof of Theorem 5]). The implication (i) ⇒ (iii) is a consequence of
standard results (see [15, Lemma 9.23]). The implication (ii) ⇒ (i) will be used
in the proof of Proposition 2 in this section. For the definition of an AM-space
we refer the reader to [14, Definition II.7.1] or [15, Definition 9.1(i)].

Theorem 2. For a Banach lattice X the following three conditions are equivalent:

(i) X is isomorphic to an AM-space;

(ii) every sequence (xn) in X such that ‖xn‖ → 0 is order bounded;

(iii) every relatively compact subset of X is order bounded.

Proof of the implication (ii) ⇒ (i): Set

M = sup
{

‖|x1| ∨ . . . ∨ |xk|‖ : x1, . . . , xk ∈ X, max
1≤i≤k

‖xi‖ ≤ 1, and k ∈ N

}

.

We claim that M < ∞. Otherwise, for each s ∈ N, we could find xs
1, . . . , xs

ks
∈ X

with ‖|xs
1| ∨ . . . ∨ |xs

ks
|‖ > s2 and ‖xs

i‖ ≤ 1 for all 1 ≤ i ≤ ks. Considering the
sequence

x1
1, . . . , x1

k1
,

1

2
x2

1, . . . ,
1

2
x2

k2
, . . . ,

we then see that (ii) fails, and so the claim is established. Set, for x ∈ X ,

‖x‖′ = inf
{

max
1≤i≤k

‖xi‖ : x1, . . . , xk ∈ X+, |x| ≤ x1 ∨ . . . ∨ xk, and k ∈ N

}

.

As easily seen, ‖ · ‖′ is an M -norm in X and

‖x‖′ ≤ ‖x‖ ≤ M‖x‖′ for all x ∈ X,

and so we are done. �

We note that there are straightforward examples showing that condition (ii) of
Theorem 2 fails for X = lp, where 1 ≤ p < ∞. Indeed, set xn = tnen for n ∈ N,
where (en) is the standard basis of lp and tn are real numbers with tn → 0 and
(tn) /∈ lp.

For a result related to Theorem 2, (i) ⇔ (iii), see [16, Exercise 122.8].
Part (a) of the next result is in contrast with [9, Proposition 1], which implies

that a compact convex set W of a linear lattice X equipped with a locally convex
topology τ such that X+ is closed is order bounded if and only if so is extrW .
Similarly, part (b) thereof shows that an analogue of [9, Lemma 1(b)] for ideal
domination does not hold.

Proposition 2. Let X be a Banach lattice nonisomorphic to an AM-space.

(a) There exists a compact convex subset W of X which is not ideal domi-

nated but extrW is ideal dominated. In particular, AW 6= A extr W .
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(b) There exists an ideal dominated convex subset V of X such that V is

compact but not ideal dominated.

Proof: By Theorem 2, (ii) ⇒ (i), there exists a sequence (xn) in X such that
‖xn‖ → 0 but {xn : n ∈ N} is not order bounded. Set

V = conv{xn : n ∈ N} and W = V .

According to Mazur’s theorem [13, II.4.3], W is compact. It follows from Milman’s
theorem [13, II.10.5] that

extrW ⊂ {xn : n ∈ N} ∪ {0}.

Therefore, extrW and V are both ideal dominated, by Proposition 1. Since W is
not order bounded, Theorem 1 implies that it is not ideal dominated either. �

Proposition 2(a) is in contrast with Theorem 6, (ii) ⇒ (i), in Section 6.

3. Further notation and measure-theoretic preliminaries

The set of nonzero {0, 1}-valued additive functions on a Boolean algebra A is
denoted by ult(A).

For a set Ω we denote by 2Ω the family of all subsets of Ω and by |Ω| the
cardinality of Ω.

Throughout the rest of the paper, Ω stands for a nonempty set and M for an

algebra of subsets of Ω.
Given E ⊂ 2Ω, we denote by Eb the algebra of subsets of Ω generated by E.
We denote by ba(M) the Banach lattice of all real-valued bounded additive

functions on M (see [3, Section 2.2]). By definition, ‖ϕ‖ = |ϕ|(Ω) for ϕ ∈ ba(M).
In addition to the strong topology, ba(M) is equipped with its weak and weak∗

topologies; see [3, Section 4.7] for the canonical Banach-lattice predual of ba(M).
Let µ ∈ ba+(M). Adapting a general linear-lattice-theoretical terminology (see

[2, p. 13]), we say that ν ∈ ba(M) is a component of µ if

ν ∧ (µ − ν) = 0.

We denote by Uµ the set of all components of µ which take at most two values. As
easily seen (cf. [3, Proposition 5.2.2]), for different ν1, ν2 ∈ Uµ we have ν1∧ν2 = 0.
Therefore, Uµ is countable.

We say that µ ∈ ba+(M) is nonatomic provided for every ε > 0 there exists an
M-partition {M1, . . . , Mn} of Ω with µ(Mi) < ε for all i (see [3, Definition 5.1.4],
where the term strongly continuous is used). We say that µ is (purely) atomic

provided µ ∧ ν = 0 for every nonatomic ν ∈ ba+(M). According to the Sobczyk–
Hammer decomposition theorem [3, Theorem 5.2.7], µ is atomic if and only if
µ =

∑

ν∈Uµ
ν, while µ is nonatomic if and only if Uµ = {0}. Moreover, µ = µ1+µ2,

where µ1, µ2 ∈ ba+(M), µ1 is atomic and µ2 is nonatomic. We shall use this
decomposition in the proofs of Theorems 6 and 7 in Section 6.
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As usual, we associate with µ ∈ ba+(M) the outer quasi-measure µ∗, defined,
for all E ⊂ Ω, by the formula:

µ∗(E) = inf{µ(M) : E ⊂ M ∈ M}.

Throughout the rest of the paper, R stands for an algebra of subsets of Ω with

M ⊂ R. Given µ ∈ ba+(M), we set

E(µ) = {̺ ∈ ba+(R) : ̺|M = µ}.

It is a classical result that E(µ) is always nonempty (see [3, Chapter 3]). Moreover,
it is, clearly, convex. In some other papers by the author, including [8], the more
comprehensive notation E(µ, R) instead of E(µ) is occasionally used.

We shall also need the following notation (see [8, p. 18]). Given µ ∈ ba+(M),
we set

Jµ = {R ∈ R : there exists M ∈ M with R ⊂ M and µ(M) = 0}.

Clearly, Jµ is an ideal in R.
The following result will be often applied below.

(D)′ For µ ∈ ult(M) we have extrE(µ) = E(µ) ∩ ult(R).

See [8, p. 19] or [5, p. 396].
We shall also make frequent use of the following two formulas:

E
(

n
∑

j=1

µj

)

=

n
∑

j=1

E(µj) for µ1, . . . , µn ∈ ba+(M);(1)

extrE
(

n
∑

j=1

µj

)

=

n
∑

j=1

extrE(µj) for µ1, . . . , µn ∈ ba+(M)(2)

with µj ∧ µj′ = 0 whenever j 6= j′.

They are immediate consequences of the corresponding parts of [8, Theo-
rem 6.1] or [5, Theorem 1].

Formulas (1) and (2) imply, in view of [2, Theorem 1.2] applied in ba(R), the
next two formulas, respectively:

A
E

( n
∑

j=1

µj

) =

n
∑

j=1

AE(µj) for µ1, . . . , µn ∈ ba+(M);(3)

A
extr E

( n
∑

j=1

µj

) =

n
∑

j=1

A extr E(µj) for µ1, . . . , µn ∈ ba+(M)(4)

with µj ∧ µj′ = 0 whenever j 6= j′.

They will be used in the proofs of Lemmas 2 and 4 in Section 4 and of Propo-
sition 3 and Theorem 3 in Section 5.
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The next assertion will be used in the proofs of Lemma 4 in Section 4 and
Theorem 8 in Section 7.

(5) If µ1, µ2 ∈ ba(M) and µ1 ∧µ2 = 0, then ̺1 ∧ ̺2 = 0 whenever ̺1 ∈ E(µ1) and
̺2 ∈ E(µ2).

This holds, since µ1 ∧µ2 = 0 if and only if for every ε > 0 there exists M ∈ M

with µ1(M) + µ2(M
c) < ε (see [3, Theorem 2.2.1(7)]).

4. Auxiliary results on E(µ) and extrE(µ)

The following lemma will be used in establishing Proposition 3 and Theorem 3
in Section 5.

Lemma 1. Let µ ∈ ult(M). Then the following two conditions are equivalent:

(i) extrE(µ) is ideal dominated;

(ii) extrE(µ) is countable.

Proof: The implication (ii) ⇒ (i) holds, by Proposition 1.
To get a contradiction, suppose that (ii) fails, but (i) holds. Then there exists

an uncountable subset E of extr E(µ) and τ ∈ ba+(R) such that τ ≥ π for each
π ∈ E . In view of (D)′, this implies τ ≥

∑

π∈F π whenever F is a finite subset
of E . Hence τ(Ω) = ∞, which is impossible. �

We continue with a lemma which will be used in the proof of Theorem 3 in
Section 5.

Lemma 2. Suppose µ, µj ∈ ba+(M) are such that
∑∞

j=1 µj = µ and µj ∧µj′ = 0

whenever j 6= j′. Then the following two conditions are equivalent:

(i) extrE(µ) is ideal dominated;

(ii) extrE(µj) is ideal dominated for each j ∈ N and there exists n ∈ N such

that extrE
(
∑∞

j=n+1 µj

)

is order bounded.

Proof: That (ii) implies (i) is clear, in view of formula (4). By the same formula,
(i) implies the first part of condition (ii). According to [8, Proposition 4.4(b)] or
[4, Proposition 1(b)], extr E(µ) is closed in ba(R). Thus, by an application of the
Baire category theorem combined with (i), there exist π ∈ extr E(µ), ε > 0 and
τ ∈ ba+(R) such that

{π′ ∈ extrE(µ) : ‖π − π′‖ < ε} ⊂ [0, τ ].

Fix n ∈ N with
∑∞

j=n+1 µj(Ω) < ε/2. To establish the second part of condi-

tion (ii), it is enough to prove the following claim:

extr E

( ∞
∑

j=n+1

µj

)

⊂ [0, τ ].

According to [8, Theorem 6.1(b)] or [5, Theorem 1(b)], there exist (unique)
πj ∈ extrE(µj), j ∈ N, such that

∑∞
j=1 πj = π. By the same result, given
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π′
j ∈ extrE(µj), j = n + 1, n + 2, . . . , we have

π′ :=

n
∑

j=1

πj +

∞
∑

j=n+1

π′
j ∈ extrE(µ).

In addition, ‖π′ − π‖ < ε. It follows that π′ is in [0, τ ], and the same is true for
∑∞

j=n+1 π′
j . Thus, the claim holds, by one more application of [8, Theorem 6.1(b)]

or [5, Theorem 1(b)]. �

The next two lemmas will be used in establishing Proposition 4 and Theorem 8
in Section 7.

Lemma 3. Let µ ∈ ult(M). Then the following two conditions are equivalent:

(i) AE(µ) = A extr E(µ);

(ii) extrE(µ) is finite.

Proof: Suppose (ii) holds. Since E(µ) is weak∗ compact (see [8, Proposition 4.4(a)]
or [4, Proposition 1(a)]), the Krein–Milman theorem implies that

E(µ) = conv extr E(µ).

Hence (i) holds.
Suppose (ii) fails, and let π1, π2, . . . be different elements of extrE(µ). Setting

̺ =
∑∞

n=1 2−nπn, we have ̺ ∈ E(µ). On the other hand, it follows from (D)′ that
̺ /∈ Aextr E(µ). Thus, (i) fails, too. �

Lemma 4. Let µ1, . . . , µn ∈ ba+(M) and µj ∧ µj′ = 0 whenever j 6= j′. Then

the following two conditions are equivalent:

(i) AE(
∑

n
j=1

µj) = A extr E(
∑

n
j=1

µj);

(ii) AE(µj) = A extr E(µj) for each j = 1, . . . , n.

Proof: In view of formulas (3) and (4), (ii) implies (i).
Suppose (i) holds. Using formula (4), we then get

E(µj′ ) ⊂
n

∑

j=1

A extr E(µj) for j′ = 1, . . . , n.

By (5), it follows that E(µj′ ) ⊂ A extr E(µj′ )
, and so (ii) holds. �

The next lemma is an essential tool in establishing Theorem 7 in Section 6 and
Proposition 5 in Section 7. Both results assume condition (∗), which is interme-
diate between the condition of independence and that of almost independence of
algebras of sets considered by E. Marczewski (see [10, p. 220]). For other uses
of (∗) see [8, Proposition 12.4] or [6, Proposition 2] as well as [7, Theorem 7] and
[9, Corollaries 2 and 3].
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Lemma 5. Let N be an algebra of subsets of Ω with R = (M ∪ N)b and let

µ ∈ ult(M). Then R/Jµ is homomorphic image of N. If, in addition,

(∗) M ∩ N 6= ∅ for all M ∈ M with µ(M) > 0 and nonempty N ∈ N

holds, then R/Jµ and N are isomorphic. In particular,

|ult(R/Jµ)| = |ult(N)|.

Proof: Denote by h the canonical mapping from R onto R/Jµ. For M ∈ M and
N ∈ N we have

h(M ∩ N) =

{

0 if µ(M) = 0,

h(N) if µ(M) = 1.

It follows that h(N) = R/Jµ. Condition (∗) implies that N ∩ Jµ = {∅}, and so
the injectivity of h|N. �

5. extrE(µ) for atomic µ

We start by an extension of Lemma 1. It is worth-while to compare it with [9,
Proposition 5], which, under the same assumption, asserts that extrE(µ) is order
bounded if and only if it is finite.

Proposition 3. Let µ ∈ ba+(M) have finite range. Then the following three

conditions are equivalent:

(i) extrE(µ) is ideal dominated;

(ii) extrE(µ) is countable;

(iii) ult(R/Jν) is countable for each ν ∈ Uµ.

Proof: The assumption implies that µ is atomic and Uµ is finite (see [8, Lem-
ma 3.2] and [3, Lemma 11.1.3]). Therefore, it follows from formula (2) that (ii)
holds if and only if extr E(ν) is countable for each ν ∈ Uµ. Thus, (ii) and (iii) are
equivalent, by [8, Proposition 7.1, 4◦] or [6, Proposition 1]. The equivalence of (i)
and (ii) follows from Lemma 1 and formula (4). �

The next result is a partial generalization of Proposition 3.

Theorem 3. Let µ ∈ ba+(M) be atomic, and set

D = {ν ∈ Uµ : ult(R/Jν) is infinite}.

Then the following three conditions are equivalent:

(i) extrE(µ) is ideal dominated;

(ii) ult(R/Jν) is countable for each ν ∈ Uµ, D is finite, and

extrE
(

∑

ν∈Uµ\D

ν
)

is order bounded;
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(iii) ult(R/Jν) is countable for each ν ∈ Uµ, D is finite, and

∑

ν∈Uµ\D

ν(Ω) |ult(R/Jν)| < ∞.

Proof: Using [8, Proposition 7.1, 4◦] or [6, Proposition 1], and Lemma 1, we can
reword the first part of condition (ii) as follows: extrE(ν) is ideal dominated for
each ν ∈ Uµ. Moreover, in view of [9, Proposition 5, (i) ⇒ (iii)], extrE(ν) is not
order bounded for each ν ∈ D. Thus, (i) and (ii) are equivalent by formula (4)
and Lemma 2.

The equivalence of (ii) and (iii) is a direct consequence of [9, Theorem 3]. �

Remark 1. Condition (i) of Theorem 3 neither implies nor is implied by the con-
dition that E(µ) be weakly compact (equivalently, extrE(µ) be relatively weakly
compact; see [8, Theorem 5.1]), even for atomic µ ∈ ba+(M). Indeed, in Exam-
ple 1 of [4] µ is two-valued, extrE(µ) has cardinality ℵ0, and so is ideal domi-
nated, by Proposition 1, but E(µ) is not weakly compact (cf. [9, Proposition 5,
(ii) ⇒ (iii)]). On the other hand, in Example 1 of [9] E(µ) is weakly compact, but
not order bounded. Therefore, extr E(µ) is not ideal dominated, by Theorem 6
in the next section.

6. E(µ) and extr E(µ) for arbitrary µ and extr E(µ) for nonatomic µ

The functionals

ba(R) ∋ ϕ 7−→ ϕ(R) ∈ R, where R ∈ R,

can be identified with elements of the predual of ba(R). Consequently, the pos-
itive cone of ba(R) is weak∗ closed. In fact, the positive cone of an arbitrary
dual Banach lattice is weak∗ closed, in view of a classical result (see [14, Proposi-
tion II.5.5]). Therefore, the following result is a direct consequence of Theorem 1
above, and [8, Proposition 4.4(a)] or [4, Proposition 1(a)].

Theorem 4. For µ ∈ ba+(M) the following two conditions are equivalent:

(i) E(µ) is order bounded;

(ii) E(µ) is ideal dominated.

The next result is a partial strengthening of Theorem 4.

Theorem 5. Let µ ∈ ba+(M) be nonatomic. Then the following three conditions

are equivalent:

(i) E(µ) is order bounded;

(ii) E(µ) is ideal dominated;

(iii) extrE(µ) is ideal dominated.

Proof: Clearly (i) ⇒ (ii) ⇒ (iii). Suppose (iii) holds. To derive (i), note that
there exist π0 ∈ extrE(µ), ε > 0 and τ ∈ ba+(R) such that

{π ∈ extrE(µ) : ‖π0 − π‖ < ε} ⊂ [0, τ ].
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Indeed, extr E(µ) being closed in ba(R) (see [8, Proposition 4.4(b)] or [4, Proposi-
tion 1(b)]), this is a consequence of (iii) and the Baire category theorem. We shall
show that µ∗|R ≤ τ , which is equivalent to E(µ) ⊂ [0, τ ] (see [8, p. 19, (C)∗]). To
this end, fix an M-partition {M1, . . . , Mn} of Ω with µ(Mi) < ε/2 for each i and
R0 ∈ R. Appealing to [8, p. 19, (C)∗] again, we find, for each i = 1, . . . , n,

πi ∈ extrE(µ) with πi(R0 ∩ Mi) = µ∗(R0 ∩ Mi).

Set

π̃i(R) = πi(R ∩ Mi) + π0(R ∩ M c
i ) for R ∈ R and i = 1, . . . , n.

By [8, Lemma 4.5(d)] or [5, Lemma 4(d)], π̃i ∈ extr E(µ). Moreover, we have

‖π0 − π̃i‖ < ε, and so π̃i ≤ τ , i = 1, . . . , n.

It follows that

µ∗(R0) =
n

∑

i=1

µ∗(R0 ∩ Mi) =
n

∑

i=1

π̃i(R0 ∩ Mi) ≤
n

∑

i=1

τ(R0 ∩ Mi) = τ(R0).

�

Remark 2. The nonatomicity assumption is essential for the validity of the
implications (iii) ⇒ (i), (ii) of Theorem 5. Indeed, in Example 1 of [4] extr E(µ)
is countable, and so ideal dominated, by Proposition 1, but E(µ) is seen not to be
order bounded (cf. Remark 1). In view of Theorem 4, nor is E(µ) ideal dominated.

According to Remark 1, neither part of condition (ii) of Theorem 6 below
implies the other part thereof, in general.

Theorem 6. For µ ∈ ba+(M) the following two conditions are equivalent:

(i) E(µ) is order bounded;

(ii) E(µ) is weakly compact and extrE(µ) is ideal dominated.

Proof: The nontrivial part of the implication (i) ⇒ (ii) coincides with [9, Propo-
sition 2(c)].

Suppose (ii) holds. Let µ1 and µ2 stand for the atomic and nonatomic com-
ponents of µ, respectively. Then E(µi) is weakly compact and extr E(µi) is ideal
dominated for i = 1, 2, by [8, Corollary 6.3] and formula (2), respectively. Thus,
E(µ2) is order bounded, according to Theorem 5, (iii) ⇒ (i). From [8, The-
orem 7.7, (ii) ⇒ (iii)] we infer that R/Jν is finite for each ν ∈ Uµ1

, and so
Theorem 3 yields that extrE(µ1) is order bounded. By [9, Theorem 2, (ii) ⇒ (i)],
E(µ1) is also order bounded. An application of formula (1) completes the proof
of (i). �

Theorem 7. Let N be an algebra of subsets of Ω with R = (M ∪ N)b, let

µ ∈ ba+(M) and let µ1 and µ2 stand for the atomic and nonatomic components

of µ, respectively. Suppose

(∗) M ∩ N 6= ∅ for all M ∈ M with µ(M) > 0 and nonempty N ∈ N.
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Then the following two conditions are equivalent:

(i) extrE(µ) is ideal dominated;

(ii) µ1 has finite range, µ2 = 0 and ult(N) is countable, or N is finite or µ = 0.

Proof: Suppose (i) holds. By formula (2), extr E(µi) is then ideal dominated for
i = 1, 2. Hence E(µ2) is order bounded, by Theorem 5, (iii) ⇒ (i). If µ2 6= 0, it
follows by [9, Corollary 2, (i) ⇒ (iii)], that N is finite, and so (ii) holds. Suppose
µ2 = 0 and, moreover, µ1 6= 0 and N is infinite. According to Lemma 5, we
have ult(N) = ult(R/Jν) for ν ∈ Uµ1

with ν 6= 0. It follows from Theorem 3
that ult(N) is countable and Uµ1

is finite, and so µ1(M) is also finite. Thus, the
implication (i) ⇒ (ii) is established.

Plainly, (i) holds if µ = 0. It also holds if N is finite, by [4, Theorem 1(a)];
see also Proposition 6(a) in Section 7. Suppose the first part of condition (ii)
holds and µ1 6= 0. By Lemma 5 again, ult(R/Jν) is countable for each ν ∈ Uµ1

.
Proposition 3, (iii) ⇒ (i), now yields (i). Thus, the implication (ii) ⇒ (i) is also
established. �

7. Coincidence of AE(µ) and A extr E(µ)

The following result extends Lemma 3.

Proposition 4. Let µ ∈ ba+(M) have finite range. Then the following three

conditions are equivalent:

(i) AE(µ) = A extr E(µ);

(ii) extrE(µ) is finite;

(iii) ult(R/Jν) is finite for each ν ∈ Uµ.

Proof: As in the proof of Proposition 3, the assumption implies that µ is atomic
and Uµ is finite. Now, formula (2) shows that (ii) is equivalent to the condition
that extr E(ν) is finite for each ν ∈ Uµ. Therefore, the equivalence of (i) and
(ii) is a consequence of Lemmas 3 and 4, while the equivalence of (ii) and (iii)
follows from [8, Proposition 7.1, 4◦] or [6, Proposition 1]. Indeed, according to
those results, extrE(ν) and ult(R/Jν) are equipotent for ν ∈ ult(M). �

The next result is a partial extension of Proposition 4.

Theorem 8. Let µ ∈ ba+(M) be atomic. Then the following two conditions are

equivalent:

(i) AE(µ) = A extr E(µ);

(ii) there exists n ∈ N such that |ult(R/Jν)| ≤ n for each ν ∈ Uµ.

Under these conditions, E(µ) is order bounded.

Proof: We shall consider below an equivalent version of condition (ii) with
“ult(R/Jν)” replaced by “extrE(ν)” (see [8, Proposition 7.1, 4◦] or [6, Proposi-
tion 1]).

Suppose (i) holds. We first show that extrE(ν) is then finite for each ν ∈ Uµ.
Indeed, fix ν ∈ Uµ. Applying Lemma 4 to ν and µ− ν, we get AE(ν) = A extr E(ν).
Lemma 3 now shows that extrE(ν) is, in fact, finite.
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Suppose, moreover, that (ii) fails. By what we have proved so far, there exist
different ν1, ν2, . . . in Uµ such that extr E(νn) contains different elements πνn

1 ,
. . . , πνn

n , n = 1, 2, . . . . Fix ̺ν ∈ E(ν) for ν ∈ Uµ with ν 6= ν1, ν2, . . . , and set

̺ =

∞
∑

n=1

1

n
(πνn

1 + . . . + πνn

n ) +
∑

ν∈Uµ

ν 6=ν1,ν2,...

̺ν .

Clearly, ̺ ∈ E(µ). We claim that ̺ /∈ A extr E(µ), which contradicts (i). To
establish the claim, fix π1, . . . , πp ∈ extrE(µ). In view of [8, Theorem 6.1(b)] or
[5, Theorem 1(b)], we have

πj =
∑

ν∈Uµ

σν
j , where j = 1, . . . , p and σν

j ∈ extrE(ν) for ν ∈ Uµ.

It follows that for n > p and some 1 ≤ jn ≤ n we have πνn

jn
∧ πj = 0, j = 1, . . . , p

(see (D)′ and (5)). Thus, the claim is established.
Suppose (ii) holds. Let, for ν ∈ Uµ,

extrE(ν) = {πν
1 , . . . , πν

n},

repetitions being allowed. Set

πj =
∑

ν∈Uµ

πν
j , j = 1, . . . , n.

In view of [8, Theorem 6.1(b)] or [5, Theorem 1(b)], we have πj ∈ extrE(µ). To
establish (i), it is enough to show that

̺ ≤
n

∑

j=1

πj for every ̺ ∈ E(µ).

Fix ̺ ∈ E(µ), and choose, for ν ∈ Uµ,

̺ν ∈ E(ν) with
∑

ν∈Uµ

̺ν = ̺

(see [8, Theorem 6.1(a)] or [5, Theorem 1(a)]). As in the proof of Lemma 3, we
have

E(ν) = conv{πν
1 , . . . , πν

n}.

Consequently, ̺ν ≤
∑n

j=1 πν
j . It follows that ̺ ≤

∑n

j=1 πj , and so (i) is estab-
lished.

The final assertion is now an immediate consequence of [9, Theorem 3]. �

The final assertion of Theorem 8 is not equivalent to its conditions (i) and (ii),
as the following example shows.



210 Lipecki Z.

Example 1 (cf. [9, Example 1]). Set Ω = N, and let {M1, M2, . . .} be a partition
of Ω with |Mi| = i for each i. Define

M = {M1, M2, . . .}b and R = {{n} : n ∈ Ω}b.

Set, for i ∈ Ω and M ∈ M,

νi(M) = 1/i3 if M ∩ Mi 6= ∅ and νi(M) = 0 otherwise.

Define µ =
∑∞

i=1 νi. Clearly, µ ∈ ba+(M). Moreover, µ is atomic and Uµ =
{0, ν1, ν2, . . .}. As easily seen, µ does not satisfy condition (ii) of Theorem 8. On
the other hand,

∑

n∈Mi
µ∗({n}) = 1/i2 for each i, and so

∑

n∈Ω µ∗({n}) < ∞.

Hence E(µ) is order bounded, by [9, Corollary 4].

The author does not know whether condition (i) of Theorem 8 implies that
E(µ) is order bounded for arbitrary µ ∈ ba+(M).

Proposition 5. Let N be an algebra of subsets of Ω with R = (M∪N)b and let

µ ∈ ba+(M) be atomic. Suppose

(∗) M ∩ N 6= ∅ for all M ∈ M with µ(M) > 0 and nonempty N ∈ N.

Then the following two conditions are equivalent:

(i) AE(µ) = A extr E(µ);

(ii) µ = 0 or N is finite.

This is a direct consequence of Theorem 8 and Lemma 5. The implication
(ii) ⇒ (i) of Proposition 5 holds, in fact, in general (see Proposition 6(b) below).

Part (a) of our next result is an improvement of [4, Theorem 1(a)]. It is
established by a slight modification of the original argument.

Proposition 6. Let R = (M∪{E1, . . . , En})b, where {E1, . . . , En} is a partition

of Ω, and let µ ∈ ba+(M). Then

(a) there exist π1, . . . , πn ∈ extr E(µ) with ̺ ≤
∑n

i=1 πi for each ̺ ∈ E(µ);
(b) AE(µ) = A extr E(µ).

Proof: Let π̃i ∈ extr{̺ ∈ ba+((M ∪ {Ei})b) : ̺|M = µ} be such that

π̃i(M ∩ Ei) = µ∗(M ∩ Ei) for all M ∈ M and i = 1, . . . , n

(see [12, Example 1]). Continuing in the same way, we get, after n−1 more steps,
πi ∈ extrE(µ) such that

πi|(M ∪ {Ei})b = π̃i, i = 1, . . . , n.

Fix R ∈ R and ̺ ∈ E(µ). We then have

R =

n
⋃

i=1

Mi ∩ Ei, where M1, . . . , Mn ∈ M.
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It follows that

̺(R) =
n

∑

i=1

̺(Mi ∩ Ei) ≤
n

∑

i=1

µ∗(Mi ∩ Ei) =
n

∑

i=1

πi(Mi ∩ Ei) ≤
n

∑

i=1

πi(R).

Thus, (a) holds.
Part (b) is a direct consequence of (a). �

In Proposition 6 we cannot replace a finite partition by a countable one, even
if µ is atomic (see Example 1). In fact, part (a) of Proposition 6 may then fail
in a stronger sense. Namely, in the example below extrE(µ) is not even ideal
dominated.

Example 2. Set Ω = N and let {M1, M2, . . .} be a partition of Ω with Mi infinite
for each i. Define M and R as in Example 1. Let µ ∈ ba+(M) satisfy µ(Mi) > 0
for each i. Then, as easily seen, ult(R/Jν) is infinite whenever ν ∈ Uµ and ν 6= 0.
Therefore, extrE(µ) is not ideal dominated, by Theorem 3.

Postscript. Related results on the sets E(µ) and extrE(µ) are presented in
another paper by the author, Order-theoretic properties and separability of some

sets of quasi-measures (preprint).
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related to V. Schlotterbeck’s theorem (Theorem 2, (i) ⇔ (ii), in Section 2). He is
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