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Abstract. A topological space X is said to be star Lindelöf if for any open cover U of X
there is a Lindelöf subspace A ⊂ X such that St(A,U) = X. The “extent” e(X) of X is the
supremum of the cardinalities of closed discrete subsets of X. We prove that under V = L

every star Lindelöf, first countable and normal space must have countable extent. We also
obtain an example under MA+¬CH, which shows that a star Lindelöf, first countable and
normal space may not have countable extent.
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1. Introduction

Recently, the authors in [9], Theorem 2.9 proved that if X is a first countable star

Lindelöf normal space and has a Gδ-diagonal, then the cardinality of X does not

exceed c. This result suggests the following question.

Q u e s t i o n 1.1 (see Question 2.10 of [9]). Let X be a first countable star Lin-

delöf normal space. Does X have to have countable extent?

It is well known that the cardinality of a space which has countable extent and

a Gδ-diagonal is at most c (see [4]). Therefore, a positive answer to Question 1.1

would imply a trivial proof of the above result.

In this paper, we prove that under V = L every star Lindelöf, first countable

and normal space must have countable extent. We also obtain an example under
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MA+ ¬CH, which shows that a star Lindelöf, first countable and normal space may

not have countable extent. This gives a complete answer to Question 1.1.

2. Notation and terminology

All the spaces are assumed to be Hausdorff if not stated otherwise. We write ω

for the first infinite cardinal and c for the cardinality of the continuum.

If A is a subset of X and U is a family of subsets of X , then St(A,U) =
⋃
{U ∈ U :

U ∩ A 6= ∅}. If A = {x} for some x ∈ X , then we write, for simplicity, St(x,U)

instead of St({x},U).

Definition 2.1 ([8]). Let P be a topological property. A topological space X

is said to be star P , if for any open cover U of X there is a subset A ⊂ X with

property P such that St(A,U) = X . The set A will be called a star kernel of the

cover U .

Therefore, a topological space X is said to be star Lindelöf if for any open cover U

of X there is a Lindelöf subspace A ⊂ X such that St(A,U) = X .

Definition 2.2 ([5]). The extent e(X) of X is the supremum of the cardinalities

of closed discrete subsets of X .

Definition 2.3 ([5]). The character of X is defined as:

χ(X) = sup{χ(p,X) : p ∈ X}+ ω,

where χ(p,X) = min{|B| : B is a local base for p}.

Definition 2.4 ([6]). An uncountable subset X of real line R is called a Q-set

if every subset of X is a Gδ-set in X .

It should be pointed out that Q-set exists under certain set-theoretic assump-

tion such as Martin Axiom and the negation of the Continuum Hypothesis (see [6],

Theorem 4.2).

Definition 2.5 ([1]). A topological space X is collectionwise Hausdorff if any

closed discrete set S ⊂ X has a disjoint open expansion.

All notation and terminology not explained here is given in [2].
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3. Results

We begin with an easy lemma, which will be useful later.

Lemma 3.1. If S is a closed discrete set in a normal space X and U = {U(x) :

x ∈ S} is a disjoint open expansion of S, then there is a discrete open expansion

V = {V (x) : x ∈ S} of S with
⋃
V ⊂

⋃
U .

P r o o f. By normality there exists an open setW in X such that S ⊂ W ⊂ W ⊂⋃
U . For all x ∈ S let V (x) = U(x)∩W . It is easily verified that V = {V (x) : x ∈ S}

is a discrete open collection of cardinality |S| and satisfies
⋃
V ⊂

⋃
U . �

Theorem 3.2. Assuming V = L, if X is a star Lindelöf and normal space with

χ(X) 6 c, then X has countable extent.

P r o o f. Assume the contrary. It follows that there exists an uncountable closed

and discrete subset S of X . Fleissner in [3] proved that under V = L, all normal

spaces with character 6 c are collectionwise Hausdorff, so S has a disjoint open

expansion U = {U(x) : x ∈ S}. We apply Lemma 3.1 to conclude that there is a

discrete open expansion V = {V (x) : x ∈ S} of S satisfying
⋃
V ⊂

⋃
U .

LetW = V∪{X\S}. Obviously,W is an open cover ofX . Since X is star Lindelöf,

it follows that there exists a Lindelöf subset Y of X such that St(Y,W) = X . For

each x ∈ S, clearly Y ∩ V (x) 6= ∅; pick ξ(x) ∈ Y ∩ V (x) and let A = {ξ(x) : x ∈ S}.

Since Y is Lindelöf, there exists a limit point ξ for A. Therefore

ξ ∈ A ⊂
⋃

V ⊂
⋃

U .

It follows that there is U(x) for some x ∈ S which contains ξ. This implies that

infinitely many points of A are in U(x), which is a contradiction. This completes the

proof. �

Clearly, every first countable space X satisfies χ(X) = ω < c. So the following

result is an immediate consequence of Theorem 3.2.

Corollary 3.3. Assuming V = L, if X is a star Lindelöf, first countable and

normal space, then X has countable extent.

We present an example below, in which the Q-set is used.

E x am p l e 3.4 ([7], Example F). Assume MA+ ¬CH. There exists a star Lin-

delöf, first countable and normal space, which has an uncountable closed and discrete

subset.
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P r o o f. Take an uncountable Q-set A in R. Let L be the closed upper half-

plane, L1 = {(x, 0): x ∈ R}. Let X = {(x, 0): x ∈ A} ∪ (L \ L1). Define a basis for

a topology on X as follows. For every p ∈ X and ε > 0, let B(p, ε) be the set of all

points of X inside the circle of radius ε and the center at p, and define

U(p, ε) = B((x, ε), ε) ∪ {p} for p ∈ A

and

U(p, ε) = B(p, ε) for p ∈ X \A.

By a quick observation, we conclude that X is first countable. Moreover, {(x, y) :

x, y ∈ Q+} ⊂ X (where Q is the set of all rational numbers) witnesses that X is

separable, and it follows that X is star countable, and hence star Lindelöf. It has

been proved in [7], Example F, that X is normal. Finally, it is not difficult to see that

{{(x, 0)} : x ∈ A} is an uncountable closed and discrete subset of X . This completes

the proof. �
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