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Abstract. In this paper we present a topological duality for a certain subclass of the
Fω-structures defined by M. M. Fidel, which conform to a non-standard semantics for the
paraconsistent N. C. A. da Costa logic Cω. Actually, the duality introduced here is fo-
cused on Fω-structures whose supports are chains. For our purposes, we characterize every
Fω-chain by means of a new structure that we will call down-covered chain (DCC) here.
This characterization will allow us to prove the dual equivalence between the category of
Fω-chains and a new category, whose objects are certain special topological spaces (together
with a distinguished family of open sets) and whose morphisms are particular continuous
functions.
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1. Introduction and preliminaries

The algebraic-relational structures known as F -structures were defined by Fidel to

obtain semantics for the paraconsistent da Costa logics Cω and {Cn}{n>1} (see [5]).

After their definition in [7] and their application to other logics (see [8]), F -structures

became forgotten in some sense. However, since the works of Odintsov (see [11]),

they were taken into account in the last years, and applied to the definition of

“non-standard” semantics for other logics, different from Cn. So, the study of such

structures has been renewed in the last years. This work is part of that trend.
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F970) and by CONICET, Argentina (PIP: 112-201101-00636).
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Fω-structures (that is, F -structures related to Cω) are defined on the basis of a

relatively pseudocomplemented lattice L, together with a family of sets. This family

interprets the negation connective in such logics. In this work, we focus on obtaining

a topological duality for a particular subclass of Fω-structures: the class of Fω-chains.

This case is the object of our study for several reasons. First, an adequate axiomatics

for the logic Cω can be defined as being the “intersection of axioms” of the rest of the

Cn-logics.
1 So, the construction of a duality for the particular subclass of the Fω-

chains would suggest a way to obtain dualities for the whole class of the Fω-structures,

and also for the classes of Fn-structures (that is, F -structures related to Cn), in a

general way. On the other hand, it will be noted that the traditional techniques for

dualities are developed for several algebraic structures (lattices, Heyting algebras,

and so on), but they are not usually concerned with algebraic-relational structures.

So, this work is an attempt to investigate this kind of structures, starting from the

very simple class of Fω-chains.

To reach our purposes, we proceed as follows: we take as a starting point the

formalism for Fω-structures employed in [13] (applied to Fω-chains, in this case).

Besides, we define certain simple structures (called down-covered chains, or DCC)

and we show that Fω-chains can be characterized by them. This allows us to identify

Fω-chains with DCC, which will simplify our study. We give a representation for such

structures by means of special topological spaces with additional properties (called

ChS-spaces) and, at the end of the paper, we prove the duality between the respective

categories to be defined later. Besides that, we show some examples of Fω-chains

and their duals.

With respect to the basic concepts and the notation to be employed, we will use

certain algebraic notions given mainly in [14], but with a simpler formalism (taken,

mostly, of [6]). The concept of a relatively pseudocomplemented lattice (or RPL,

for short) is useful for our work: recall here that a lattice (L,∨,∧) (with associated

order 6) is a RPL2 if and only if, for every a, b ∈ L, there exists max{x : x∧ a 6 b}

(which is denoted by a → b). Every arbitrary RPL has the greatest element 1L,

defined by 1L := a → a, for any a ∈ L, but it does not necessarily have the least

element. In this context, a Heyting algebra is understood as a RPL with the least

element 0L. By the way, Heyting algebras are applied to the study of Fn-structures,

but they are not specially considered in the case of Fω-structures. On the other

1 However, Cω should not be understood as “the intersection of the Cn-logics”, but as a
“smaller logic”, yet. See [2] for a detailed discussion on this subject, far away of the
scope of our paper.

2 Relative pseudocomplemented lattices are known by other names, such as implica-
tive lattices, Brouwerian lattices, or generalized Heyting algebras. See [9] for detailed
information.
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hand, for every RPL L with the greatest element 1L we define, for every x ∈ L,

the set x⊺ := {y ∈ L : y ∨ x = 1L} (this definition is the dual of the notion of an

annihilator relative to 0L, given by Mandelker in [10]). The set x
⊺ is useful in the

definition of F -structures, in a general way.

The set of natural (even, integer) numbers, which will be used in some examples,

is denoted by N (P, Z). In addition, it is convenient to fix some notation about

posets. Let (X,6) be an arbitrary poset: the up-set (down-set) generated by A will

be denoted as ↑A (↓A). In this context, the set ↑{x} (↓{x}) will be merely denoted

by ↑x (↓ x). Besides, every subset U ⊆ X satisfying ↑U = U (↓U = U) will be

called, simply, up-set (down-set). Finally, the set of all subsets of X is denoted

by ℘(X), while the set of all the up-sets (down-sets) of X will be indicated by ℘u(X)

(℘d(X)).

For the definition of the topological dual of Fω-chains we will make use of prime

filters and ideals. We assume that the basic concepts about them are known by the

reader. In this context, the set Fi(M) (Id(M)) denotes the filter (ideal) generated by

M ⊆ L. In addition, the set X(L) = {P ⊆ L : P is a prime filter} will be used along

this paper. In the particular context of chains, as here, the following fact should be

emphasized:

R em a r k 1.1. Recall the behavior of filters and ideals in chains: if L is a chain,

then the filters (ideals) in L are, simply, its nonempty up-sets (down-sets). On the

other hand, the prime filters (ideals) of L are, exactly, its nonempty up-sets (down-

sets), except L. In addition, for every M ⊆ L, Fi(M) = ↑M = {a ∈ L : ∃m ∈ M :

m 6 a} (Id(M) = ↓M = {a ∈ L : ∃m ∈ M : m > a}).

With respect to general topological notations, the set of compact elements of a

given topological space (X, τ) will be indicated by Kτ , and therefore the set of the

open and compact subsets of X will be denoted by τ ∩ Kτ . This last family will be

used troughout this paper. Finally we remark that, if there is no risk of confusion,

the analysed structures will be denoted as their supports. So, a lattice (L,∧,∨)

will be indicated simply as L, and so on. However, when we consider necessary to

denote two different structures with the same support, they will be distinguished by

giving proper names to the involved structures, different from their supports. This

exception is also valid for the definition of structures obtained by the application of

functors, in the categories to be defined at the end of this paper.
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2. Fω-structures and Fω-chains

In this section we define Fω-chains, and characterize them by means of the so-called

down-covering sets. For that recall first the definition of Fω-structures, according to

the formalism used in [13]:

Definition 2.1. An Fω-structure is a pair (L, f), where L = (L,∨,∧,→,1L) is

a RPL and f : L → ℘(L) a function satisfying, for any x ∈ L:

(F1) ∅ ( f(x) ⊆ x⊺;

(F2) f(y) ∩ ↓ x 6= ∅ for every y ∈ f(x).

In addition, an Fω-structure is an Fω-chain if and only if the RPL L is a chain

(with the greatest element 1L, obviously).

Definition 2.2. A pair (L,A) is a down-covered chain (or DCC for short) if and

only if L is a chain with the greatest element 1L and the set A ⊆ L satisfies the

following property:

(C) For every x ∈ L, A ∩ ↓x 6= ∅ (or, equivalently, ↑A = L).

The set A will be called a down-covering set of L.3

Note that in every DCC (L,A), we have A 6= ∅. Some examples of down-covered

chains are given below.

E x am p l e 2.3. Let (Z,6) be the chain of integers with its usual order. Consider

L := Z \ {0} and the order 6L1 defined on L as follows:

x 6L1 y if and only if











x ∈ Z+, y ∈ Z+ and y 6 x, or

x ∈ Z+, y ∈ Z−, or

x ∈ Z−, y ∈ Z− and x 6 y.

Obviously, L1 := (L,6L1) is a chain whose greatest element is 1L1
= −1. Now,

if we consider the sets O := {z ∈ L : z is odd} and E := {z ∈ L : z is even}, it

is easy to see that both pairs, (L1, O) and (L1, E), are down-covered chains. As

a generalization of E take, for every n ∈ N, the set Dn = {z ∈ L : n divides z}.

Obviously, all the pairs (L1, Dn) are DCC, as well.

The previous example was built on the basis of a chain without the least ele-

ment 0L. An example with the least element is the following:

3 Of course, the definition of DCC can be generalized to chains without the greatest el-
ement. Anyway, along this paper, we will assume that all the down-covered chains
analysed here have the greatest element 1L.
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E x am p l e 2.4. Again, consider (Z,6) and L as above. Let 6L2 be the order

defined on L by:

x 6L2 y if and only if











x ∈ Z+, y ∈ Z+ and x 6 y, or

x ∈ Z+, y ∈ Z−, or

x ∈ Z−, y ∈ Z− and x 6 y.

As before, the pair L2 := (L,6L2) is a chain with 1L2
= −1 and the least element

0L2
= 1. Considering now the set O of Example 2.3, we have that (L2, O) is a

DCC, but (L2, E) is not a DCC. Besides that, if we define (for every n ∈ N) the set

[1, n] := {z ∈ Z : 1 6 z 6 n}, we have that all the pairs (L2, [1, n]) are DCC, while

no pair of the form (L1, [1, n]) is a DCC.
4

We will return to these examples later.

The characterization of Fω-chains by means of down-covered chains is very simple,

and it is indebted to the following results:

Proposition 2.5. Let (L, f) be an Fω-chain. Then, (L, f(1L)) is a DCC.

P r o o f. Let us consider an Fω-chain (L, f), and let us prove that f(1L) satis-

fies (C), in Definition 2.2. For that, suppose x ∈ L: if x = 1L, since f(1L) 6= ∅,

there is a ∈ f(1L) and a 6 1L, obviously. If x 6= 1L, since L is a chain and

∅ ( f(x) ⊆ x⊺ = {1L}, we have that 1L ∈ f(x). By (F2) of Definition 2.1, there is

a ∈ f(1L), with a 6 x. Thus, f(1L) is a down-covering set of L. �

Proposition 2.6. Let (L,A) be a down-covering chain, and define f : L → ℘(L)

as follows: f(1L) := A; f(x) := {1L} for every x ∈ L \ {1L}. Then (L, f) is an

Fω-chain.

P r o o f. Suppose (L,A) and f as was indicated above, and consider x ∈ L: taking

into account the definition of f, it is clear that (F1) of Definition 2.1 is satisfied

(because A 6= ∅). Now, suppose that y ∈ f(x): if x 6= 1L, then y = 1L, by the

definition of f. From (C), f(y) ∩ ↓x = A ∩ ↓x 6= ∅. If x = 1L, then ↓x = L, and so

f(y) ∩ ↓x = f(y) 6= ∅, by the definition of f. So, (F2) is satisfied, too. �

It is easy to prove that Propositions 2.5 and 2.6 entail:

Proposition 2.7. There exists a bijective correspondence between Fω-chains of

the form (L, f) and down-covered chains of the form (L,A).

So, from now on, every Fω-chain will be considered as a DCC of the form (L,A).

4 It should be clear that the sets [1, n] are defined taking into account merely the usual
order 6 on Z. On the other hand, when these (already defined) sets are analysed
(w.r.t. property (C)) in the context of L1 (L2), the considered order is 6L1

(6L2
).
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3. Topological representation of Fω-chains

In this section, we will define a new kind of structure, which will be based on

a particular topological space (this structure will be called a Chω-space along this

paper). In addition, we will prove that any Fω-chain can be represented by means

of a convenient Chω-space. Our definition is motivated mainly by the approach

developed in [1].

Definition 3.1. A Chω-space is a system (X, τ,S) such that:

(S1) (X, τ) is a T0-space.

(S2) The family τ ∩ Kτ is a basis of τ .

(S3) (τ,⊆) is a chain.

(S4) For every family {Si}i∈I ∪ {Tj}j∈J ⊆ τ ∩ Kτ \ {∅}, with I 6= ∅ 6= J , such that
⋂

i∈I

Si ⊆
⋃

j∈J

Tj, there are i0 ∈ I and j0 ∈ J verifying Si0 ⊆ Tj0 .

(S5) S ⊆ τ ∩ Kτ and, in addition,
⋃

S∈S

S = X .

Conditions (S1)–(S4) are variants of similar requirements given in [1] to obtain

a Stone duality for distributive lattices. In particular, (S3) is a generalization of

the definition of the well known Sierpinski topology. On the other hand, (S4) makes

sense because we are dealing with chains, as we shall see. Besides that, condition (S5)

can be understood as the topological dual to the notion of down-covering set, as the

following result shows:

Proposition 3.2. A structure (X, τ,S) is a Chω-space if and only if it satisfies

conditions (S1)–(S4) of the previous definition, together with the additional condi-

tion:

(S5′) S ⊆ τ ∩Kτ and for every B ∈ τ ∩ Kτ there is S ∈ S such that B ⊆ S.

P r o o f. Starting from a Chω-space (X, τ,S) (according to Definition 3.1), let us

prove (S5′). For that, let B ∈ τ ∩Kτ . By (S5), B ⊆
⋃

S∈S

S and, since B ∈ Kτ , there

exists {S1, . . . , Sn} ⊆ S such that
n
⋃

i=1

Si = S0 ∈ S (because S ⊆ τ∩Kτ , and by (S3)).

On the other hand, suppose that (X, τ,S) satisfies (S1)–(S4) and (S5′). Since X ∈ τ ,

by (S2), X =
⋃

i∈I

Bi for some I, with Bi ∈ τ ∩Kτ for every i ∈ I. By (S5′), for every

i ∈ I there is Si ∈ S such that Bi ⊆ Si. Thus, X ⊆
⋃

i∈I

Si ⊆
⋃

S∈S

S ⊆ X . �

From this last result, by a Chω-space we mean a system satisfying (S1)–(S4), (S5
′).

E x am p l e 3.3. Consider (N, τ
P
), with τ

P
= {∅,N} ∪ {[1, i]}i∈P (here [1, i] :=

{j ∈ N : 1 6 j 6 i}). Now, the following facts are valid: first of all, it is obvious
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that (N, τ
P
) is a T0-topological space, and (τ

P
,⊆) is a chain. Besides that, note that

τ
P
∩ κτ

P
= τ

P
\ {N}. From this, (S2) can be proved, too. In addition, property (S4)

in Definition 3.1 can be verified, recalling that N is a well-ordered set, and that

τ
P
∩ κτ

P
= τ

P
\ {N}, again. Thus, (N, τ

P
) can be a suitable underlying structure

for a Chω-space. An example of such space can be the system (N, τ
P
,S4), where

S4 = {[1, i]}{i=4k, k∈N} = {[1, 4], [1, 8], [1, 12], . . .}. Or, more generally (having fixed

any natural number t = 2n, with n ∈ N), the structures (N, τ
P
,St), with St =

{[1, i]}{i=tk,k∈N} are all Chω-spaces.

To prove that the Chω-spaces represent in an adequate way the down-covered

chains, we will need:

Definition 3.4. For every chain (L,6) with the greatest element 1L, we define

ϕL : L → ℘(X(L)) by: ϕL(x) := {P ∈ X(L) : x ∈ P} for every x ∈ L.

The following well-known result is valid by the application of the prime filter

theorem for distributive lattices (in particular, applicable to every chain):

Proposition 3.5. For every x, y ∈ X , it holds that x 6 y if and only if

ϕL(x) ⊆ ϕL(y).

Corollary 3.6. If L is a chain with 1L, then the posets ({ϕL(x)}x∈L,⊆) and

({(ϕL(x))
c}x∈L,⊆) are both chains (here, (ϕL(x))

c := X(L) \ ϕL(x)). In addition,

ϕL is an order-isomorphism between (L,6) and ({ϕL(x)}x∈L,⊆), while (L,6) is

anti-isomorphic to ({(ϕL(x))
c}x∈L,⊆).

As it is well known, the function ϕL relative to an Fω-chain (L,A) plays two roles.

It will be used for the construction of an Fω-chain isomorphic to (L,A) (in a certain

sense to be explicited later), as we shall see. On the other hand, it is applied to the

definition of a Chω-space which is actually the dual of (L,A). This space will be

built in the sequel.

Definition 3.7. Let (L,A) be an Fω-chain. The dual of (L,A) is the system

X(L) := (X(L), τL,SA), such that:

(a) τL is the topology that has the family BL as a basis, with BL := {(ϕL(x))
c :

x ∈ L}. (Note that ∅ ∈ BL, because 1L ∈ L. In addition, note that (ϕL(x))
c 6= ∅ for

every x 6= 1L, because of the prime filter theorem.)

(b) SA := {(ϕL(x))
c : x ∈ A}.

R em a r k 3.8. It should be noted that the previous definition makes sense. That

is, that the family BL given above can be a basis of a suitable topology. Actually,

suppose P ∈ X(L). Since P 6= L, there is x ∈ L such that x 6∈ P , and so

(∗) P ∈ (ϕL(x))
c.
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Now, let P ∈ (ϕL(a))
c ∩ (ϕL(b))

c, with a, b ∈ L. We can suppose that a 6 b,

because L is a chain. Thus,

(∗∗) P ∈ (ϕL(b))
c = (ϕL(a))

c ∩ (ϕL(b))
c.

From (∗) and (∗∗) we get that BL is a base for a topology on X(L).

Now, to prove that X(L) is actually a Chω-space, we will need the following

technical result:

Proposition 3.9. Given X(L) := (X(L), τL,SA) as in Definition 3.7, it holds that

BL = τL ∩ KτL .

P r o o f. Obviously, BL ⊆ τL. Besides that, let (ϕL(a))
c be in BL and suppose

that

(⋆) (ϕL(a))
c ⊆

⋃

x∈J

(ϕL(x))
c for a certain set J ⊆ L.

In addition, suppose for the moment that x 66 a for every x ∈ J . Since L is a chain,

a < x for every x ∈ J . On the one hand, if we consider Fi(J) and Id({a}) (recall

Section 1), we get Fi(J) ∩ Id({a}) = ∅. From this and the prime filter theorem,

there is P ∈ X(L) such that Fi(J) ⊆ P , P ∩ Id(a) = ∅, which implies J ⊆ P and

a 6∈ P . So, P ∈ (ϕL(a))
c and, from (⋆), x0 6∈ P for some x0 ∈ J , which is absurd.

Thus, there must exist t0 ∈ J such that t0 6 a and so (ϕL(a))
c ⊆ (ϕL(t0))

c. From

this, it follows that (ϕL(a))
c ∈ KτL . On the other hand, if U ∈ τL ∩ KτL , we get

that U =
n
⋃

i=1

(ϕL(xi))
c, with {x1, . . . , xn} ⊆ L. By Corollary 3.6 (and recalling

that L is a chain) we conclude that U = (ϕL(xi0 ))
c for some i0 ∈ {1, . . . , n}. Hence,

τL ∩ KτL ⊆ BL. �

Theorem 3.10. The system X(L) := (X(L), τL,SA) is a Chω-space.

P r o o f. Let (L,A) be an Fω-chain. We will prove that X(L) satisfies conditions

(S1)–(S4); (S5′), established in Proposition 3.2. Firstly, suppose P , Q ∈ X(L),

with P 6= Q. Without losing generality, suppose that there is x ∈ P \ Q. Then,

there exists (ϕL(x))
c ∈ BL ⊆ τL such that P /∈ (ϕL(x))

c, Q ∈ (ϕL(x))
c. Hence,

X(L) is a T0-space. Besides that, (S2) is valid by Definition 3.7 and Proposition 3.9.

Also, it is valid that (BL,⊆) is a chain, by Corollary 3.6. This allows to prove

condition (S3). To demonstrate (S4) we can start, using the characterization given

in Proposition 3.9, from two nonempty families {(ϕL(x))
c}x∈S and {(ϕL(y))

c}y∈T ,
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where (ϕL(x))
c 6= ∅ 6= (ϕL(y))

c, for every x ∈ S, for every y ∈ T , with S ∪ T ⊆ L.

Now, suppose that

(⋆)
⋂

x∈S

(ϕL(x))
c ⊆

⋃

y∈T

(ϕL(y))
c.

In addition, for the moment, suppose that

(∗) Id(S) ∩ Fi(T ) = ∅.

By the prime filter theorem, this implies that there is P ∈ X(L) such that S∩P = ∅

and T ⊆ P . Then, there is P ∈
⋂

x∈S

(ϕL(x))
c \

⋃

y∈T

(ϕL(t))
c, contradicting (⋆).

Hence, (∗) cannot be valid and so there is z ∈ Id(S) ∪ Fi(T ). Then, there are

x1, . . . , xm ∈ S and y1, . . . , yn ∈ T , where y1 ∧ . . . ∧ yn 6 z 6 x1 ∨ . . . ∨ xm. Now,

since L is a chain, there are x0 ∈ S, y0 ∈ T such that y0 6 z 6 x0, and therefore

(ϕL(x0))
c ⊆ (ϕL(y0))

c, with (ϕL(x0))
c ∈ S, (ϕL(y0))

c ∈ T . Finally, for (S5′), sup-

pose (ϕL(x))
c ∈ BL. Since (L,A) is an Fω-chain, we have that there exists a ∈ A

such that a 6 x. From Corollary 3.6, we obtain that (ϕL(x))
c ⊆ (ϕL(a))

c ∈ SA. �

Now we will represent every Chω-space by means of a convenient Fω-chain. For

that, we need the following definition:

Definition 3.11. The dual of a Chω-space (X, τ,S) is L(X) := (L(X), AS),

where L(X) := {U : U c ∈ τ ∩ Kτ} (ordered by inclusion), and AS := {S : Sc ∈ S}.

Theorem 3.12. For every Chω-space (X, τ,S), its dual L(X), defined above, is

an Fω-chain.

P r o o f. Let (X, τ,S) be a Chω-space (satisfying, in this way, the conditions

of Proposition 3.2). Condition (S3) entails that τ ∩ Kτ is a chain, and therefore

(L(X),⊆) is a chain, too. In addition, since ∅ ∈ τ ∩ Kτ , we have that L(X) has

the greatest element 1L(X) = X . So, we just need to prove that (L(X), AS) satisfies

condition (C) of Definition 2.2. But it is valid, by the definition of AS , and (S5
′),

applied to (X, τ,S). �

With respect to the representation obtained in Theorems 3.10 and 3.12, note that

the existence of the least element 0L in L is equivalent to the fact that X(L) ∈ Kτ ,

which also implies that ∅ ∈ L(X(L)).

We will conclude this section by applying the obtained representation results.

E x am p l e 3.13. Bearing in mind the DCC (L1, O) from Example 2.3, note the

following facts: first of all, X(L1) = {↑{i}}i∈Z ∪ {Z−} (here ↑{i} is defined follow-

ing the order 6L1). Now, taking into account Definition 3.7, we have that BL1 =
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{Gn}n∈N ∪ {Hm}m∈N, where Gn := {↑{−k}}k∈N,k<n, while Hm := {↑{−i}}i∈N ∪

{Z−} ∪ {↑{k}}k∈N,k<m. Note, in addition, that
⋃

n∈N

Gn ∈ τBL1
, but

⋃

n∈N

Gn /∈ BL1 .

With respect to SOL1
, it is easy to see that it satisfies (S5) in Definition 3.1. Finally,

note that X(L1) is not a compact space, as was already indicated.

The previous example developed the dual of a given Fω-chain. With respect to

the reciprocal representation, consider the next example.

E x am p l e 3.14. Considering Example 3.3 of the Chω-space (N, τP ,S4), we have

that L(N) := (L(N), AS4), with L(N) = {↑ 3, ↑ 5, ↑ 7, . . .}, and AS4 = {↑ 5, ↑ 9, . . .}.

This is another example of an Fω-chain without the least element. Of course, we can

consider now the Chω-space X(L(N)), which will be isomorphic to (N, τP ,S4), in the

sense developed in the next section.

4. Duality for Fω-chains

In the previous section we have associated with every Fω-chain a particular Chω-

space, and vice versa. This process is the basic step for the definition of two categories

(of Fω-chains and Chω-spaces, respectively), which will be dually equivalent. The

formal definition of such categories is as follows:

Definition 4.1. The category FCHω is given by the following conditions:

(1) The FCHω-objects are Fω-chains.

(2) Given two Fω-chains (L1, A1) and (L2, A2), a mapping h : L1 → L2 is an

[L1, L2]FCHω
-morphism if and only if h is a RPL-homomorphism and, in addi-

tion,

(2a) for every y ∈ L2, there exists x ∈ L1 such that h(x) 6 y,

(2b) h(A1) ⊆ A2.

The class of the [L1, L2]FCHω
-morphisms is denoted by FCHω[L1, L2].

R em a r k 4.2. It is easy to prove that FCHω is a category, where the com-

position of morphisms is the set-theoretic composition of maps. In addition, h is

an [L1, L2]FCHω
-morphism if and only if h is monotone, h(1L1

) = 1L2
and condi-

tion (2) in the previous definition is satisfied. Finally, note that h is an [L1, L2]FCHω
-

isomorphism if and only if h is isotone and h(A1) = A2.

The following is a technical result about FCHω, to be used later.

Proposition 4.3. If h is an [L1, L2]FCHω
-morphism, then P ∈ X(L2) implies

h−1(P ) ∈ X(L1).
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P r o o f. Consider h and P as indicated. Obviously, h−1(P ) is a non-void up-set

of L1. Now, suppose that h
−1(P ) = L1. Since P is proper, there exists y ∈ L2 \ P .

By condition (2) of Definition 4.1, there is x ∈ L1 such that h(x) 6 y. Now, since

h(x) ∈ P , we have y ∈ P , which is absurd. This implies that h−1(P ) 6= L1. By

Remark 1.1, we have that h−1(P ) ∈ X(L1). �

Note that, if (L1, A1) and (L2, A2) are Fω-chains and h : L1 → L2 is merely a

RPL-morphism, it does not hold that P ∈ X(L2) implies h
−1(P ) ∈ X(L1). As a

counterexample, consider the DCC whose respective supports are the real intervals

L1 = (0, 1] and L2 = [0, 1], and h = inc (the inclusion morphism). Obviously, h is a

RPL-morphism. Now, (0, 1] ∈ X(L2) but h
−1((0, 1]) = (0, 1] /∈ X(L1).

We define the category of Chω-spaces in the sequel.

Definition 4.4. The category ChSω is given by the following conditions:

(1) The ChSω-objects are Chω-spaces.

(2) Given two Chω-spaces (X1, τ1,S1) and (X2, τ2,S2), f : X1 → X2 is an

[X1, X2]ChSω
-morphism if and only if it satisfies:

(2a) f−1(T ) ∈ τ1 ∩ Kτ1 for every T ∈ τ2 ∩Kτ2 ,

(2b) f−1(T ) ∈ S1 for every T ∈ S2.

R em a r k 4.5. As in FCHω, it can be proved here that ChSω is a category,

with the composition of morphisms given by the set-theoretic composition of maps.

Besides, every [X1, X2]ChSω
-morphism is also a continuous map. Finally, f is an

[X1, X2]ChSω
-isomorphism if and only if it satisfies τ2∩ Kτ2 = {f(T ) : T ∈ τ1∩ Kτ1}

and S2 = {f(T ) : T ∈ S1}.

Definition 4.6. Let L1 = (L1, A1), L2 = (L2, A2) be two Fω-chains. For every

[L1, L2]FCHω
-morphism h we define:

(a) fh : X(L2) → X(L1), where fh(P ) := h−1(P ).

Conversely, every [X1, X2]ChSω
-morphism f induces the map

(b) hf : L(X2) → L(X1), defined as: hf(U) = f−1(U).

Lemma 4.7. Let Li = (Li, Ai), i = 1, 2 be two Fω-chains. If h is an [L1, L2]FCHω
-

morphism, then the function fh given in Definition 4.6 (a) satisfies:

(a) f−1
h (ϕL1(x)) = ϕL2(h(x)) for every x ∈ L1,

(b) fh is an [X(L2), X(L1)]ChSω
-morphism.

P r o o f. Note first that fh : X(L2) → X(L1) is well defined, because of Proposi-

tion 4.3. Now, to prove (a), suppose (Li, Ai), i = 1, 2, h and fh as above, and take

x ∈ L1. Then, for every P ∈ X(L2) we have that P ∈ f−1
h (ϕL1(x)) if and only if

h−1(P ) ∈ ϕL1(x), if and only if x ∈ h−1(P ), if and only if P ∈ ϕL2(h(x)). For (b),

let T ∈ τL1 ∩ KτL1
. By Proposition 3.9, T = (ϕL1(x))

c for some x ∈ L1. By (a),
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we have f−1
h (T ) = (f−1

h (ϕL1(x)))
c = (ϕL2(h(x)))

c ∈ BL2 = τL2 ∩ KτL2
. Moreover,

if T = (ϕL1(x))
c ∈ SL1 , then x ∈ A1. So, h(x) ∈ A2 and, from this, f

−1
h (T ) ∈ SL2 .

Thus, conditions (2a) and (2b) of Definition 4.4 are satisfied, too. �

As a counterpart of the previous result, we have:

Lemma 4.8. Let (Xi, τi,Si), i = 1, 2 be two Chω-spaces. For every [X1, X2]ChSω
-

morphism f , the map hf given in condition (2) of Definition 4.6 is an [L(X2),

L(X1)]FCHω
-morphism.

P r o o f. We will prove our claim taking into account Remark 4.2. For that,

suppose f : X1 → X2, with (Xi, τi,Si), i = 1, 2 as indicated above. By condi-

tion (2a) of Definition 4.4, hf is well defined. Moreover, hf is obviously monotonic

and hf (X2) = X1. Now, if U ∈ L(X1), then U c ∈ τ1 ∩ Kτ1 . This implies that

(⋆) f(U c) ∈ Kτ2 (since f is continuous).

On the other hand, recalling that τ2 ∩ Kτ2 is a basis of τ2, we have that f(U
c) ⊆

X2 =
⋃

B∈I

B for some I ⊆ τ2 ∩ Kτ2 . Using (⋆), we have that there exists a fam-

ily {B1, . . . , Bn} ∈ I, with f(U c) ⊆
n
⋃

i=1

Bi. So, U
c ⊆ f−1

( n
⋃

i=1

Bi

)

, and then

f−1
( n
⋂

i=1

Bc
i

)

⊆ U . Now, since {B1, . . . , Bn} is a finite chain (because of Defini-

tion 3.1), we have that
n
⋂

i=1

Bc
i = Bc

i0
for some Bi0 ∈ {B1, . . . , Bn}. Hence, there

exists V := Bc
i0

∈ L(X2) such that hf (V ) = f−1(Bc
i0
) ⊆ U . This proves condi-

tion (2a) in Definition 4.1. Finally, take T ∈ hf (AS2). Then, there is S ∈ AS2 such

that f−1(S) = T . Hence, f−1(Sc) ∈ S1, by Definition 3.11. (Because S
c ∈ S2).

Thus, T ∈ AS1 . This proves condition (2b) in Definition 4.1, which concludes the

proof. �

The next result follows straightforwardly:

Proposition 4.9. The following properties are satisfied in FCHω and ChSω:

(1a) If (L,A) is an Fω-chain and IdL is the identity function on L, then IdL is the

identity morphism in the category FCHω, while fIdL
is the identity morphism

(w.r.t. X(L)) in the category ChSω.

(1b) If h ∈ [L1, L2]FCH and t ∈ [L2, L3]FCH, then ft◦h = fh ◦ ft.

(2a) If (X, τ,S) is a Chω-space and IdX is the identity function on X , then IdX
is the identity morphism in ChSω, and hIdX

is the identity on FCHω (w.r.t.

L(X)).

(2b) If f is a [X1, X2]ChSω
-morphism and g ∈ [X2, X3]ChSω

, then hg◦f = hf ◦ hg.
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From Theorem 3.10, Lemma 4.7, and Proposition 4.9, we obtain:

Theorem 4.10. The correspondence X : FCHω → ChSω, defined by

⊲ X(L) = (X(L), τL,SA), if L = (L,A) is an Fω-chain,

⊲ X(h) = fh, if h is a morphism in FCHω

is a contravariant functor.

In a similar way (applying Theorem 3.12, Lemma 4.8 and Proposition 4.9 in this

case) we have:

Theorem 4.11. The correspondence L : ChSω → FCHω given by

⊲ L(X) = (L(X), AS), if X = (X, τ,S) is a Chω-space,

⊲ L(f) = hf , if f is a morphism in ChSω

is a contravariant functor.

To complete our proof of duality we need to prove the natural (dual) equivalence

between the functors X and L. For that realize that, from Theorems 3.10 and 3.12,

we obtain, for every Fω-chain (L,A), a new one: L(X(L)) = (L(X(L)), ASA
). As

expected, we have:

Proposition 4.12. The Fω-chains (L,A) and (L(X(L)), ASA
) are isomorphic in

the category FCHω.

P r o o f. By Definitions 3.7 and 3.11, and the representation results already

proven, we have that (L(X(L)), ASA
) is an Fω-chain, where L(X(L)) = {ϕL(x)}x∈L.

Then, ϕL : L → L(X(L)) (indicated in Definition 3.4) is an order-isomorphism, by

Corollary 3.6. Moreover, it is clear that ASA
= {ϕL(x)}x∈A = ϕL(A) and that

ϕL(1L) = X(L). By Remark 4.2, ϕL is an [L,L(X(L))]FCHω
-isomorphism. �

For the reciprocal result, we will need the following definition:

Definition 4.13. For every Chω-space (X, τ,S), the map εX : X → X(L(X))

is given by: εX(w) := {U ∈ L(X) : w ∈ U}, for every w ∈ X .

Proposition 4.14. The function εX : X → X(L(X)) given in the previous defi-

nition is a bijection.

P r o o f. For that, bearing in mind Definitions 3.7 and 3.11, we have:

(a) εX is well defined: εX(w) 6= ∅ for every w ∈ X , because X ∈ εX(w). Moreover,

it is clear that εX(w) is an up-set of L(X). Besides that, there is B ∈ τ ∩ Kτ such

that w ∈ B, by (S2) in Definition 3.1. So, Bc ∈ L(X) \ εX(w). That is, εX(w) is a

proper set. These facts imply that εX(w) ∈ X(L(X)), because L(X) is a chain.
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(b) εX is onto: let E ∈ X(L(X)). Let us define V := {A ∈ L(X) : A 6= X, A ∈ E}

and W := {B ∈ L(X) : B /∈ E}. From these definitions, we have that A 6= X for

every A ∈ V, B 6= X for every B ∈ W, and (since E ∈ X(L(X))),

(∗) V 6= ∅ 6= W.

Besides that, it is routine to prove the following fact, using Definition 4.13: for every

w ∈ X , E = εX(w) if and only if w ∈
⋂

A∈V

A \
⋃

B∈W

B. Then, to demonstrate that

εX is onto, we only need to prove

(⋆)
⋂

A∈V

A \
⋃

B∈W

B 6= ∅.

Suppose that it is not the case. This implies that
⋂

A∈V

A ⊆
⋃

B∈W

B, and therefore
⋂

B∈W

Bc ⊆
⋃

A∈V

Ac. Using this fact, (∗) and condition (S4) of Definition 3.1, there is

a pair {Bc
0, A

c
0} ⊆ τ ∩Kτ such that B

c
0 ⊆ Ac

0, and A0 ∈ E, B0 /∈ E. But this implies

that A0 ⊆ B0 and, thus, B0 ∈ E, which is absurd. So, (⋆) is valid, as it was desired.

(c) εX is injective: this holds because (X, τ) is a T0-space. �

In addition, the following technical result will be useful:

Proposition 4.15. Let (X, τ,S) be a Chω-space. The following facts are valid

for every E ⊆ X(L(X)), and every B ⊆ X :

(a) If E = (ϕL(X)(U))c for some U ∈ L(X), then ε−1
X (E) = U c.

(b) If B ∈ τ ∩ Kτ , then εX(B) = (ϕL(X)(B
c))c.

P r o o f. To prove (a) suppose E = (ϕL(X)(U))c, with U ∈ L(X). Then, it is

easy to prove that w ∈ ε−1
X (E) if and only if w ∈ U c. For the proof of (b), suppose

E ∈ εX(B). Then, there exists w ∈ B such that E = εX(w) = {U ∈ L(X) : w ∈ U}.

Since Bc ∈ L(X) and w /∈ Bc, we have that Bc /∈ E. So, E ∈ (ϕL(X)(B
c))c. On

the other hand, suppose E ∈ (ϕL(X)(B
c))c. From the definition of ϕL(X), B

c /∈ E.

Since εX is surjective (see Proposition 4.14), there is w ∈ X such that E = εX(w).

We will prove that w ∈ B. In fact, if not, we would have w ∈ Bc, which implies

Bc ∈ εX(w) = E, a contradiction. Thus, E ∈ εX(B). �

Corollary 4.16. With the previous conditions, we have:

(a) For every B ∈ τ ∩ Kτ it holds that εX(B) ∈ τL(X) ∩ KτL(X)
.

(b) For every E ∈ τL(X) ∩ KτL(X)
, ε−1

X (E) ∈ τ ∩Kτ .
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P r o o f. Let B ∈ τ ∩ Kτ . Then Bc ∈ L(X) and so, from Definition 3.7, Propo-

sition 3.9, and Proposition 4.15 (b), we have that εX(B) ∈ τL(X) ∩ KτL(X)
. That is,

(a) is valid. To prove (b), suppose E ∈ τL(X) ∩ KτL(X)
. Considering Proposition 3.9

we have that E = (ϕL(X)(U))c for some U ∈ L(X), and then U c ∈ τ ∩ Kτ . Now,

apply Proposition 4.15 (a). �

Also, from Proposition 4.15, and by Definitions 3.7 and 3.11, it holds:

Corollary 4.17. Considering the Chω-spaces (X,τ,S) and (X(L(X)),τL(X),SAS
),

we have that SAS
= {εX(B) : B ∈ S}. Moreover, S = {ε−1

X (E) : E ∈ SAS
}.

Therefore, considering Definition 4.4, Proposition 4.14, and Corollaries 4.16

and 4.17, we have:

Theorem 4.18. Every Chω-space X = (X, τ,S) is isomorphic (in the context

of ChSω) to X(L(X)) = (X(L(X)), τL(X),SAS
).

Finally, it is possible to prove:

Lemma 4.19. The family Φ := {ϕL : L is a FCHω-object} is a natural equiva-

lence from the identity functor in FCHω to L ◦ X.

P r o o f. Let Li = (Li, Ai), i = 1, 2 be two Fω-chains. By Proposition 4.12, we

have that Φ is a family of FCHω-isomorphisms. Now, taking into account Defini-

tion 4.6, Lemma 4.7 (a) and Proposition 4.9 we have that, for every [L1, L2]FCHω
-

morphism h, (L ◦ X)(h) ◦ ϕL1 = ϕL2 ◦ IdFCHω
(h). �

In addition, it is easy to prove the following:

Lemma 4.20. The family Λ := {εX : X is a ChS-object} is a natural equiva-

lence from the identity functor in ChSω to X ◦ L.

P r o o f. Let Xi = (Xi, τi,Si), i = 1, 2 be two Chω-spaces. We will prove that

(X ◦ L)(f) ◦ εX1 = εX2 ◦ IdChSω
(f), for every [X1, X2]ChSω

-morphism f . For that,

consider hf : L(X2) → L(X1) as in Definition 4.6 (b). Now, for every w ∈ X1,

U ∈ h−1
f (εX1(w)) implies f

−1(U) ∈ εX1(w), with U ∈ L(X2). Hence, w ∈ f−1(U)

and so, U ∈ εX2(f(w)). That is, h
−1
f (εX1(w)) ⊆ εX2(f(w)). On the other hand, if

U ∈ εX2(f(w)) (⊆ L(X2)), then f(w) ∈ U . Since U c ∈ τ2 ∩ Kτ2 we get f
−1(U c) ∈

τ1 ∩ Kτ1 . Therefore, f
−1(U) ∈ L(X1) and so, hf (U) = f−1(U) ∈ εX1(w), i.e.,

U ∈ h−1
f (εX1(w)). That is, εX2(f(w)) ⊆ h−1

f (εX1(w)). From this, Λ is a natural

(dual) equivalence. �
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From the previous results, we conclude:

Theorem 4.21. The categories FCHω and ChSω are dually equivalent.

5. Concluding remarks

In this work we have shown a topological duality for a category of algebraic-

relational structures, namely the Fω-chains. The construction presented here can be

done in a simple way because Fω-chains are characterized by down-covered chains.

By the way, it is clear that we can define a new category isomorphic to FCHω,

whose objects are the “original” Fω-chains (and not merely their associated DCC,

which are, indeed, the FCHω-objects). Having in mind Definition 2.1, we get that

the morphisms in this new category are naturally defined as the RPL-morphisms

h : L1 → L2 such that h(f1(x)) ⊆ f2(h(x)) for every x ∈ L1. The details of the

definition of this new category are left to the reader.

It should be remarked that this work is a first step toward a deeper result, which

is the definition of a duality for Fω-structures (and not merely Fω-chains). For

that, it would be convenient to characterize Fω-structures by special sets, playing

the same role as DCC in this paper. Besides that, the duality techniques should

be adapted from those existent for RPL (or similar algebraic structures), since they

are the supports of Fω-structures. For example, some duality techniques developed

for Heyting algebras (as Esakia duality) or for Hilbert algebras (see [3] or [4]) can

be adapted for our purposes. Of course, in all these works the topological spaces

involved are also ordered, as usual in the dualities based on the well-known Priestley

one (see [12]).
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