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PERIODIC PARAMETRIC PERTURBATION CONTROL
FOR A 3D AUTONOMOUS CHAOTIC SYSTEM
AND ITS DYNAMICS AT INFINITY

Zhen Wang, Wei Sun, Zhouchao Wei and Shanwen Zhang

Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous
quadratic chaotic system are studied in this paper. Using the Melnikov’s method, the existence
of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after
transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the
parameter bifurcation conditions of these orbits are obtained. In order to study the global
structure, the dynamics at infinity of this system are analyzed through Poincaré compactifica-
tion. The simulation results demonstrate feasibility of periodic parametric perturbation control
technology and correctness of the theoretical results.

Keywords: Hamiltonian system, Melnikov’s methods, homoclinic orbits, periodic orbits,
periodic parametric perturbation, dynamics at infinity

Classification: 34H10, 34D20, 34H20

1. INTRODUCTION

Since Lorenz equation was found in 1963 [13], many 3D quadratic chaotic systems have
been extensively studied and applied in science, engineering, and mathematical commu-
nities. Especially, constructing chaotic systems such as Lorenz-like systems, multi-scroll
chaotic systems and chaotic systems with hidden attractors etc, has become a research
focus in scientific and engineering fields [17]. Meanwhile, the corresponding designing
methods, such as state back control technique, nonautonomous technique, and switching
function technique, was presented [21]. Extensive research shows that chaotic systems
have either self-excited attractors which have a basin of attraction associated with an un-
stable equilibrium, or hidden attractors with a basin of attraction that does not intersect
with small neighborhoods of any equilibrium points [7].

From the view of classification conditions [2], Lorenz system satisfies a12a21 > 0,
and Chen system satisfies a12a21 < 0. In 2002, Lü presented a transition system which
satisfies a12a21 = 0 between the Lorenz system and the Chen system [14]. In 2008,
Yang and Chen described another classification condition for chaotic systems, which
are classified into the Lorenz system group, the Chen system group and the Yang-Chen
system group (transition system) if a11a22 > 0, a11a22 < 0 and a11a22 = 0. In fact, the
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transition system (Yang-Chen system group) has been discussed by Gh. Tigan, Yang
and Wang in 2005, 2008, 2010 respectively [20, 23, 25, 33]. Since the transition chaotic
system connects the Lorenz attractor and Chen attractor, how to construct a transition
system will be an important thing in chaos research. Moreover, The main purpose of
studying chaos is to reveal the mechanism of chaos formation, the existence of chaotic
attractors, the routes to chaos and the dynamic behaviors of chaos etc. Furthermore,
researchers frequently encounter chaos control and chaos synchronization problems in
many physical chaotic systems due to the sensitivity of chaos, and they have developed
many methods and techniques over the last few decades, such as feedback control, pulse
control, adaptive control, passivity control [10, 24, 25, 26] and different kinds of synchro-
nization like complete synchronization (CS, i. e. Identical synchronization (IS)), phase
synchronization (PS), lag synchronization (LS), anticipatory synchronization (AS), GS,
and multiplexing synchronization (MS) [1, 9]. As we know, the main method used in
previous studies is numerical computation, and the qualitative analysis of orbit structure
and periodic orbits have not been well studied [6, 18, 22, 29].

To study the periodic solutions of dynamic systems, a new control method based on
perturbation theories has been presented in Ref. [15, 16]. In Ref. [4], Melnikov’s perturba-
tion was used to explain the control mechanism for Duffing oscillators, Ueda oscillators,
and Brusselator oscillators. In Ref. [28, 30], periodic parametric perturbation control
method was presented in Lorenz equations and diffusionless Lorenz equations. From
the above point of view, we can see that the study of constructing simple chaotic sys-
tems and analysis of periodic orbits construct for the systems are of highly practical
importance. Following this idea, and from the view of evolutionary dynamics [19], most
constructed chaotic systems belong to Lorenz-like systems in accordance with classifica-
tion conditions. However, transition systems which connect the Lorenz attractors and
Chen attractors are rarely mentioned. In 2014, we have proposed one of the transition
systems

dx

dt
= a(y − x),

dy

dt
= cx− axz, dz

dt
= −bz + xy (1)

where a, b, c are real parameters in Ref. [27]. Moreover, we studied its invariant algebraic
surface and dynamics near finite singularities on the surface in Ref. [27]. In spite of this,
more complex dynamics of the transition system (1) need to be investigated, such as the
dynamics at infinity and generation mechanism of chaos. Therefore, through the use of
the Poincaré compactification of polynomial vector field and Melnikov’s method, this
paper analyzes dynamics at infinity in the transition system (1), and periodic orbits in
the transition system (1) with periodic parametric perturbation.

The paper is organized as follows: In Section 2, the technique of Poincaré compactifi-
cation is used to investigate the dynamics at infinity of the system (1). In section 3, we
reduce the system (1) into a generalized Hamiltonian system with periodic parametric
perturbation to get the approximate expressions of homoclinic orbits and periodic or-
bits. Moreover, the parameter bifurcation conditions of homoclinic orbits and periodic
orbits are analyzed and calculated using Melnikov’s method in this section. In section 4,
numerical simulations are provided to illustrate the performance of the proposed anal-
ysis, together with the parameter values chosen for simulations in this section. Finally
concluding remarks are given in section 5.
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2. DYNAMICS ANALYSIS AT INFINITY

The following lemma shows existence and local stability of fixed points of Eq. (1)

Lemma 2.1. 1) The system (1) has only one equilibrium point O(0, 0, 0) if ab 6= 0,

c = 0 or abc < 0, and it has three equilibrium points O(0, 0, 0), E+(
√

bc
a ,
√

bc
a ,

c
a ),

E−(−
√

bc
a ,−

√
bc
a ,

c
a ) if abc > 0.

2) O(0, 0, 0) is asymptotically stable if b > 0, a > 0, c < 0, a+ 4c ≥ 0.

3) If b < 0 or a > 0, c > 0 or a < 0, a+ 4c ≤ 0, then O(0, 0, 0) is unstable.

4) The equilibrium points E+, E− are asymptotically stable if and only if a+ b > 0,
abc > 0 and a2b+ ab2 + b2c− abc > 0.

In order to make an analysis of the flow of the system (1) at infinity, we use the
Poincaré compactification method [3, 11] in this section. Let S3 = {r = (r1, r2, r3, r4) ∈
R4| ‖r‖ = 1} be a Poincaré unit sphere. We divide this sphere into S+ = {r ∈ S3, r4 > 0}
(the northern hemisphere), S− = {r ∈ S3, r4 < 0} (the southern hemisphere) and S1 =
{r ∈ S3, r4 = 0} (the equator). Denote the tangent hyperplanes at the point (±1, 0, 0, 0),
(0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1) by the local chart Ui, Vi for i = 1, 2, 3, 4, where
Ui = {r ∈ S3, ri > 0}, Vi = {r ∈ S3, ri < 0}. Define the central projections f+ : R3 →
S3 and f− : R3 → S3 by

f±(x, y, z) = ±(
x

∆
,
y

∆
,
z

∆
,

1
∆

), where ∆ =
√

1 + x2 + y2 + z2,

also define ϕk : Uk → R3, φk : Vk → R3 by ϕk = −φk = ( rl

rk
, rm

rk
, rn

rk
) for k = 1, 2, 3, 4

with 1 ≤ l,m, n ≤ 4 and l,m, n 6= k. We only consider the local charts Ui, Vi for
i = 1, 2, 3 to get the dynamics at x, y, z infinity (shown in Figure 1).

Fig. 1. Orientation of the local charts Ui, Vi for i = 1, 2, 3 in the

positive endpoints of the x, y, z axis.
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Fig. 2. Phase portrait of the system (1) on the Poincaré sphere at

infinity: a > 0 (left) and a < 0 (right).

Theorem 2.2. For all values of the parameters a, b and c, the phase portrait of the
system (1) on the Poincaré sphere at infinity are shown in Figure 2. There exist two
centers at the positive and negative of the x axis and a circle of equilibria containing
the endpoints of the y axis and the z axis for a > 0. But for a < 0, there exist two
saddles at the positive and negative of the x axis and a circle of equilibria containing
the endpoints of the y axis and the z axis. Especially, in the circle of equilibria, there
are four linearly zero points, and the stable or unstable manifolds of the saddles at the
x axis connecting these linearly zero points.

In the local charts U1 and V1. Take the change of variables (x, y, z) = (w−1, uw−1,
vw−1) and t = wτ , the system (1) becomes

du

dτ
= cw − av + au(w − wu),

dv

dτ
= −bwv + u+ av(w − wu),

dw

dτ
= aw(w − wu). (2)

If w = 0, the system (2) reduces to

du

dτ
= −av, dv

dτ
= u. (3)

The system (3) has a unique singularity (0, 0), which is a center for a > 0 and a saddle
for a < 0. The phase portraits are shown in Figure 3.

The flow in the local chart V1 is the same as the flow in the local chart U1 reversing
the time, hence, the system (1) has a center for a > 0 or a saddle for a < 0 on the
infinite sphere at the negative endpoint of the x axis.

In the local charts U2 and V2. Next, we study the dynamics of the system (1) at
infinity of the y axis. Take the transformation (x, y, z) = (uw−1, w−1, vw−1) and t = wτ ,
the system (1) becomes

du

dτ
= aw(1−u)+u(auv−cwu),

dv

dτ
= u−bwv+v(auv−cwu),

dw

dτ
= w(auv−cwu). (4)
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Fig. 3. Phase portraits of the system (1) on the Poincaré sphere at

infinity in the local chart U1.

If w = 0, the system (4) reduces to

du

dτ
= au2v,

dv

dτ
= u+ auv2. (5)

The system (5) has a line equilibria given by u = 0. The singularity (0, v) is a nilpotent
singular point as shown in Figure 4 (left) for a > 0. If a < 0, and 1 + av2 6= 0, (0, v) is a
nilpotent singular point, but if a < 0 and 1 + av2 = 0, (0, v) is a linearly zero. The local
phase portrait is shown in Figure 4 (right).

Fig. 4. Phase portraits of the system (1) on the Poincaré sphere at

infinity in the local chart U2.

The flow in the local chart V2 is the same as the flow in the local chart U2, hence,
the phase portrait of the system (1) on the infinite sphere at the negative endpoint of
the y axis is shown in Figure 4, reversing the time direction.

In the local charts U3 and V3. Finally, we consider infinity at the z axis. Let
(x, y, z) = (uw−1, vw−1, w−1) and t = wτ , the system (1) becomes

du

dτ
= aw(v − u) + u(bw − uv),

dv

dτ
= cwv − au+ v(bw − uv),

dw

dτ
= w(bw − uv). (6)



Periodic parametric perturbation control for a 3D autonomous chaotic system 359

If w = 0, the system (6) reduces to

du

dτ
= −u2v,

dv

dτ
= −au− uv2. (7)

The system (7) has a line equilibria given by u = 0. The phase portrait of the system (1)
at infinity on the local chart U3 is the same as that in the local chart V2 for a > 0, and
is the same as that in the local chart U2 for a < 0. Again the flow in the local chart V3

is the same as the flow in the local chart U3 when reversing the time.

From the above analysis, and taking its orientation as shown in Figure 1 into account,
we can get the structure of the system (1) on the sphere at infinity shown in Figure 2.

We must note that the linearly zero point (0,±
√

1
−a ) of the system (5) and the linearly

zero point (0,±
√
−a) of the system (7) are the same points in the space of xyz. From

Figure 1, we can see that in the local chart U2, the infinity of the v axis is the origin of
the v axis in the local chart U3, so there exists a reciprocal relation from U2 to U3.

3. PERIODIC PARAMETRIC PERTURBATION CONTROL

For the system (1), let a = 0.2, b = 1 and c = 9, we can find that chaos exists in the
system (1) as shown in Figure 5.

Fig. 5. Chaotic attractor of the system (1).

In order to control chaos of the system (1), let x = x̃, y = 1√
a
ỹ, and z = 1

a (c − z̃),
then the system can be written as

dx̃

dt
= −ax̃+

√
aỹ,

dỹ

dt
=
√
ax̃z̃,

dz̃

dt
= b(c− z̃)−

√
ax̃ỹ. (8)

And using the method of periodic parametric perturbation, we construct a control system

dx̃

dt
= −ax̃+

√
aỹ,

dỹ

dt
=
√
ax̃z̃,

dz̃

dt
= b(c0 + c1 sinωt− z̃)−

√
ax̃ỹ. (9)
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Let x̃ = x̂
ε , ỹ = ŷ

ε2 , z̃ = ẑ
ε2 , t = ετ , ω = ω1

ε , ε = 1√
bc0

, then (9) has the form

dx̂

dτ
=
√
aŷ − εax̂, dŷ

dτ
=
√
ax̂ẑ,

dẑ

dτ
= −
√
ax̂ŷ + ε(1 +

c1
c0

sinω1τ − bẑ). (10)

Omitting tilde, let x̂ = x, ŷ = y, ẑ = z, τ = t, and using “·” to denote the derivative,
the system (10) can be changed into

ẋ =
√
ay − εax, ẏ =

√
axz, ż = −

√
axy + ε(1 +

c1
c0

sinω1t− bz). (11)

Obviously, system (11) will become a generalized Hamiltonianian system when ε = 0, ẋ
ẏ
ż

 =

 0 −
√
az

√
ay√

az 0 0
−
√
ay 0 0

 x
0
1

 = J


∂H

∂x
∂H
∂y
∂H
∂z

 , (12)

where the Hamiltonianian function is H(x, y, z) = 1
2x

2 + z = A, and the Casimir func-
tion is C(x, y, z) = a(y2 + z2) = aB2. There is a eight-figure homoclinic orbit at the
equilibrium point (0, 0, B) on cylindrical surface y2 + z2 = B2 in 3D space, also inside
and outside this homoclinic orbit are oscillating periodic orbits and rotating periodic
orbits in the cylinder y2 + z2 = B2 and 1

2x
2 + z = A respectively.

To find the bifurcation conditions of homoclinic orbits and periodic orbits of system
(11) by the theories of Hamiltonian systems [8] and Melnikov vector function [5, 12], let
x = x, y = −(B + ρ) sin θ, z = −(B + ρ) cos θ and B > 0,

∣∣ ρ
B

∣∣� 1, then the system (11)
will become a special case of slowly varying system [31, 32]

θ̇ =
√
ax+ ε(

1
B + ρ

(sin θ +
c1
c0

sinω1t sin θ) + b cos θ sin θ)

ẋ = −
√
a(B + ρ) sin θ − εax

ρ̇ = −ε(cos θ + c1
c0

sinω1t cos θ + b(B + ρ)cos2θ)

(13)

when ε = 0, system (13) will be a pendulum in plane θ−x, and its Hamiltonian function
is H̃(θ, x, ρ) =

√
a( 1

2x
2−(B+ρ) cos θ) =

√
aA. Obviously, when A = (B+ρ), there exists

a heteroclinic contour in non-perturbation system (13)ε=0, consisting of two heteroclinic
orbits connecting (−π, 0) and (π, 0), and this heteroclinic contour corresponds to the
eight-figure homoclinic orbit of the system (11) in the cylinder y2 + z2 = B2. Therefore,
we can seek the bifurcation conditions of the homoclinic orbit for system (11) by looking
for the bifurcation conditions of the heteroclinic contour for system (13). In the cylinder
y2 + z2 = B2, we can see that two saddle points (−π, 0) and (π, 0) of the unperturbed
system (13)ε=0 correspond to the same point (0, 0, B) of the non-perturbation system
(11)ε=0, so we can say that the heteroclinic loop of the unperturbed system (13)ε=0 is
a homoclinic orbit {Γ±} connecting the saddle point (θ, x, ρ) = (π, 0, ρ), θh(t) = ±2 arctan

(
sinh

(√
a(B + ρ)t

))
xh(t) = ±2

√
(B + ρ)sech

(√
a(B + ρ)t

)
.

(14)
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When −(B + ρ) < A < (B + ρ), there exists oscillation periodic orbit {Γκo} θo(t, κ) = 2 arcsin
(
κsn

(√
a(B + ρ)t, κ

))
xo(t, κ) = 2κ

√
B + ρcn

(√
a(B + ρ)t, κ

) (15)

where κ2 = A+(B+ρ)
2(B+ρ) , period To(κ) = 4K(κ)√

a(B+ρ)
, sn(u, κ) and cn(u, κ) are the Jacobian

elliptic functions with the elliptic modulus κ, K(κ) denoting the complete elliptic integral
of the first kind.

When A > (B + ρ), there exists rotating periodic orbits {Γ±}
θr±(t, κ1) = ±2 arcsin

(
sn

(√
a(B + ρ)
κ1

t, κ1

))
xr±(t, κ1) = ± 2

√
(B+ρ)

κ1
dn
(√

a(B+ρ)

κ1
t, κ1

) (16)

where κ2
1 = (κ2)−1 = 2(B+ρ)

A+(B+ρ) , period Tr(κ1) = 2κ1K(κ1)√
a(B+ρ)

, and dn(u, κ) is the Jacobian

elliptic functions with the elliptic modulus κ.

3.1. Homoclinic orbits analysis

Define the Melnikov function[18,19] for the system (13)

M0 =
∫ +∞

−∞

{
−a
√
ax2

h +
√
asin2θh + b

√
a(B + ρ) cos θhsin2θh

+
√
a c1c0 sinω1t0sin2θh cosω1t

}
dt

= −a
√
aN1 +

√
aN2 + b

√
a(B + ρ)N3 +

√
a c1c0 sinω1t0N4

(17)

where

N1 =
∫ +∞

−∞
x2
h dt = 8

√
B + ρ

a
, N2 =

∫ +∞

−∞
sin2θh dt =

8
3
√
a(B + ρ)

,

N3 =
∫ +∞

−∞
sin2θh cos θh dt =

−8
15
√
a(B + ρ)

,

N4 =
∫ +∞

−∞
sin2θh cosω1tdt =

4ω1π

a(B + ρ) sinh ω1π

2
√
a(B+ρ)

(
1
3
− ω2

1

6a(B + ρ)

)
.

Hence,

M0 = −8a
√
B + ρ+

8
3
√
B + ρ

− 8b
√
B + ρ

15

+
c1
c0

sinω1t0
4ω1π√

a(B + ρ) sinh ω1π

2
√
a(B+ρ)

(
1
3
− ω2

1

6a(B + ρ)

)
. (18)
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Theorem 3.1. The system (11) exists two homoclinic orbits in the cylinder y2 +z2 = 1
nearby the homoclinic orbit {Γ±} of the unperturbed system (13)ε=0 connecting the
saddle point (θ, x, ρ) = (π, 0, ρ) when b = 5− 15a.

P r o o f . When c1 = 0 or ω2
1

a(B+ρ) = 2, we can see that M0 = 0 from Eq.(18),and
has B + ρ = 5

15a+b . Moreover, if ρ = 0, there is B = 5
15a+b , i. e. M0(B) = 0 but

∂M0
∂B

∣∣
B= 5

15a+1
6= 0, so there exist two transversal intersection homoclinic orbits. When

c1 6= 0 and ω2
1

a(B+ρ) 6= 2, the condition of transversal intersection of two homoclinic orbits
is

∣∣∣∣∣∣
[4− (12a+ 4

5b)(B + ρ)]c0
√
a(B + ρ) sinh ω1π

2
√
a(B+ρ)

c1ω1π
(

2− ω2
1

a(B+ρ)

)
∣∣∣∣∣∣ < 1.

Take ρ = 0, B = 1, and let M0 = 0, then the parameter bifurcation value of homoclinic
orbits is b = 5− 15a. �

3.2. Periodic orbits analysis

In the following, we introduce a subharmonic Melnikov vector function of non-perturbation
periodic orbits and the function satisfies mT = nTp for the analysis of periodic orbits of
the system (13)

Mp
1 =

∫ mT

0

{
−a
√
ax2

p +
√
asin2θp + b

√
a(B + ρ) cos θpsin2θp

+
√
a c1c0 sinω1t0sin2θp cosω1t

}
dt (19)

Mp
3 =

∫ mT

0

[cos θp + b(B + ρ)cos2θp +
c1
c0

sinω1t0 cos θp cosω1t] dt (20)

where p = o denoting oscillation periodic orbit, and p = r denoting rotating periodic
orbits.

3.2.1. Oscillating periodic orbits analysis

Since the period of oscillating periodic orbits {Γκo} is To(κ) = 4K(κ)√
a(B+ρ)

= m
n

2π
ω1

= m
n T ,

take p = o, and n = 1, we have

Mo
1 = −a

√
aU1 +

√
aU2 + b

√
a(B + ρ)U3 +

√
a
c1
c0

sinω1t0U4 (21)
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where

U1 =
∫ mT

0

x2
o dt = 16

√
B + ρ

a

[
E(κ)− (1− κ2)K(κ)

]
U2 =

∫ mT

0

sin2θo dt =
16

3
√
a(B + ρ)

[
(1− κ2)K(κ)− (1− 2κ2)E(κ)

]
U3 =

∫ mT

0

sin2θo cos θo dt

=
16

15
√
a(
√
B + ρ)3

[ [
5(κ2 − 1)A− 2(κ4 − 3κ2 + 2)(B + ρ)

]
K(κ)

+
[
5(2κ2 − 1)A− 4(κ4 − κ2 + 1)(B + ρ)

]
E(κ)

]
U4 =

∫ mT

0

sin2θo cosω1tdt

=
4κ2√

a(B + ρ)

∫ 4mK(κ)

0

{[
sn2 (u, κ)− κ2sn4 (u, κ)

]
cos
(

mπ

2nK(κ)
u

)}
du

E(κ) denotes the complete elliptic integral of the second kind. Hence, when∣∣∣∣∣−aU1 + U2 + b(B + ρ)U3
c1
c0
U4

∣∣∣∣∣ < 1 (22)

then Mo
1 = 0. We can calculate

Mo
3 = U5 + b(B + ρ)U6 +

c1
c0

sinω1t0U7 (23)

where

U5 =
∫ mT

0

cos θo dt =
4

√
a(
√
B + ρ)3

[[
2(κ2 − 1)(B + ρ)−A

]
K(κ) + 2(B + ρ)E(κ)

]

U6 =
∫ mT

0

cos2θo dt =
4

3
√
a(
√
B + ρ)5


[

4(1− κ2)(2− 3κ2)(B + ρ)2

+12A(1− κ2)(B + ρ) + 3A2

]
K(κ)

−
[
8(1− 2κ2)(B + ρ)2 + 12A(B + ρ)

]
E(κ)


U7 =

∫ mT

0

cos θo cosω1tdt

=
2κ2√

a(B + ρ)

∫ 4K(κ)

0

E(κ)− κ′2K(κ)
κ2K(κ)

cos
(

mπ

2K(κ)
u

)
du+

2κ2√
a(B + ρ)∫ 4K(κ)

0

π

κ2K2(κ)

∞∑
j=1

[
j · csch

(
j · πK

′(κ)
K(κ)

)
· cos

(
j · π

K(κ)
u

)]
cos
(

mπ

2K(κ)
u

)
du

where κ′ =
√

1− κ2. So, when ∣∣∣∣∣U5 + b(B + ρ)U6
c1
c0
U7

∣∣∣∣∣ < 1 (24)

then Mo
3 = 0. Hence, we can obtain the following theorem.
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Theorem 3.2. When the parameters of system (9) satisfy (22) and (24), the corre-
sponding subharmonic Melnikov function is zero, and the period of oscillating periodic
orbits is 2mπ

ω1
.

3.2.2. Rotating periodic orbits analysis

Since the period of rotating periodic orbits {Γ±} is Tr(κ1) = 2κ1K(κ1)√
a(B+ρ)

= m
n

2π
ω1

= m
n T ,

take p = r, n = 1 and we have

Mr
1 = −a

√
aG1 +

√
aG2 + b

√
a(B + ρ)G3 +

√
a
c1
c0

sinω1t0G4 (25)

where,

G1 =
∫ mT

0

x2
r dt =

8
κ1

√
B + ρ

a
E(κ1)

G2 =
∫ mT

0

sin2θr dt =
16

3κ3
1

√
a(B + ρ)

[
2(κ2

1 − 1)K(κ1)− (κ2
1 − 2)E(κ1)

]
G3 =

∫ mT

0

sin2θr cos θr dt

=
8

15κ5
1

√
a(
√
B + ρ)3

[ [
10κ2

1(1− κ2
1)A− 2(κ4

1 − 3κ2
1 + 2)(B + ρ)

]
K(κ1)

+
[
4(κ4

1 − κ2
1 + 1)(B + ρ)− 5κ2

1(2− κ2
1)A

]
E(κ1)

]

G4 =
∫ mT

0

sin2θr cosω1tdt

=
∫ mT

0

{
4sn2

(√
a(B + ρ)
κ1

t, κ1

)[
1− sn2

(√
a(B + ρ)
κ1

t, κ1

)]
cosω1t

}
dt

Hence, when ∣∣∣∣∣−aG1 +G2 + b(B + ρ)G3
c1
c0
G4

∣∣∣∣∣ < 1 (26)

we have Mr
1 = 0. Also, we can calculate

Mr
3 = G5 + b(B + ρ)G6 +

c1
c0

sinω1t0G7 (27)

G5 =
∫ mT

0

cos θr dt =
2

κ1
√
a(
√
B + ρ)3

[
2(B + ρ)E(κ1)−Aκ2

1K(κ1)
]

G6 =
∫ mT

0

cos2θr dt

=
2

3κ3
1

√
a(
√
B + ρ)5

 [4(κ2
1 − 1)(B + ρ)2 + 3A2κ4

1

]
K(κ1)

+
[
8(2− κ2

1)(B + ρ)2 + 12κ2
1(B + ρ)

]
E(κ1)
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G7 =
∫ mT

0

cos θr cosω1tdt =
∫ mT

0

2
κ2
1
(B + ρ)dn2

(√
a(B+ρ)

κ1
t, κ1

)
−A

B + ρ
cosω1tdt

Hence, when ∣∣∣∣∣G5 + b(B + ρ)G6
c1
c0
G7

∣∣∣∣∣ < 1 (28)

then Mr
3 = 0. Hence, we can obtain the following theorem.

Theorem 3.3. When the parameters of system (9) satisfy (26) and (28), the corre-
sponding subharmonic Melnikov function is zero, and the period of rotating periodic
orbits is 2mπ

ω1
.

4. SIMULATION RESULTS

To verify the theoretical derivation and explore the effect of control, numerical simula-
tions for the system (9) are carried out. Take a = 0.2, the eight-figure homoclinic orbits,
oscillating periodic orbits and rotating periodic orbits of the unperturbed system are
shown in Figure 6.

Fig. 6. Homoclinic orbits, oscillating periodic orbits and rotating

periodic orbits of unperturbed system (11)ε=0 in 3D space (dot line:

Homoclinic orbit, dot-dash line: Oscillating periodic orbits and real

line: Rotating periodic orbits).

The homoclinic orbit on the space cylinder will become a heteroclinic orbit on the
plane θ− x when the system (11) changes into slowly varying system (13). The hetero-
clinic orbit of the system (13) and its projection in the 2D plane are shown in Figure 7
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Fig. 7. The heteroclinic orbits, oscillating periodic orbits and

rotating periodic orbits of the system (7) in 3D space (dot line:

Oscillating periodic orbits, dash line: Rotating periodic orbits and

real line: Heteroclinic orbit).

Fig. 8. The projection of the heteroclinic orbits, oscillating periodic

orbits and rotating periodic orbits of the system (13) in θ − x plane.

and Figure 8 respectively. From the Figure 8, we can see that the system (13) exists
heteroclinic orbits in 3D space under the condition of parameter bifurcation which were
given in theorem 3.1, theorem 3.2, and theorem 3.3 when ε sufficiently close to zero.
These heteroclinic orbits correspond to the homoclinic orbits of the system (11). Also
under the same conditions, the system will exist oscillating periodic orbits and rotating
periodic orbits inside and outside the heteroclinic orbit.
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5. CONCLUSION

In this paper, a 3D autonomous chaotic system with periodic parametric perturbation
has been reduced to a slowly varying system which is a Hamiltonianian perturbed sys-
tem. The dynamics at infinity of this system has been analyzed by using the Poincaré
compactification technique. Moreover, the existence of homoclinic orbit, oscillating pe-
riodic orbit and rotating periodic orbit for this perturbed system have been proved by
using the generalized Melnikovs method. We have obtained the parameter conditions
for these orbits through rigorous symbolic computations. And the homoclinic orbit, the
oscillating orbit and the rotating orbit have been displayed by numerical simulation.
Future work on the topic should include a theoretical analysis of the dynamics of the
perturbed system, in-depth studies of chaos synchronization control and applications in
secure communication for this system.
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