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Abstract. Let G be a finite group G, K a field of characteristic p > 17 and let U be the
group of units in KG. We show that if the derived length of U does not exceed 4, then G

must be abelian.
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1. Introduction

LetKG be the group algebra of a groupG over a fieldK of positive characteristic p

and let U(KG) = U denote its multiplicative group of units. An interesting problem

is to relate the structural properties of G with those of U(KG). The conditions

under which U is solvable was started in 1970s independently by Bateman in [3],

and Motose and Tominaga in [16] for finite groups. Then further results were given

by Motose and Ninomiya in [15] and Bovdi and Khripta in [6], [7]. Finally Passman

in [17] gave necessary and sufficient conditions to have U solvable when G is finite.

Results on the derived length of the group of units of a modular group algebra are

described well by Bovdi in [4]. The final classification for arbitrary groups was also

given by Bovdi in [5]. From the result of Bateman in [3], one has that U is solvable

if and only if the commutator subgroup G′ of G is a finite p-group, if |K| > 3. As

a corollary, we get that the p-elements of G form a normal subgroup such that G/P

is abelian. The natural question is to ask about the derived length of U once it is

assumed to be solvable. It seems quite difficult to give a general formula for the

derived length of U . Only a few results have been proved. Shalev in [20], Kurdics

in [13], Sahai and Chandra in [18], [19], [9] and [10] have investigated group algebras

with units having derived length at most two and three, respectively, over fields of

finite characteristic. Baginski in [1] showed that if G is a finite non-abelian p-group
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such that G′ is cyclic, then the derived length of U is ⌈log2(|G
′| + 1)⌉, where ⌈r⌉

denotes the minimal integer not smaller than r for a real number r. This result was

extended by Balogh and Li to an arbitrary group G with a cyclic derived subgroup of

p-power order p > 2 in [2]. From these results it easily followed that if G is a torsion

nilpotent non-abelian group, then the derived length of U is at least ⌈log2(p + 1)⌉.

Finally Catino and Spinelli characterized group algebras over any torsion nilpotent

group for which this lower bound is attained in [8]. The same for infinite groups was

given recently by Lee-Sehgal-Spinelli in [14].

In this paper we extend the result from torsion nilpotent groups to groups G with

the unit group U = U(KG) in KG having derived length at most four. In an earlier

paper [11], we discussed a special case when (U (3), U ′) = {1} and G is of odd order

using a combinatorial argument after considering several cases and subcases. In the

present paper we resolve it completely for any G with U = U(KG) of derived length

four without any condition on the order of G. The present argument is far simpler

and in particular, it avoids the combinatorial argument altogether. Our main result

can be stated as follows:

Theorem 1.1. Let K be a field of characteristic p > 17 and let G be a finite

group. Then G is abelian if and only if U satisfies U (4) = {1}.

We now mention the notation to be followed. For subsets X , Y of a group G, we

denote by (X,Y ) the subgroup of G generated by all commutators (x, y) = x−1y−1xy

with x ∈ X and y ∈ Y , i.e.,

(X,Y ) = 〈x−1y−1xy : x ∈ X, y ∈ Y 〉.

More generally, a commutator of weight n > 2 is defined inductively by the rule

(x1, x2, . . . , xn) = ((x1, x2, . . . , xn−1), xn). The derived subgroups of G are denoted

as G(0) = G, G(1) = G′ = (G,G), and G(i) = (G(i−1), G(i−1)) for all i > 0. If G

is solvable, G(n) = 1 for some integer n and the smallest such integer is called the

derived length of G.

Lie algebraic properties of KG play an important role in our investigation. For

x, y ∈ KG, we denote their Lie commutator by [x, y], i.e., [x, y] = xy − yx. Also,

Op(G) stands for the maximal normal p-subgroup of G, and ∆(G) denotes the aug-

mentation ideal of the group algebra KG. For any two elements x, h ∈ G, xh denotes

the conjugation of x by h, that is, h−1xh. By a p′-element or a p′-automorphism of

a group G we mean an element or an automorphism of G whose order is not divisible

by p. All groups considered are finite.
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2. Key steps in the proof of Theorem 1.1

We first consider the simpler case when G is a finite p-group. Then we briefly

outline the key steps that we are going to adopt when G is not a finite p-group.

2.1. G is a finite p-group. The following result can be found in [8].

Result 2.1. If KG is a non-commutative group algebra of a torsion nilpotent

group G over a field K of positive characteristic p such that U is solvable, then the

derived length of U is at least ⌈log2(p+ 1)⌉.

Let KG be a group algebra such that CharK = p > 17 and G is a finite p-group

such that U satisfies U (4) = {1}. A finite p-group is nilpotent and torsion. If G is

non-abelian then by Result 2.1, the derived length of U for p > 17 is ⌈log2(p+1)⌉ >

⌈log2(17 + 1)⌉ ≈ ⌈4.16⌉ = 5. Thus U can satisfy U (4) = {1} only, if G is abelian.

2.2. G is not a finite p-group. Consider a group G which is not a p-group such

that the group U of units in KG satisfies U (4) = {1} and char(K) = p > 17. We

will proceed as follows.

(i) First we will show that G can be written as a semidirect product of P and H

where P is a p-group and H is an abelian p′-group.

(ii) Our aim then is to express G as a direct product of P and H . If this is not

possible, then there will exist an element h in H that will induce a non-identity

p′-automorphism on P .

(iii) When P is elementary abelian, we will show that the non-identity p′-auto-

morphism on P induced by h can be used to construct a non trivial element

in U (4).

(iv) We will then reduce the argument for general P to the case when P is elementary

abelian by exploiting the Frattini subgroup as follows.

When P is any p-group, let us assume (P, h) 6= {1} for some h ∈ H .

As the Frattini subgroup Φ(P ) is a characteristic subgroup of P , we have

hΦ(P ) = Φ(P ) and hence h induces an automorphism on P/Φ(P ). Now P/Φ(P )

is elementary abelian (by [12], Theorem 5.1.3). If we assume the result for el-

ementary abelian group then h will induce the identity automorphism on the

elementary abelian group P/Φ(P ). We can then invoke a well known result

by Burnside ([12], Theorem 5.1.4). It states that if ψ is a p′-automorphism

of a p-group P inducing the identity on P/Φ(P ), then ψ must be the identity

automorphism on P itself.

Hence Burnside’s result allows us to conclude that h induces the identity

automorphism on P as well. Thus we get G = P ×H .
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(v) The fact that P will also be abelian now easily follows from Result 2.1 above

regarding p-groups. Thus the sufficient part of the main result is proved.

(vi) The necessary part, that is, when G is abelian is a trivial case.

3. Certain useful results

In this section we write down certain well-known results as well some observations

to be used in the later part. For any two elements x, y in KG, it is easy to observe

that

(3.1) xy − 1 = (x− 1)(y − 1) + (x− 1) + (y − 1).

Let J be any ideal of KG and let x, y ∈ KG be such that x− 1 ∈ J i and y− 1 ∈ Jj

for some i, j > 0. Then it can be easily established using (3.1) that

(3.2) (x, y) ≡ 1 + [x, y] (mod J i+j+1).

We are going to use the following necessary condition for U to be solvable ([5]).

Theorem 3.1. Let K be a field of finite characteristic p > 3, and Op(G) a maxi-

mal normal p-subgroup of the finite group G. If the group U(KG) is solvable then

G/Op(G) is abelian.

The next result can be found in [21], Theorem 3.5.

Theorem 3.2. Let G be a group of order pab and (p, b) = 1 and let K be a field

of characteristic p. Assume that G has a normal Sylow p-subgroup P . Then the

Jacobson radical J = J(KG) of KG is J = ∆(P )KG.

The following can be found in [12], Theorem 5.3.6.

Theorem 3.3. If A is a p′-group of automorphisms of the p-group Q, then

(Q,A,A) = (Q,A). In particular, if (Q,A,A) = {1}, then A = {1}.

Note that (Q,A) = {q−1σa(q) : q ∈ Q and a ∈ A}, where σa denotes the auto-

morphism of Q corresponding to a ∈ A.
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4. Proof of theorem 1.1

In this section, we will provide proofs for the steps outlined in Section 2.2. In the

first subsection, we will show that if U (4) = {1} then G is a semi-direct product of

a p-group P and an abelian p′-group H . If that semi-direct product is not a direct

product, then we will construct a nontrivial element in U (4) = (U (3), U (3)) in the

second subsection. We may assume P to be elementary abelian as we indicated in

Section 2.2.

4.1. G is a semidirect product of a p-group and an abelian p′-group. Let

KG be the group algebra of a finite group G over a field K of characteristic p > 5,

such that the unit group U = U(KG) satisfies the condition U (4) = {1}. Then U is

solvable and according to Theorem 3.1, G/Op(G) is abelian.

Lemma 4.1. If G/Op(G) is abelian, then G has a normal Sylow p-subgroup.

P r o o f. Let P be a Sylow p-subgroup of G such that Op(G) 6 P . Let x ∈ P

and g ∈ G. Since G/Op(G) is abelian, we have G
′ 6 Op(G). Therefore, x

−1g−1xg ∈

Op(G), which implies that g
−1xg ∈ P for every x ∈ P and g ∈ G. Hence, P D G.

�

So Op(G) = P , a Sylow p-subgroup. Now, |P | and [G : P ] are relatively prime,

hence by the Schur-Zassenhaus theorem ([12], Theorem 6.2.1), we have G = P ⋊H ,

where H is a p′-subgroup of G. Also, by the above conditions, H is abelian.

Further, the Jacobson radical J = J(KG) is given by ∆(P )KG by Theorem 3.2.

4.2. G is a direct product of a p-group and an abelian p′-group. In this

subsection we prove the following lemma, which is the most crucial ingredient in

establishing Theorem 1.1.

Lemma 4.2. Let CharK = p > 17. Let G be a finite group. Suppose that

U = U(KG) satisfies U (4) = {1}. Then G = P ×H , where P is a p-group and H is

an abelian p′-group, where p′ is odd.

We now outline the strategy for the proof of the above lemma. First observe that

we may assume P to be elementary abelian by (iv) in Section 2.2. We know from

the last paragraph of Section 4.1 that G = P ⋊H , where P is a p-group and H is an

abelian p′-group. Also P D G. We need to show that (P,H) = {1}. We will show

that if (P,H) 6= {1}, then we can construct a nontrivial element in U (4). Clearly

it will be enough to show nontriviality modulo a suitable power of the Jacobson

radical J .

859



Construction of a nontrivial element in U (4) when (P,H) 6= {1}.

Note that by Theorem 3.3, (P,H) = (P,H,H) and (P,H) 6 P as P is normal

in G. If (P,H) = (P,H,H) 6= {1}, then there exists x ∈ (P,H) ⊂ G′ and h ∈ H

such that (x, h) 6= 1. In the rest of this section, we will show that (x, h) 6= 1 results

in a nontrivial element u4 in U
(4). Let xi denote

(
x, h, h, . . . , h

︸ ︷︷ ︸

i times

)
for i = 1, 2, . . . .

As x− 1 ∈ ∆(P ) is contained in the Jacobson radical J , u = 1+ h(x− 1) is a unit

in KG. We now proceed to form commutators of suitable elements in U and obtain

elements in U ′, U (2), U (3) and finally in U (4). We first consider u1 = (u, h) ∈ U ′ and

v1 = (u, x) ∈ U ′ and construct elements in U (2) using u1, v1, x and h. We also

keep track of their behaviour modulo a suitable power of the Jacobson radical J . We

begin by observing u1 and v1 modulo J
2:

(4.1) u1 = (u, h) = 1 + u−1h−1[u, h]

≡ 1 + (1− h(x− 1))((x − 1)h− h(x− 1)) (mod J2)

≡ 1 + (x− 1)h− h(x − 1) (mod J2)

= 1 + hx((x, h) − 1) (mod J2)

≡ 1 + h(x1 − 1) (mod J2).

As x− 1 ∈ J , we use identity (3.2) to obtain the following:

(4.2) v1 = (u, x) ≡ 1 + [u, x] (mod J3)

= 1 + (x + h(x− 1)x− x− xh(x − 1)) (mod J3)

= 1 + (hx− xh)(x − 1) (mod J3)

= 1 + hx(1 − (x, h))(x − 1) (mod J3)

≡ 1− h(x− 1)(x1 − 1) (mod J3).

Next we consider u2 = (u1, x) and v2 = (v1, x). As x ∈ (P,H) ⊂ G′ ⊂ U ′, u2 and v2

are in U (2). Their residual properties modulo J can be observed as follows.

u2 = (u1, x) ≡ 1 + [u1, x] (mod J3)(4.3)

= 1 + {x+ h(x1 − 1)x− x− xh(x1 − 1)

= 1 + (hx− xh)(x1 − 1) (mod J3)

= 1 + hx(1 − (x, h))(x1 − 1) (mod J3)

≡ 1− h(x1 − 1)2 (mod J3),
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v2 = (v1, x) ≡ 1 + [v1, x] (mod J4)(4.4)

= 1− {h(x− 1)(x1 − 1)x− xh(x− 1)(x1 − 1)

= 1 + (xh− hx)(x − 1)(x1 − 1) (mod J4)

≡ 1 + h(x1 − 1)2(x− 1) (mod J4).

Finally we obtain an element u3 = (u2, v2) in U
(3). We have

u3 = (u2, v2) ≡ 1 + [u2, v2] (mod J6)(4.5)

= 1+ {−h(x1 − 1)2h(x1 − 1)2(x− 1)

+ h(x1 − 1)2(x− 1)h(x1 − 1)2} (mod J6)

= 1 + h(x1 − 1)2{(x− 1)h

− h(x− 1)}(x1 − 1)2 (mod J6)

= 1 + h(x1 − 1)2hx(x1 − 1)3 (mod J6)

≡ 1 + h2(xh1 − 1)2(x1 − 1)3 (mod J6).

With u2 ∈ U (2) ⊆ U ′ and x ∈ U ′, we obtain w2 = (u2, x) ∈ (U ′, U ′) = U (2) and

v3 = (u2, w2) ∈ (U (2), U (2)) = U (3). Noting that x1 ≡ 1 (mod J), we examine w2

and v3 modulo powers of J :

w2 = (u2, x)(4.6)

≡ 1 + [1− h(x1 − 1)2, x] (mod J4)

= 1− hx(x1 − 1)2 + xh(x1 − 1)2 (mod J4)

≡ 1 + h(x1 − 1)3 (mod J4),

v3 = (u2, w2)(4.7)

≡ 1 + [1− h(x1 − 1)2, 1 + h(x1 − 1)3] (mod J6)

= 1 + h(x1 − 1)3h(x1 − 1)2 − h(x1 − 1)2h(x1 − 1)3 (mod J6)

= 1 + h(x1 − 1)2{(x1 − 1)h− h(x1 − 1)}(x1 − 1)2 (mod J6)

≡ 1 + h(x1 − 1)2h((x1, h)− 1)(x1 − 1)2 (mod J6)

= 1 + h2(xh1 − 1)2(x2 − 1)(x1 − 1)2 (mod J6).

From u3 ∈ U (3) ⊆ U (2) and u2 ∈ U (2), we obtain w3 = (u3, u2) ∈ (U (2), U (2)) = U (3)

and view it modulo J8.

w3 = (u3, u2)(4.8)

≡ 1 + [1 + h2(xh1 − 1)2(x1 − 1)3, 1− h(x1 − 1)2]

= 1 + h(x1 − 1)2h2(xh1 − 1)2(x1 − 1)3 − h2(xh1 − 1)2(x1 − 1)3h(x1 − 1)2

= {h2(xh1 − 1)2h(xh1 − 1)2(x1 − 1)− h2(xh1 − 1)2(x1 − 1)3h}(x1 − 1)2
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= 1 + {h3(xh
2

1 − 1)2(xh1 − 1)2(x1 − 1)− h3(xh
2

1 − 1)2(xh1 − 1)3}(x1 − 1)2

= 1 + h3(xh
2

1 − 1)2(xh1 − 1)2{x1 − xh1}(x1 − 1)2

= 1 + h3(xh
2

1 − 1)2(xh1 − 1)2x1(1 − (x1, h))(x1 − 1)2

≡ 1− h3(xh
2

1 − 1)2(xh1 − 1)2(x2 − 1)(x1 − 1)2.

Finally we construct u4 = (v3, w3) in U
(4) and examine it modulo J13. Note that

x2 ≡ 1 (mod J).

u4 = (v3, w3) ≡ 1 + [v3 − 1, w3 − 1](4.9)

≡ 1 + [h2(xh1 − 1)2(x1 − 1)2(x2 − 1),

− h3(xh
2

1 − 1)2(xh1 − 1)2(x1 − 1)2(x2 − 1)]

= 1− h2(xh1 − 1)2(x1 − 1)2(x2 − 1)h3(xh
2

1 − 1)2(xh1 − 1)2(x1 − 1)2(x2 − 1)

+ h3(xh
2

1 − 1)2(xh1 − 1)2(x1 − 1)2(x2 − 1)h2(xh1 − 1)2(x1 − 1)2(x2 − 1)

= 1− {h2(xh1 − 1)2(x1 − 1)2(x2 − 1)h3(xh
2

1 − 1)2

− h3(xh
2

1 − 1)2(xh1 − 1)2(x1 − 1)2(x2 − 1)h2}(xh1 − 1)2(x1 − 1)2(x2 − 1)

= 1− {h5(xh
4

1 − 1)2(xh
3

1 − 1)2(xh
3

2 − 1)(xh
2

1 − 1)2

− h5(xh
4

1 − 1)2(xh
3

1 − 1)2(xh
2

1 − 1)2(xh
2

2 − 1)}(xh1 − 1)2(x1 − 1)2(x2 − 1)

= 1− {h5(xh
4

1 − 1)2(xh
3

1 − 1)2(xh
2

1 − 1)2}(xh
3

2 − xh
2

2 )

× (xh1 − 1)2(x1 − 1)2(x2 − 1)

= 1− {h5(xh
4

1 − 1)2(xh
3

1 − 1)2(xh
2

1 − 1)2}h−2x2((x2, h)− 1)h2

× (xh1 − 1)2(x1 − 1)2(x2 − 1)

≡ 1− h5(xh
4

1 − 1)2(xh
3

1 − 1)2(xh
2

1 − 1)2(xh
2

3 − 1)(xh1 − 1)2(x1 − 1)2(x2 − 1).

As xh
j

1 is a conjugate of x1 and (x1 − 1) ∈ J − J2, it follows that (xh
j

1 − 1) ∈ J − J2.

Further, x2 is an element of order p in P as x2 = (x1, h) = (x, h, h) = 1 would

imply x1 = (x, h) = 1 by an obvious application of Theorem 3.3 with Q = 〈x〉 and

A = 〈h〉. Therefore, it follows that (x2 − 1) ∈ J − J2. By the same argument,

(x3 − 1) ∈ J − J2. Therefore the product on the right hand side in (4.9) belongs

to J12 − J13. Consequently by (4.9), u4 is nontrivial modulo J
13, which contradicts

our assumption that U (4) = {1}. Therefore, we cannot have (x, h) 6= 1 which we

have assumed for the construction of u4. It follows that H must act trivially on P .

Therefore, G must be a direct product of P and H and Lemma 4.2 follows.

Theorem 1.1 now follows, as G is a direct product of a p-group P and an abelian

group H , and P must be abelian too as explained in Result 2.1.
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5. When the derived length of U is smaller than ⌈log2(2p)⌉

Let us consider the following result by Balogh and Li (see [2], Lemma 2.3).

Result 5.1. Let G be a group with a derived subgroup G′ = 〈u|up
n

= 1〉, where

p is an odd prime, and let char(K) = p. Assume that the order of G/C, where

C = CG(G
′)=centraliser of G′ in G, is divisible by an odd prime q 6= p. Then the

derived length of U is greater than or equal to ⌈log2(2p
n)⌉.

Very simple consequences of the above result tell us about the commutativity of

the group G of odd order pm [(p,m) = 1] when the derived length of the unit group

U(KG) is small compared to the characteristic p of the field K. We can write the

following remark on its basis.

Remark 5.2. Let K be a field of characteristic p and let G be any group of odd

order pm where m is co-prime to p. If the derived length of U(KG) is strictly less

than ⌈log2(2p)⌉, then G must be abelian.

But the same statement can be proved also using our approach as described at

the beginning of Section 4.1. Let p be the characteristic of the field K and d the

derived length of the units U(KG). As discussed at the beginning of Section 4.1, we

can conclude that G has a normal p-Sylow subgroup P and G = P ⋊H , where H is

an abelian p′-subgroup of G.

Note that CG(G
′) is a normal subgroup of G since it contains G′.

P r o o f of Remark 5.2. Suppose G is of odd order pm where (m, p) = 1. Then

the p-Sylow subgroup P is cyclic of order p. We assume that the derived length d of

U(KG) satisfies d < ⌈log2(2p)⌉. We want to show that G = P×H , i.e., (P,H) = {1}.

If possible, let (P,H) 6= {1}. As P is normal in G, (P,H) is a subgroup of P and

hence (P,H) = P . Therefore, we have G′ = (P,H) = P .

We now apply the Result 5.1 to G and G′ = P . Let C be the centraliser of G′, i.e.,

C = {x ∈ G : xy = yx for all y ∈ G′}. Then h 6∈ C and hC is a nontrivial element

of G/C. Let l be the order of h, so l is coprime to p. Then hC is a nontrivial element

of order dividing l in G/C and a suitable power of hC gives an element of prime

order q in G/C. As (l, p) = 1 and the order of G is odd, q must be an odd prime

other than p. By Result 5.1, we can conclude that the derived length of U(KG) must

be at least ⌈log2(2p)⌉. But this contradicts our assumption that the derived length

of U(KG) is smaller than ⌈log2(2p)⌉. Hence, we cannot have (P,H) 6= {1} and the

proof of the remark is complete. �

Again, very simple consequences of Result 5.1 give the following remark. But yet

again it can be proved using our techniques. We denote the Frattini subgroup of

a group G by Φ(G), which is the intersection of all maximal subgroups of G. It
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is well-known that Φ(G) is a characteristic subgroup of G. We can easily extend

Remark 5.2 to any group G of odd order pnm with (p,m) = 1 provided the quotient

of its p-Sylow subgroup by the Frattini subgroup is cyclic.

Remark 5.3. Let K be a field of characteristic p and G any group of odd order

pnm where m is co-prime to p. Let P be a p-Sylow subgroup and Φ(P ) the Frattini

subgroup of P . If the quotient P/Φ(P ) is cyclic and the derived length of U(KG) is

strictly less than ⌈log2(2p)⌉, then G must be abelian.

P r o o f of Remark 5.3. Assume that G is of odd order pnm, and the derived

length d of U(KG) satisfies d < ⌈log2(2p)⌉. As before, the p-Sylow subgroup P of G

is normal and G = P ⋊H where H is an abelian p′-subgroup of G. By part (iv) of

Section 2.2, it is enough to show that the induced conjugacy action ofH on the group

P/Φ(P ) is trivial. Now P/Φ(P ) is an elementary abelian group which moreover is

assumed to be cyclic. Therefore P/Φ(P ) is cyclic of order p and by Theorem 5.2,

we know that the conjugacy action of H on P/Φ(P ) has to be trivial. Hence the

conjugacy action of H on P itself is trivial and G must be abelian. �

We conclude by observing that a group G of odd order with a cyclic p-Sylow

subgroup must be abelian if the derived length of U(KG) is smaller than ⌈log2(2p)⌉

where p is the characteristic of the field K.
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