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CHARACTERIZATIONS OF z-LINDELÖF SPACES

Ahmad Al-Omari and Takashi Noiri

Abstract. A topological space (X, τ) is said to be z-Lindelöf [1] if every cover
of X by cozero sets of (X, τ) admits a countable subcover. In this paper, we
obtain new characterizations and preservation theorems of z-Lindelöf spaces.

1. introduction

A subset H of a topological space (X, τ) is called a cozero set if there is a
continuous real-valued function g on X such that H = {x ∈ X : g(x) 6= 0}. The
complement of a cozero set is called a zero set. Recently papers [2, 3, 4, 5, 8, 9]
have introduced some new classes of functions via cozero sets. It is well known [6]
that the countable union of cozero sets is a cozero set and the intersection of two
cozero sets is a cozero set, so the collection of all cozero subsets of (X, τ) is a base
for a topology τz on X, called the complete regularization of τ . It is clear that
τz ⊆ τ in general. Furthermore, the space (X, τ) is completely regular if and only
if τz = τ . In general for any topological space τ , we note that (X, τz) is completely
regular.

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces on which
no separation axiom is assumed, unless otherwise stated. For a subset A of X, the
closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.
A point x ∈ X is called a condensation point of A if for each U ∈ τ with x ∈ U ,
the set U ∩ A is uncountable. A is said to be ω-closed [7] if it contains all its
condensation points. The complement of an ω-closed set is said to be ω-open. It
is well known that a subset W of a space (X, τ) is ω-open if and only if for each
x ∈W , there exists U ∈ τ such that x ∈ U and U −W is countable.

2. ω-cozero sets

In this section we introduce the following notion:

Definition 2.1. A subset A of (X, τ) is said to be ω-cozero if for each x ∈ A
there exists a cozero set Ux containing x such that Ux −A is a countable set. The
complement of an ω-cozero is said to be ω-zero.
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The family of all ω-cozero (resp. cozero, zero) subsets of a space (X, τ) is denoted
by ωZO(X) (resp. ZO(X), ZC(X)).

Lemma 2.1. For a subset of a topological space (X, τ), every cozero set is ω-cozero
and every ω-cozero set is ω-open.
Proof. (1) Let A be a cozero set. For each x ∈ A, there exists a cozero set Ux = A
such that x ∈ Ux and Ux −A = φ. Therefore, A is ω-cozero.
(2) Assume A is an ω-cozero set. Then for each x ∈ A, there is a cozero set Ux
containing x such that Ux −A is a countable set. Since every cozero set is open, A
is ω-open. �

For a subset of a topological space, the following implications hold and none of
these implications is reversible.

cozero

��

// ω-cozero

��
open // ω-open

Diagram I.
Example 2.1. Let R be the set of all real numbers with the usual topology and
Q the set of all rational numbers. Then A = R−Q is an ω-cozero set but it is not
open.
Example 2.2. Let X be a set and A be a subset of X such that A and X −A are
uncountable. Let τ={φ,X,A}. Then {A} is an open set but it is not ω-cozero set.

Theorem 2.1. Let (X, τ) be a topological space. Then (X,ωZO(X)) is a topological
space.
Proof.

(1) We have φ,X ∈ ωZO(X).
(2) Let U, V ∈ ωZO(X) and x ∈ U ∩ V . Then there exist cozero sets G,H of

X containing x such that G \ U and H \ V are countable. And (G ∩H) \
(U ∩V ) = (G∩H)∩ ((X \ U)∪(X \ V )) ⊆ (G ∩ (X \ U))∪ (H ∩ (X \ V )).
Thus (G ∩H) \ (U ∩ V ) is countable. Since the intersection of two cozero
sets is cozero, U ∩ V ∈ ωZO(X).

(3) Let {Ui : i ∈ I} be a family of ω-cozero sets of X and x ∈ ∪
i∈I

Ui. Then
x ∈ Uj for some j ∈ I. This implies that there exists a cozero set V of X
containing x such that V \Uj is countable. Since V \ ∪

i∈I
Ui ⊆ V \Uj , then

V \ ∪
i∈I

Ui is countable. Thus ∪
i∈I

Ui ∈ ωZO(X).

�

Lemma 2.2. A subset A of a space X is ω-cozero if and only if for every x ∈ A,
there exist a cozero set Ux containing x and a countable subset C such that
Ux − C ⊆ A.
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Proof. Let A be ω-cozero and x ∈ A, then there exists a cozero set Ux containing
x such that Ux−A is countable. Let C = Ux−A = Ux∩(X−A). Then Ux−C ⊆ A.
Conversely, let x ∈ A. Then there exist a cozero set Ux containing x and a countable
subset C such that Ux − C ⊆ A. Thus Ux − A ⊆ C and Ux − A is a countable
set. �

Theorem 2.2. Let X be a space and F ⊆ X. If F is an ω-zero set, then F ⊆ K ∪C
for some zero subset K and a countable subset C.

Proof. If F is an ω-zero set, then X − F is an ω-cozero set and hence for each
x ∈ X−F , there exist a cozero set Ux containing x and a countable set Cx such that
Ux−Cx ⊆ X−F . Thus F ⊆ X−(Ux−Cx) = X−(Ux∩(X−Cx)) = (X−Ux)∪Cx.
Let K = X − Ux. Then K is a zero set such that F ⊆ K ∪Cx. �

3. z-Lindelöf spaces

Definition 3.1.
(1) A topological space X is said to be z-Lindelöf [1] if every cover of X by

cozero sets admits a countable subcover.
(2) A subset A of a space X is said to be z-Lindelöf relative to X if every

cover of A by cozero sets of X admits a countable subcover.

Theorem 3.1. For any space X, the following properties are equivalent:
(1) X is z-Lindelöf;
(2) Every cover of X by ω-cozero sets of X admits a countable subcover.

Proof. (1) ⇒ (2): Let {Uα : α ∈ Λ} be any cover of X by ω-cozero sets of X. For
each x ∈ X, there exists α(x) ∈ Λ such that x ∈ Uα(x). Since Uα(x) is ω-cozero,
there exists a cozero set Vα(x) such that x ∈ Vα(x) and Vα(x)\Uα(x) is countable. The
family {Vα(x) : x ∈ X} is a cover of X by cozero sets of X. Since X is z-Lindelöf,
there exist {xi : i < ω} ⊆ X such that X = ∪{Vα(xi) : i < ω}. Now, we have

X = ∪
i<ω

(
(Vα(xi)\Uα(xi))∪Uα(xi)

)
=
(
∪
i<ω

(Vα(xi)\Uα(xi))
)
∪
(
∪
i<ω

Uα(xi)
)
.

For each α(xi), Vα(xi)\Uα(xi) is a countable set and there exists a countable subset
Λα(xi) of Λ such that Vα(xi)\Uα(xi) ⊆ ∪{Uα : α ∈ Λα(xi)}. Therefore, we have

X ⊆
(
∪
i<ω

(∪{Uα : α ∈ Λα(xi)})
)
∪
(
∪
i<ω

Uα(xi)
)
.

(2) ⇒ (1): Since every cozero set is ω-cozero, the proof is obvious. �

We state the following proposition without proof.

Proposition 3.1. A topological space X is z-Lindelöf if and only if for every
family of ω-zero sets {Fα : α ∈ Λ} of X, ∩α∈ΛFα = φ implies that there exists a
countable subset Λ0 ⊆ Λ such that ∩α∈Λ0Fα = φ.
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Proposition 3.2. A topological space X is z-Lindelöf if and only if for every family
{Fα : α ∈ Λ} of ω-zero sets with countable intersection property, ∩α∈ΛFα 6= φ.

Proof. Necessity. Let X be a z-Lindelöf space and suppose that {Fα : α ∈ Λ}
be a family of ω-zero subsets of X with countable intersection property such
that ∩α∈ΛFα = φ. Let us consider the ω-cozero sets Uα = X \ Fα, the family
{Uα : α ∈ Λ} is a cover of X by ω-cozero sets of X. Since X is z-Lindelöf,
the cover {Uα : α ∈ Λ} has a countable subcover {Uαi : αi ∈ N}. Therefore
X = ∪{Uαi : αi ∈ N} = ∪{(X \ Fαi) : αi ∈ N} = X \ ∩{Fαi : αi ∈ N} and hence
∩{Fαi : αi ∈ N} = φ. Thus, if the family {Fα : α ∈ Λ} of ω-zero sets with countable
intersection property, then ∩α∈ΛFα 6= φ.

Sufficiency. Let {Uα : α ∈ Λ} be a cover of X by ω-cozero sets of X and suppose
that for every family {Fα : α ∈ Λ} of ω-zero sets with countable intersection
property, ∩α∈ΛFα 6= φ. Then X = ∪{Uα : α ∈ Λ}. Therefore, φ = X \ X =
∩{(X \Uα) : α ∈ Λ} and {X \Uα : α ∈ Λ} is a family of ω-zero sets with an empty
intersection. By the hypothesis, there exists a countable subset {(X \Uαi) : i ∈ N}
such that ∩{(X \Uαi) : i ∈ N} = φ; hence X \∩{(X \Uαi) : i ∈ N} = X = ∪{Uαi :
i ∈ N}. Thus, X is z-Lindelöf. �

Theorem 3.2. Every ω-zero set of a z-Lindelöf space X is z-Lindelöf relative
to X.

Proof. Let A be an ω-zero set of X. Let {Uα : α ∈ Λ} be a cover of A by cozero
sets of X. Now for each x ∈ X − A, there is a cozero set Vx such that Vx ∩ A is
countable. Since X is z-Lindelöf and the collection {Uα : α ∈ Λ}∪{Vx : x ∈ X−A}
is a cover of X by cozero sets of X, there exists a countable subcover {Uαi : i ∈
N}∪{Vxi : i ∈ N}. Since ∪

i∈N
(Vxi ∩ A) is countable, so for each xj ∈ ∪(Vxi ∩ A),

there is Uα(xj) ∈ {Uα : α ∈ Λ} such that xj ∈ Uα(xj) and j ∈ N. Hence {Uαi : i ∈
N}∪{Uα(xj) : j ∈ N} is a countable subcover of {Uα : α ∈ Λ} and it covers A.
Therefore, A is z-Lindelöf relative to X. �

Corollary 3.1. Every zero set of a z-Lindelöf space X is z-Lindelöf relative to X.

The topology generated by the cozero sets of the space X is denoted by τz.

Definition 3.2. A topological space (X, τ) is said to be completely ω-regular if
for each x ∈ X and each open set Ux containing x, there exists an ω-cozero set Hx

such that x ∈ Hx ⊆ Ux.

Proposition 3.3. A completely ω-regular is z-Lindelöf if and only if it is Lindelöf.

Proof. Let X be completely ω-regular. Suppose that X is a z-Lindelöf space and
let U = {Uα : α ∈ Λ} be any open cover of X. For each x ∈ X, there exists
α(x) ∈ Λ such that x ∈ Uα(x). Since X is completely ω-regular, there exists an
ω-cozero set Hα(x) such that x ∈ Hα(x) ⊆ Uα(x). Then {Hα(x) : x ∈ X} is a cover
of X by ω-cozero sets of X. By Theorem 3.1, there exists a countable subcover
{Hα(xi) : i ∈ N}. Therefore, {Uα(xi) : i ∈ N} is a countable subcover of U . Hence
X is Lindelöf. The converse is obvious. �
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Definition 3.3. A topological space (X, τ) is said to be almost ω-regular if for
each x ∈ X and each ω-cozero set Ux containing x, there exists a cozero set Vx
such that x ∈ Vx ⊆ Cl(Vx) ⊆ Ux.

Theorem 3.3. Let X be an almost ω-regular and z-Lindelöf space. Then for every
disjoint ω-zero sets C1 and C2, there exist two open sets U and V such that C1 ⊆ U ,
C2 ⊆ V and U ∩ V = φ.

Proof. Since X is an almost ω-regular space, for each x ∈ C1 there exists a
cozero set Ux containing x such that Cl(Ux) ∩ C2 = φ. Then the family {Ux : x ∈
C1}∪{X − C1} is an ω-cozero cover of X. Since X is z-Lindelöf, by Theorem 3.1

there exists {xi : i < ω} ⊆ X such that X =
(
∪
i<ω

Uxi

)
∪(X − C1). It follows that

for each i < ω, C1 ⊆
(
∪
i<ω

Uxi

)
and Cl(Uxi) ∩ C2 = φ. Analogously there exists

a family of cozero sets Vyi such that C2 ⊆
(
∪
i<ω

Vyi

)
and Cl(Vyi) ∩ C1 = φ. Let

Gk = Uxk\
(

k
∪
i=1

Cl(Vyi)
)

, Hk = Vyk\
(

k
∪
i=1

Cl(Uxi)
)

and U = ∪
i<ω

Gi, V = ∪
i<ω

Hi

such that U and V are open, U ∩ V = φ and C1 ⊆ U , C2 ⊆ V . �

4. Preservation theorems

Definition 4.1. A function f : X → Y is said to be cozero-irresolute if for each
x ∈ X and each cozero set V of Y containing f(x), there exists a cozero set U of
X containing x such that f(U) ⊆ V .

Definition 4.2. A function f : X → Y is said to be ω-cozero-continuous if for
each x ∈ X and each cozero set V of Y containing f(x), there exists an ω-cozero
set U of X containing x such that f(U) ⊆ V .

It is clear that every cozero-irresolute function is ω-cozero-continuous.

Theorem 4.1. Let f : X → Y be a ω-cozero-continuous surjection. If X is
z-Lindelöf, then Y is z-Lindelöf.

Proof. Let {Vα : α ∈ Λ} be a cover of Y by cozero sets of Y . For each x ∈ X,
there exists α(x) ∈ Λ such that f(x) ∈ Vα(x). Since f is ω-cozero–continuous, there
exists an ω-cozero set Uα(x) of X containing x such that f(Uα(x)) ⊆ Vα(x). So
{Uα(x) : x ∈ X} is a cover of the z-Lindelöf space X by ω-cozero sets of X, by
Theorem 3.1 there exists a countable subset {xk : k < ω} ⊆ X such that X =
∪
k<ω

Uα(xk). Therefore Y = f(X) = f( ∪
k<ω

Uα(xk)) = ∪
k<ω

f
(
Uα(xk)

)
⊆ ∪

k<ω
Vα(xk).

This shows that Y is z-Lindelöf. �

Corollary 4.1. Let f : X → Y be a cozero-irresolute surjection. If X is z-Lindelöf,
then Y is z-Lindelöf.

Definition 4.3. A function f : X → Y is said to be almost cozero, if the image of
each cozero set U of X is an open set in Y .



98 A. AL-OMARI AND T. NOIRI

Proposition 4.1. If f : X → Y is almost cozero, then the image of an ω-cozero
set of X is ω-open in Y .

Proof. Let f : X → Y be almost cozero and W an ω-cozero set of X. Let y ∈ f(W ),
there exists x ∈ W such that f(x) = y. Since W is an ω-cozero set, there exists
a cozero set U such that x ∈ U and U −W = C is countable. Since f is almost
cozero, f(U) is an open set in Y such that y = f(x) ∈ f(U) and f(U)− f(W ) ⊆
f(U −W ) = f(C). Moreover, f(C) is countable. Therefore, f(W ) is ω-open in
Y . �

Definition 4.4. A function f : X → Y is said to be ω∗-cozero-continuous if f−1(V )
is ω-cozero in X for each open set V in Y .

Theorem 4.2. Let f : X → Y be an ω∗-cozero–continuous surjection. If X is
z-Lindelöf, then Y is Lindelöf.

Proof. Let {Vα : α ∈ Λ} be an open cover of Y . Then {f−1(Vα) : α ∈ Λ} is a
cover of X by ω-cozero sets of X. Since X is z-Lindelöf, by Theorem 3.1, X has a
countable subcover, say {f−1(Vα) : α ∈ Λ0}, where Λ0 is a countable subset of Λ.
Hence {Vα : α ∈ Λ0} is a countable subcover of Y . Hence Y is Lindelöf. �

Definition 4.5. A function f : X → Y is said to be ω-zero if f(A) is ω-zero in Y
for each zero set A of X.

Theorem 4.3. If f : X → Y is an ω-zero surjection such that f−1(y) is z-Lindelöf
relative to X for each y ∈ Y , and Y is z-Lindelöf, then X is z-Lindelöf.

Proof. Let {Uα : α ∈ Λ} be any cover of X by cozero sets of X. For each y ∈ Y ,
f−1(y) is z-Lindelöf relative to X and there exists a countable subset Λ(y) of Λ such
that f−1(y) ⊂ ∪{Uα : α ∈ Λ(y)}. Now we put U(y) = ∪{Uα : α ∈ Λ(y)} which
is a cozero set and V (y) = Y − f(X − U(y)). Then, since f is ω-zero, V (y) is an
ω-cozero set in Y containing y such that f−1(V (y)) ⊂ U(y). Since {V (y) : y ∈ Y }
is a cover of Y by ω-cozero sets of Y , by Theorem 3.1 there exists a countable set
{yk : k < ω} ⊆ Y such that Y = ∪{V (yk) : k < ω}. Therefore, X = f−1(Y ) =
∪{f−1(V (yk)) : k < ω} ⊆ ∪{U(yk) : k < ω} = ∪{Uα : α ∈ Λ(yk), k < ω}. This
shows that X is z-Lindelöf. �
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