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Abstract. Sharp bounds on some distance-based graph invariants of n-vertex k-trees are
established in a unified approach, which may be viewed as the weighted Wiener index or
weighted Harary index. The main techniques used in this paper are graph transformations
and mathematical induction. Our results demonstrate that among k-trees with n vertices
the extremal graphs with the maximal and the second maximal reciprocal sum-degree dis-
tance are coincident with graphs having the maximal and the second maximal reciprocal
product-degree distance (and similarly, the extremal graphs with the minimal and the sec-
ond minimal degree distance are coincident with graphs having the minimal and the second
minimal eccentricity distance sum).
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1. Introduction and definitions

In this paper, we consider simple and finite graphs only and assume that all graphs

are connected, and refer to Bondy and Murty [7] for notation and terminologies used

but not defined here.

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. Let dG(v)

denote the degree of a vertex v in G and NG(v) be the set of vertices adjacent to v

in G. We denote by NG[v] the set NG(v)∪{v} and by |U | the cardinality of a set U .

Let G − v, and G − uv denote the graph obtained from G by deleting the vertex
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v ∈ VG, and the edge uv ∈ EG, respectively (this notation is naturally extended if

more than one vertex or edge is deleted). Similarly, G + uv is obtained from G by

adding the edge uv 6∈ EG. The distance dG(u, v) between two vertices u, v of G is

the length of the shortest u-v path in G. The eccentricity εG(v) of the vertex v is

the distance between v and the furthest vertex from v. The diameter of G, diam(G),

is defined as the maximum of the eccentricities of the vertices of G. For a vertex

subset S of VG we denote by G[S] the subgraph induced by S. Denote by Kn the

complete graph with n vertices. The join G1 ∨ G2 of two graphs G1 and G2 is

obtained by adding an edge from each vertex of G1 to each vertex in G2.

The study of distances between vertices of a tree was probably started from the

classic Wiener index (see [39]), one of the most well-used chemical indices that cor-

relate a chemical compounds structure (the “molecular graph”) with the compounds

physico-chemical properties. The Wiener indexW (G), introduced in 1947, is defined

as the sum of distances between all pairs of vertices, i.e.,

W (G) =
∑

{u,v}⊆VG

dG(u, v).

For more results on Wiener index one may be referred to those in [10], [15], [16] and

the references cited therein.

A natural sibling concept, the Harary index H(G), was defined as the sum of the

reciprocal distances between all pairs of vertices, i.e.,

H(G) =
∑

{u,v}⊆VG

1

dG(u, v)
.

This graph invariant was introduced, independently, by Ivanciuc et al. [21] and by

Plavšić et al. [34] in 1993. For more results on Harary index one may be referred

to [5], [19], [24] and the references cited therein.

The motivation for studying the quantity that we intend to call weighted Wiener

index and weighted Harary index of a graph comes from the following observation.

A weighted graph (G,w) is a graph G = (VG, EG) together with the weight function

w : VG → N+. Let ⊕ denote one of the four operations +,−,×, /. The weighted

Wiener indexW (G,w) and the weighted Harary index H(G,w) of (G,w) are defined,

respectively, as

(1.1) W (G,w) =
∑

{u,v}⊆VG

(w(u) ⊕ w(v))dG(u, v)

and

(1.2) H(G,w) =
∑

{u,v}⊆VG

w(u) ⊕ w(v)

dG(u, v)
.
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Clearly, if w ≡ 1 and ⊕ denotes operation ×, then W (G,w) = W (G) and H(G,w) =

H(G).

If ⊕ denotes operation ×, then (1.1) is equivalent to

W (G,w) =
∑

{u,v}⊆VG

(w(u)w(v))dG(u, v),

which is just the Wiener number of vertex-weighted graphs ; see [22], [23].

If ⊕ denotes operation + and w(·) ≡ dG(·), then (1.1) is equivalent to

DD(G) =
∑

{u,v}⊆VG

(dG(u) + dG(v))dG(u, v) =
∑

v∈VG

dG(v)DG(v),

which is just the degree distance or Schultz molecular topological index, and where

DG(v) =
∑

u∈VG

dG(u, v). It was proposed by Dobrynin and Kochetova [11] and Gut-

man [15], independently. For more information on this graph invariant one may be

referred to [1], [8], [32], [37] and their references.

If ⊕ denotes operation + and w(·) ≡ εG(·), then (1.1) is equivalent to

ξd(G) =
∑

{u,v}⊆VG

(εG(u) + εG(v))dG(u, v) =
∑

v∈VG

εG(v)DG(v),

which is just the eccentricity distance sum (EDS). This novel graph invariant was

introduced by Gupta, Singh and Madan in [14]. Recently, more and more researchers

focused on this novel invariant; see [4], [13], [18], [27], [28], [30], [31].

Similarly, if ⊕ denotes operation+ and× and w(·) ≡ dG(·), then (1.2) is equivalent

to

HA(G) =
∑

{u,v}⊆VG

(dG(u) + dG(v))
1

dG(u, v)

and

HM (G) =
∑

{u,v}⊆VG

(dG(u)dG(v))
1

dG(u, v)
,

which is just the reciprocal sum-degree distance and reciprocal product-degree dis-

tance, respectively. For the research development on HA(G) and HM (G), one may

be referred to [2], [9], [20], [25], [36].

The notion of the n-vertex k-tree T k
n for k > 1 was first introduced by Beineke

and Pippert [6] in 1969 (its definition is given in the following). The k-tree has been

considered fully in mathematical literature, one may be referred to [3], [29], [33],

[35], [42] and their references. In particular, Estes and Wei [12] determined sharp

bounds on the sum of squares of the vertex degrees and the sum of the products of
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degrees of pairs of adjacent vertices of n vertex k-trees. To our best knowledge, the

weighted Wiener index and the weighted Harary index of k-trees have not been, so

far, considered in the mathematical literature.

In this paper, we consider the extremal graphs among k-trees with respect to

W (G), H(G), DD(G), ξd(G), HA(G), and HM (G). It is surprising to see that the

corresponding extremal graphs are coincident according to the distance-based graph

invariants such as DD(G), ξd(G), HA(G), and HM (G).

The notion of the k-tree T k
n for k > 1 was first introduced by Beineke and Pip-

pert [6] in 1969, and is defined recursively as (see also in [12]):

(i) The smallest k-tree is the k-clique Kk.

(ii) If G is a k-tree with n vertices and a new vertex v of degree k is added and

joined to the vertices of a k-clique in G, then the larger graph is a k-tree with

n+ 1 vertices.

For convenience, let T k
n denote a k-tree on n vertices, and let T k

n be the set of

all k-trees on n vertices in the whole context. In particular, we consider several

particular classes of k-trees.

Definition 1.1 ([12]). The n-vertex k-path P k
n is a graph with the vertex set

{v1, v2, . . . , vn}, where G[{v1, v2, . . . , vk}] ∼= Kk. For k + 1 6 i 6 n, the vertex vi is

adjacent to vertices {vi−1, vi−2, . . . , vi−k}.

It is known [12] that a chordal graphG on at least two vertices contains a simplicial

vertex u, a vertex whose neighborhood induces a clique. Let G = G0, Gi = Gi−1−ui

for i > 1. If each ui is a simplicial vertex of Gi−1, then {u1, u2, . . . , un} is called a

simplicial elimination ordering of the n-vertex graph G. In particular, if G is a

k-tree, then let S1(G) denote the set of all simplicial vertices of G.

Definition 1.2 ([12]). The n-vertex k-star Sk,n−k (see Fig. 1) is a graph with the

vertex set {v1, v2, . . . , vn}, where G[{v1, v2, . . . , vk}] ∼= Kk and N(vi) = {v1, v2, . . . ,

vk} for k + 1 6 i 6 n. Hence, vi ∈ S1(T
k
n ) for k + 1 6 i 6 n.

Moreover, let G[{v1, v2, . . . , vk}] denote the initial k-clique, then just by the defi-

nition of k-tree we have |ETk
n
| = |EKk

|+ k(n− k) = 1
2k(2n− k − 1) and dTk

n
(v) > k

for any v ∈ VTk
n
. Similarly, we can easily get the following facts.

Fact 1.3. Let T k
n be a k-tree on n > k + 2 vertices and S1(T

k
n ) be the set of all

k-simplicial vertices of T k
n . Then dTk

n
(v) = k for any v ∈ S1(T

k
n ) and T k

n − v is also

a k-tree.

Fact 1.4. For the k-star on n vertices the degree of a vertex vi can be characterized

as: d(vi) = n− 1 for 1 6 i 6 k; d(vi) = k for k + 1 6 i 6 n.
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G∗

n = Sk,n−k − u1vk + u1u2

Figure 1. Graphs Sk,n−k and G∗
n.

Fact 1.5. For the k-path on n vertices the degree of a vertex vi can be charac-

terized as:

(i) If k + 2 6 n 6 2k, then d(vi) = k + i − 1 for 1 6 i 6 n− k − 1; d(vi) = n− 1

for n− k 6 i 6 k + 1; d(vi) = k + n− i for k + 2 6 i 6 n.

(ii) If n > 2k+1, then d(vi) = k+i−1 for 1 6 i 6 k; d(vi) = 2k for k+1 6 i 6 n−k;

d(vi) = k + n− i for n− k + 1 6 i 6 n.

For the n-vertex k-tree T k
n , if k = 1, then it is just a tree and the extremal

properties of W (G), H(G), DD(G), ξd(G), HA(G), and HM (G) of n-vertex tree can

be referred to in [2], [9], [10], [12], [26], [40], [41]. On the other hand, T k
n

∼= Kn

for k 6 n 6 k + 1 and T k
n
∼= P k

n
∼= Sk,n−k for n = k + 2. So we consider T k

n with

n > k + 3 and k > 2 in the whole context.

Lemma 1.6 ([38]). Let T k
n be a k-tree on n > k+1 vertices. Then there exist at

least two vertices of degree k in VTk
n
.

Lemma 1.7. Let T k
n be a k-tree on n vertices and S1(T

k
n ) be the set of all

k-simplicial vertices of T k
n .

(i) If n > k+2, then |S1(T
k
n )| > 2 and uv 6∈ ETk

n
for any vertex pair u, v ∈ S1(T

k
n ).

(ii) If there exist two vertices u, v ∈ S1(T
k
n ) such that uv ∈ ETk

n
, then n = k + 1

and T k
n
∼= Kk+1.

P r o o f. (i) By Lemma 1.6, if n > k + 2, then there exist at least two vertices,

say vi and vj , in VTk
n
such that dTk

n
(vi) = dTk

n
(vj) = k. By the definition of k-trees,

it is routine to check that vi, vj ∈ S1(T
k
n ). So |S1(T

k
n )| > 2 holds. Now we suppose
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u, v ∈ S1(T
k
n ) and uv ∈ ETk

n
. Then dTk

n
(u) = dTk

n
(v) = k by the definition of S1(T

k
n ).

Note that uv ∈ ETk
n
. Hence, we can easily get dTk

n
−v(u) = k − 1, a contradiction to

the fact that T k
n − v is also a k-tree. So uv 6∈ ETk

n
for any vertex pair u, v ∈ S1(T

k
n ),

and (i) holds.

(ii) Follows directly from (i). �

2. The lower bound on the Wiener index and the upper bound

on the Harary index of k-trees

In this section, we determine the sharp lower and sharp upper bound on the Wiener

index and Harary index, respectively, among k-trees with n vertices.

For any connected graph G on n vertices let σi(G) be the number of vertex pairs

(u, v) in G with dG(u, v) = i, 1 6 i 6 diam(G) 6 n− 1.

Theorem 2.1. Let T k
n be a k-tree on n > k + 3 vertices. Then

W (T k
n ) > n2 − (k + 1)n+

k2

2
+

k

2
.

The equality holds if and only if diam(T k
n ) = 2.

P r o o f. By the definition of the Wiener index, we have

W (T k
n ) =

∑

{u,v}⊆V
Tk
n

dTk
n
(u, v) =

diam(Tk

n
)

∑

i=1

iσi(T
k
n )

> σ1(T
k
n ) + 2

diam(Tk

n
)

∑

i=2

σi(T
k
n )(2.1)

= |ETk
n
|+ 2

(n(n− 1)

2
− |ETk

n
|
)

= n(n− 1)− |ETk
n
|

= n2 − (k + 1)n+
k2

2
+

k

2
.

Obviously, the equality in (2.1) holds if and only if diam(T k
n ) = 2. This completes

the proof. �

Theorem 2.2. Let T k
n be a k-tree on n > k + 3 vertices. Then

H(T k
n ) 6

n2

4
+
(k

2
−

1

4

)

n−
k2

4
−

k

4

with equality if and only if diam(T k
n ) = 2.
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P r o o f. By the definition of the Harary index, we have

H(T k
n ) =

∑

{u,v}⊆V
Tk
n

1

dTk
n
(u, v)

=

diam(Tk

n
)

∑

i=1

1

i
σi(T

k
n )

6 σ1(T
k
n ) +

1

2

diam(Tk

n
)

∑

i=2

σi(T
k
n )(2.2)

= |ETk
n
|+

1

2

(n(n− 1)

2
− |ETk

n
|
)

=
1

4
n(n− 1) +

1

2
|ETk

n
|

=
n2

4
+
(k

2
−

1

4

)

n−
k2

4
−

k

4
.

Obviously, the equality in (2.2) holds if and only if diam(T k
n ) = 2. This completes

the proof. �

3. The maximal and the second maximal HA and HM of k-trees

In this section, the maximal and the second maximal values of the reciprocal sum-

degree distance and the reciprocal product-degree distance of k-trees are determined.

The corresponding extremal k-trees are also identified.

The first Zagreb index of a graph G was introduced in 1972 in the report of

Gutman and Trinajstić (see [17]) on the topological basis of the π-electron energy,

and was denoted by

(3.1) M1(G) =
∑

u∈VG

d2G(u) =
∑

uv∈EG

(dG(u) + dG(v)).

Comparing with the reciprocal sum-degree distance of a graph G, we define the

following invariant, the reciprocal sum-degree codistance, for G as

(3.2) HA(G) =
∑

uv 6∈EG

(dG(u) + dG(v))
1

dG(u, v)
.

Let G1 = G be an n-vertex k-tree. Recall that S1(G1) is the set of all simplicial

vertices of G1. Then for i > 2 let Gi = Gi−1 −S1(Gi−1) and Si(G) denote the set of

all simplicial vertices of Gi. Obviously, |S1(Sk,n−k)| = n− k and S2(T
k
n ) = ∅ if and

only if T k
n
∼= Sk,n−k.

Lemma 3.1. Let T k
n be in T k

n \{Sk,n−k} with n > k+3 vertices. Let u ∈ S2(T
k
n )

with NTk
n
(u) ∩ S1(T

k
n ) = {v1, v2, . . . , vs} where s > 1. Then there exists a vertex

v ∈ NTk
n
(u) \ {v1, v2, . . . , vs} of degree at least k in T k

n − {v1, v2, . . . , vs} such that

vvi 6∈ ETk
n
for any vi ∈ {v1, v2, . . . , vs}.
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P r o o f. Let G′ = T k
n − {v1, v2, . . . , vs} and X = NTk

n
(u) \ {v1, v2, . . . , vs}.

Then we obtain that dG′(u) = |X | = k and T k
n [X ] is a k-clique by u ∈ S2(T

k
n ).

By Fact 1.3, Lemma 1.7 and the definition of k-trees, dG′(v) > k for all v ∈ X and

NTk
n
(vi) induces a k-clique in T

k
n . Combining this with vi ∈ NTk

n
(u)∩S1(T

k
n ), we have

NTk
n
(vi) ⊆ X ∪{u} for any vi ∈ {v1, v2, . . . , vs}. Note that {v1, v2, . . . , vs} ⊆ S1(T

k
n ).

Hence, by Lemma 1.7, vivj 6∈ ETk
n
for 1 6 i < j 6 n. In view of the fact that

|NTk
n
(vi)| = k, |X ∪ {u}| = k + 1, there exists a vertex v ∈ X such that vvi 6∈ ETk

n

for any vertex vi ∈ {v1, v2, . . . , vs}.

This completes the proof. �

Lemma 3.2. Let T k
n be a k-tree on n > k + 3 vertices and choose a vertex

v ∈ S1(T
k
n ) with NTk

n
(v) = {u1, u2, . . . , uk} such that

k
∑

i=1

dTk
n
(ui) is as large as

possible. Then

(i)
k
∑

i=1

dTk
n
(ui) 6 k(n− 1) with equality if and only if T k

n
∼= Sk,n−k;

(ii)
k
∑

i=1

dTk
n
(ui) 6 kn − k − 1 if T k

n ≇ Sk,n−k, and the equality holds if and only if

T k
n
∼= G∗

n as depicted in Fig. 1.

P r o o f. (i) Note that dTk
n
(u) 6 n− 1 for any vertex u ∈ VTk

n
. Hence, (i) follows

immediately.

(ii) As T k
n ≇ Sk,n−k, clearly there exists a vertex, say u1, in {u1, u2, . . . , uk} and

a vertex v0 ∈ VTk
n
\ NTk

n
[v] such that u1v0 6∈ ETk

n
. Hence, dTk

n
(u1) 6 n − 2 and

dTk
n
(ui) 6 n− 1 for 2 6 i 6 k. Then

k
∑

i=1

dTk
n
(ui) = dTk

n
(u1) +

k
∑

i=2

dTk
n
(ui)

6 n− 2 + (k − 1)(n− 1)(3.3)

= kn− k − 1.

The equality in (3.3) holds if and only if there is just one vertex ui in {u1, u2, . . . , uk}

and one vertex v0 ∈ VTk
n
\NTk

n
[v] such that uiv0 6∈ ETk

n
, i.e., G ∼= G∗

n. Therefore (ii)

holds. �

Theorem 3.3. Let T k
n be a k-tree on n > k + 3 vertices. Then

HA(T
k
n ) 6

3

2
kn2 −

5

2
kn−

k3

2
+

k2

2
+ k

and the equality holds if and only if T k
n
∼= Sk,n−k.
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P r o o f. We prove our result by induction on n. If n = k + 3, then T k
n =

{P k
k+3, Sk,3}. By simple calculations we have

HA(P
k
k+3) = k3 + 7k2 + 7k − 1 and HA(Sk,3) = k3 + 7k2 + 7k.

Hence, our result holds for n = k + 3.

Suppose our result is true for T k
m with k + 3 6 m < n, and consider T k

n . Choose

a vertex v ∈ S1(T
k
n ) with NTk

n
(v) = {u1, u2, . . . , uk} such that

k
∑

i=1

dTk
n
(ui) is as large

as possible. For simplicity, let G = T k
n and G

′ = T k
n − v. By the definition of k-trees

and v ∈ S1(G), we get that G[{v, u1, u2, . . . , uk}] ∼= Kk+1 and G′ is also a k-tree. It

is routine to check that

HA(G) =
∑

{u,v}⊆VG

(dG(u) + dG(v))
1

dG(u, v)

=
∑

uv∈EG

(dG(u) + dG(v)) +
∑

uv 6∈EG

(dG(u) + dG(v))
1

dG(u, v)
= M1(G) +HA(G),

where M1(G) and HA(G) are defined in (3.1) and (3.2), respectively.

Note that

M1(G) = M1(G
′) +

k
∑

i=1

(dG(v) + dG(ui)) +

k
∑

i=1

(dG(ui)− 1)

= M1(G
′) + k2 − k + 2

k
∑

i=1

dG(ui)

and

HA(G) = HA(G
′) +

∑

u∈VG\N [v]

dG(u) + k

dG(u, v)

+
∑

u∈VG\N [u1]

1

dG(u, u1)
+ . . .+

∑

u∈VG\N [uk]

1

dG(u, uk)
.

Hence, combining this with the fact that dG(u, v) > 2 for any u ∈ VG \ N [v] and

dG(u, ui) > 2 for any u ∈ VG \N [ui] yields

HA(G)−HA(G
′) = (M1(G) +HA(G)) − (M1(G

′) +HA(G
′))

= k2 − k + 2

k
∑

i=1

dG(ui) +
∑

u∈VG\N [v]

dG(u) + k

dG(u, v)

+
∑

u∈VG\N [u1]

1

dG(u, u1)
+ . . .+

∑

u∈VG\N [uk]

1

dG(u, uk)
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6 k2 − k + 2
k
∑

i=1

dG(ui) +
1

2

∑

u∈VG\N [v]

dG(u)(3.4)

+
k

2
(n− k − 1) +

k

2
(n− 1)−

1

2

k
∑

i=1

dG(ui)

=
k

2
(2n+ k − 4) +

k
∑

i=1

dG(ui) +
1

2

( k
∑

i=1

dG(ui) +
∑

u∈VG\N [v]

dG(u)

)

=
k

2
(2n+ k − 4) +

k
∑

i=1

dG(ui) +
1

2
(2|EG| − k) = k(2n− 3) +

k
∑

i=1

dG(ui)

6 k(2n− 3) + k(n− 1)(3.5)

= k(3n− 4).

The equality in (3.4) holds if and only if dG(u, v) = 2 for any u ∈ VG \ N [v] and

dG(u, ui) = 2 for any u ∈ VG \ N [ui], whereas the equality in (3.5) holds if and

only if T k
n
∼= Sk,n−k by Lemma 3.2 (i). Based on the definition of k-trees we have

G ∼= Sk,n−k. Therefore

HA(G) 6 HA(G
′) + k(3n− 4)(3.6)

6 k
(3

2
(n− 1)2 −

5

2
(n− 1)−

k2

2
+

k

2
+ 1

)

+ k(3n− 4)(3.7)

= k
(3

2
n2 −

5

2
n−

k2

2
+

k

2
+ 1

)

.

The equality in (3.6) holds if and only if equalities in (3.4) and (3.5) hold, i.e.,

G ∼= Sk,n−k. The inequality in (3.7) holds by induction and the equality in (3.7) holds

if and only if G′ ∼= Sk,n−k−1. By the definition of k-trees, we have G
′ ∼= Sk,n−k−1

when G ∼= Sk,n−k holds. Hence, our result holds.

This completes the proof. �

Theorem 3.4. Let T k
n be in T k

n \ {Sk,n−k} with n > k + 3. Then

HA(T
k
n ) 6

3

2
kn2 −

5

2
kn− n−

k3

2
+

k2

2
+ 2k + 2

and the equality holds if and only if T k
n
∼= G∗

n, where G
∗
n is depicted in Fig. 1.

P r o o f. Choose a vertex v ∈ S1(T
k
n ) with NTk

n
(v) = {u1, u2, . . . , uk} such that

k
∑

i=1

dTk
n
(ui) is as large as possible. Then T k

n − v is also a k-tree by Fact 1.3. If

T k
n − v ∼= Sk,n−k−1, combining this with T

k
n ≇ Sk,n−k, we can easily get T

k
n
∼= G∗

n by
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the definition of T k
n , our theorem holds. Otherwise, we consider T

k
n − v ≇ Sk,n−k−1.

We will show our result by induction on n.

If n = k + 3, then T k
n = {P k

k+3} = {G∗
k+3} since T k

n ≇ Sk,n−k. By simple

calculations, HA(P
k
k+3) = k3 + 7k2 + 7k − 1, our result holds for n = k + 3.

Suppose that our result is true for T k
m for k + 3 6 m < n, and consider T k

n . For

simplicity, let G = T k
n and G′ = T k

n − v. Combining this with Lemma 3.2 (ii) and

the proof of Theorem 3.3, we have

HA(G) −HA(G
′) 6 k(2n− 3) +

k
∑

i=1

dG(ui)(3.8)

6 k(2n− 3) + kn− k − 1(3.9)

= 3kn− 4k − 1.

The equality in (3.8) holds if and only if dG(u, v) = 2 for any vertex u ∈ VG \N [v]

and dG(u, ui) = 2 for any vertex u ∈ VG \N [ui], whereas the equality in (3.9) holds

if and only if G ∼= G∗
n by Lemma 3.2 (ii). Therefore

HA(G) 6 HA(G
′) + 3kn− 4k − 1(3.10)

6 HA(G
∗
n−1) + 3kn− 4k − 1(3.11)

=
3

2
k(n− 1)2 −

5

2
k(n− 1)− (n− 1)−

k3

2
+

k2

2
+ 2k + 2 + 3kn− 4k − 1

=
3

2
kn2 −

5

2
kn− n−

k3

2
+

k2

2
+ 2k + 2.

The equality in (3.10) holds if and only if the equalities in (3.8) and (3.9) hold,

whereas the equality in (3.11) holds if and only if G′ ∼= G∗
n−1. Hence, G

∼= G∗
n, our

result holds.

This completes the proof. �

Theorem 3.5. Let T k
n be a k-tree on n > k + 3 vertices. Then

HM (T k
n ) 6

(7k2

4
−

k

2

)

n2 −
(3k3

2
+

9k2

4
− k

)

n+
k4

4
+

5k3

4
+

k2

2
−

k

2

and the equality holds if and only if T k
n
∼= Sk,n−k.

P r o o f. By direct computation, we get

HM (Sk,n−k) =
(7k2

4
−

k

2

)

n2 −
(3k3

2
+

9k2

4
− k

)

n+
k4

4
+

5k3

4
+

k2

2
−

k

2
.
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In order to complete the proof, it suffices to show that for any T k
n ∈ T k

n \{Sk,n−k}

there exists an n-vertex k-tree, say G∗, such that HM (T k
n ) < HM (G∗).

For simplicity, we denote G = T k
n in T k

n \ {Sk,n−k}. Let u ∈ S2(G) and NG(u) ∩

S1 = {v1, v2, . . . , vs} with s > 1. Let G′ = G − {v1, v2, . . . , vs} and X = NG(u) −

{v1, v2, . . . , vs}. Based on Lemma 3.1, we may choose a vertex, say v1, in NG(u) ∩

S1 = {v1, v2, . . . , vs} such that there exists a vertex v ∈ X satisfying dG′(v) > k and

vv1 /∈ EG. We consider the following two possible cases.

Case 1. dG′(v) = k. In this case, v ∈ S2(G). Combining this with uv ∈ E(G′), we

obtain that G′ is just a (k+ 1)-clique by Lemma 1.7. We consider the following two

possible subcases.

Subcase 1.1. k = 2. In this subcase, dG′(v) = dG′(u) = 2. Set NG′(u)\{v} = {x}.

Note that G ≇ Sk,n−k. Hence, assume without loss of generality that xvi ∈ EG,

vvi 6∈ EG for 1 6 i 6 t < s and xvi 6∈ EG, vvi ∈ EG for t + 1 6 i 6 s. Construct a

new graph G∗ = (VG∗ , EG∗) with

VG∗ = VG, EG∗ = EG − {xv1, xv2, . . . , xvt}+ {vv1, vv2, . . . , vvt}.

Then dG∗(x) = dG(x) − t, dG∗(v) = dG(v) + t and dG∗(y) = dG(y) for any ver-

tex y ∈ VG \ {x, v}. On the other hand, dG(vi, x) = dG∗(vi, v) = 1, dG(vi, v) =

dG∗(vi, x) = 2 for 1 6 i 6 t and dG(z, w) = dG∗(z, w) for any other vertex pair. Obvi-

ously, G∗ is also an n-vertex k-tree and combining this with the fact that vi ∈ S1(G),

dG(vi) = 2 for 1 6 i 6 s, we have

HM (G∗)−HM (G)

=
t

∑

i=1

(dG∗(vi)dG∗(x)

dG∗(vi, x)
−

dG(vi)dG(x)

dG(vi, x)
+

dG∗(vi)dG∗(v)

dG∗(vi, v)
−

dG(vi)dG(v)

dG(vi, v)

)

+

s
∑

i=t+1

(dG∗(vi)dG∗(x)

dG∗(vi, x)
−

dG(vi)dG(x)

dG(vi, x)
+

dG∗(vi)dG∗(v)

dG∗(vi, v)
−

dG(vi)dG(v)

dG(vi, v)

)

+
dG∗(u)dG∗(x)

dG∗(u, x)
+

dG∗(u)dG∗(v)

dG∗(u, v)
+

dG∗(x)dG∗(v)

dG∗(x, v)

−
dG(u)dG(x)

dG(u, x)
−

dG(u)dG(v)

dG(u, v)
−

dG(x)dG(v)

dG(x, v)

= (tdG(x) − tdG(v)− t2) +

t
∑

i=1

dG(vi)

2
(−dG(x) + dG(v) + t) +

s
∑

i=t+1

t

2
dG(vi)

= t(dG(x) − dG(v)− t)−
t

∑

i=1

(dG(x)− dG(v)− t) +

s
∑

i=t+1

t = t(s− t).

Note that 1 6 t < s. Hence, HM (G∗) −HM (G) > 0. That is to say, we have found

the k-tree G∗ satisfying HM (G∗) > HM (G) in this subcase, as desired.
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Subcase 1.2. k > 3. Let x ∈ X be a vertex such that dG(x) = min
v∈X

dG(v). If

vix 6∈ EG for any i = 1, 2, . . . , s, then NG(vi) = NG(x) = (X \ {x}) ∪ {u}. So

G ∼= Sk,k+1, which is a contradiction. Now, let vt be a vertex such that vtx ∈ EG,

vty 6∈ EG for some t = 1, 2, . . . , s and y ∈ X . Note that dG(x) = min
v∈X

dG(v), we get

dG(x) − 1 < dG(y). Construct a new graph G
∗ = (VG∗ , EG∗), where

VG∗ = VG, EG∗ = EG − vtx+ vty.

It is routine to check that G∗ is a k-tree on n vertices and that

HM (G∗)−HM (G) =
∑

u∈V \{x,y,vt}

(dG∗(x)dG∗(u)

dG∗(x, u)
+

dG∗(y)dG∗(u)

dG∗(y, u)

)

+
dG∗(x)dG∗(y)

dG∗(x, y)
+

dG∗(x)dG∗(vt)

dG∗(x, vt)
+

dG∗(y)dG∗(vt)

dG∗(y, vt)

−
∑

u∈V \{x,y,vt}

(dG(x)dG(u)

dG(x, u)
+

dG(y)dG(u)

dG(y, u)

)

−
dG(x)dG(y)

dG(x, y)
−

dG(x)dG(vt)

dG(x, vt)
−

dG(y)dG(vt)

dG(y, vt)

=
∑

u∈V \{x,y,vt}

((dG(x)− 1)dG(u)

dG(x, u)
+

(dG(y) + 1)dG(u)

dG(y, u)

)

+
(dG(x)− 1)(dG(y) + 1)

dG(x, y)
+

(dG(x)− 1)dG(vt)

2

+ (dG(y) + 1)dG(vt)−
∑

u∈V \{x,y,vt}

(dG(x)dG(u)

dG(x, u)
+

dG(y)dG(u)

dG(y, u)

)

−
dG(x)dG(y)

dG(x, y)
− dG(x)dG(vt)−

dG(y)dG(vt)

2

= −
k2

2
(dG(x)− dG(y)− 1)−

1

2
(dG(vt)− 2)(dG(x)− dG(y)− 1).

Note that dG(x) − 1 < dG(y) and dG(vt) = k > 3. Hence, we obtain HM (G∗) −

HM (G) > 0. Therefore we find the k-tree G∗ satisfies HM (G∗) > HM (G) in this

subcase, as desired.

Case 2. dG′(v) > k + 1. In this case, reorder the subscripts of {v1, v2, . . . , vs} so

that vvi 6∈ EG, i ∈ [1, s1] with 1 6 s1 6 s. By the fact that G[X ] is a k-clique, we

have dG(u) = k + s and dG(v) > k + 1 + s − s1, that is dG(v) > dG(u) − s1 + 1.

Construct a new graph G∗ = (VG∗ , EG∗), where

VG∗ = VG, EG∗ = EG − {uv1, uv2, . . . , uvs1}+ {vv1, vv2, . . . , vvs1}.
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It is easy to check that dG∗(u) = dG(u) − s1, dG∗(v) = dG(v) + s1 and

dG∗(x) = dG(x) for any vertex x ∈ VG \ {u, v}. Note that G[X ∪ {u}] is a

(k + 1)-clique, and NG(vi) ⊆ NG′(u) ∪ {u} for any i. Hence G∗ is also a k-tree.

For convenience, let NG′(u) = {u1, u2, . . . , uk} and V0 = VG \ NG[u]. Obviously,

dG(vi, u) = dG∗(vi, v) = 1, dG(vi, v) = dG∗(vi, u) = 2, dG∗(vi, x) 6 dG(vi, x) for

any 1 6 i 6 s1, x ∈ V0 and dG∗(y, z) = dG(y, z) for any other vertex pairs.

Then

HM (G∗)−HM (G)

=

s1
∑

i=1

(dG∗(vi)dG∗(u)

dG∗(vi, u)
−

dG(vi)dG(u)

dG(vi, u)
+

dG∗(vi)dG∗(v)

dG∗(vi, v)
−

dG(vi)dG(v)

dG(vi, v)

)

+
s

∑

i=s1+1

(dG∗(vi)dG∗(u)

dG∗(vi, u)
−

dG(vi)dG(u)

dG(vi, u)
+

dG∗(vi)dG∗(v)

dG∗(vi, v)
−

dG(vi)dG(v)

dG(vi, v)

)

+
∑

16i6k,ui 6=v

(dG∗(ui)dG∗(u)

dG∗(ui, u)
−

dG(ui)dG(u)

dG(ui, u)
+

dG∗(ui)dG∗(v)

dG∗(ui, v)
−

dG(ui)dG(v)

dG(ui, v)

)

+
∑

x∈V0

(dG∗(u)dG∗(x)

dG∗(u, x)
−

dG(u)dG(x)

dG(u, x)
+

dG∗(v)dG∗(x)

dG∗(v, x)
−

dG(v)dG(x)

dG(v, x)

)

+
∑

16i6s1,x∈V0

(dG∗(vi)dG∗(x)

dG∗(vi, x)
−

dG(vi)dG(x)

dG(vi, x)

)

+
dG∗(v)dG∗(u)

dG∗(v, u)
−

dG(v)dG(u)

dG(v, u)

=

s1
∑

i=1

(k

2
(dG(u)− s1)− kdG(u) + k(dG(v) + s1)−

k

2
dG(v)

)

+

s
∑

i=s1+1

(k(dG(u)− s1)− kdG(u) + k(dG(v) + s1)− kdG(v))

+
∑

16i6k,ui 6=v

(−s1dG(ui) + s1dG(ui)) +
∑

x∈V0

(s1dG(x)

dG(v, x)
−

s1dG(x)

dG(u, x)

)

+
∑

16i6s1,x∈V0

( kdG(x)

dG∗(vi, x)
−

kdG(x)

dG(vi, x)

)

=
s1
2
(k − 2)(dG(v)− dG(u) + s1) + s1

∑

x∈V0

dG(x)
( 1

dG(v, x)
−

1

dG(u, x)

)

+ k
∑

16i6s1,x∈V0

dG(x)
( 1

dG∗(vi, x)
−

1

dG(vi, x)

)

.

Note that dG′(v) > k + 1. Hence, we have 1/dG(v, x) > 1/dG(u, x) for any vertex

x ∈ V0 and there exists a vertex x ∈ V0 such that 1/dG(v, x) > 1/dG(u, x). Com-

bining this with the fact that dG(v) − dG(u) + s1 > 0, k > 2 and 1/dG∗(vi, x) >
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1/dG(vi, x) for any vertex x ∈ V0, 1 6 i 6 s1, we get HM (G∗) − HM (G) > 0.

Hence, we find that the k-tree G∗ satisfies HM (G∗) > HM (G) in this case, as de-

sired.

By Cases 1 and 2, our result holds. �

Theorem 3.6. Let T k
n be in T k

n \ {Sk,n−k} with n > k + 3. Then

HM (T k
n ) 6

(7k2

4
−

k

2

)

n2 −
(3k3

2
+

9k2

4
− 1

)

n+
k4

4
+

5k3

4
+

3k2

2
+

k

2
− 2,

and the equality holds if and only if T k
n
∼= G∗

n as depicted in Fig. 1.

P r o o f. Choose a vertex v ∈ S1(T
k
n ) with NTk

n
(v) = {u1, u2, . . . , uk} such that

k
∑

i=1

dTk
n
(ui) is as large as possible. Then T k

n − v is also a k-tree by Fact 1.3. If

T k
n − v ∼= Sk,n−k−1, combining this with T

k
n ≇ Sk,n−k, we can easily get T

k
n
∼= G∗

n by

the definition of T k
n , our theorem holds. Otherwise, we consider T

k
n − v ≇ Sk,n−k−1.

We will show our result by induction on n.

If n = k + 3, then T k
n = {P k

k+3} = {G∗
k+3} since T k

n ≇ Sk,n−k. By simple

calculations, HM (P k
k+3) =

1
2k

4 + 9
2k

3 + 15
2 k2 − 3k+1, our result holds for n = k+3.

Suppose that our result is true for T k
m for k + 3 6 m < n, and consider T k

n .

For simplicity, let G = T k
n and G′ = T k

n − v. Combining this with the fact that

dG(v, ui) = 1, dG(ui, uj) = 1 for any vertex ui, uj ∈ {u1, u2, . . . , uk} and dG(v, u) > 2

for any vertex u ∈ VG \N [v], we have

HM (G)−HM (G′)

=
∑

{u,v}⊆VG

(dG(u)dG(v))
1

dG(u, v)
−

∑

{u,v}⊆VG

(dG′(u)dG′(v))
1

dG′(u, v)

=

k
∑

i=1

dG(v)dG(ui)

dG(v, ui)
+

∑

u∈VG\N [v]

dG(v)dG(u)

dG(v, u)

+
∑

16i<j6k

(dG(ui)dG(uj)

dG(ui, uj)
−

dG′(ui)dG′(uj)

dG′(ui, uj)

)

+
∑

u∈VG\N [v]

(dG(u1)dG(u)

dG(u1, u)
+ . . .+

dG(uk)dG(u)

dG(uk, u)

−
dG′(u1)dG′(u)

dG′(u1, u)
− . . .−

dG′(uk)dG′(u)

dG′(uk, u)

)
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= k
k

∑

i=1

dG(ui) +
∑

u∈VG\N [v]

kdG(u)

dG(u, v)

+
∑

16i<j6k

(dG(ui)dG(uj)− (dG(ui)− 1)(dG(uj)− 1))

+
∑

u∈VG\N [v]

(dG(u1)dG(u)

dG(u1, u)
+ . . .+

dG(uk)dG(u)

dG(uk, u)

−
(dG(u1)− 1)dG(u)

dG(u1, u)
− . . .−

(dG(uk)− 1)dG(u)

dG(uk, u)

)

6 k

k
∑

i=1

dG(ui) +
k

2

∑

u∈VG\N [v]

dG(u) +
∑

16i<j6k

(dG(ui) + dG(uj))(3.12)

−
k

2
(k − 1) +

∑

u∈VG\N [v]

dG(u)
( 1

dG(u1, u)
+ . . .+

1

dG(uk, u)

)

= k

k
∑

i=1

dG(ui) +
k

2

(

2|EG| − k −
k
∑

i=1

dG(ui)

)

+ (k − 1)

k
∑

i=1

dG(ui)

−
k

2
(k − 1) +

∑

u∈VG\N [v]

dG(u)
( 1

dG(u1, u)
+ . . .+

1

dG(uk, u)

)

=
(3k

2
− 1

)

k
∑

i=1

dG(ui) +
∑

u∈VG\N [v]

dG(u)
( 1

dG(u1, u)
+ . . .+

1

dG(uk, u)

)

+ k2n−
k3

2
−

3k2

2
+

k

2
.

Equality in (3.12) holds if and only if dG(u, v) = 2 for any vertex u ∈ VG \N [v].

Note that G ≇ Sk,n−k. By Lemma 3.2 (ii), we can easily get

k
∑

i=1

dG(ui) 6 kn− k − 1

with equality if and only if G ∼= G∗
n.

Since n > k + 3, we get |S1(G)| > 2 by Lemma 1.7. Choose v′ ∈ S1(G) \ {v} such

that dG(v
′) = k and |N(v′)∩NG(v)| is as small as possible. Then |N(v′)∩NG(v)| 6

k − 1 since G ≇ Sk,n−k. So there exists a vertex ui ∈ NG(v) such that v
′ui 6∈ EG,

i.e., dG(v
′, ui) > 2. Then we can easily get

dG(v
′)
( 1

dG(v′, u1)
+ . . .+

1

dG(v′, uk)

)

6 k
(

k − 1 +
1

2

)

= k2 −
k

2
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and
1

dG(u, u1)
+ . . .+

1

dG(u, uk)
6 k

for any u ∈ VG \ {NG[v] ∪ {v′}}.

Furthermore, we have

∑

u∈VG\N [v]

dG(u)
( 1

dG(u1, u)
+ . . .+

1

dG(uk, u)

)

= dG(v
′)
( 1

dG(v′, u1)
+ . . .+

1

dG(v′, uk)

)

+
∑

u∈VG\{NG[v]∪{v′}}

dG(u)
( 1

dG(u1, u)
+ . . .+

1

dG(uk, u)

)

6 k2 −
k

2
+ k

∑

u∈VG\{NG[v]∪{v′}}

dG(u)(3.13)

= k2 −
k

2
+ k

(

2|EG| − 2k −
k

∑

i=1

dG(ui)

)

= 2k2n− k3 − 2k2 −
k

2
− k

k
∑

i=1

dG(ui),

where the equality in (3.13) holds if and only if there exists only one vertex ui ∈

{u1, u2, . . . , uk} and one vertex v
′ ∈ VG \NG[v] such that uiv

′ 6∈ EG, i.e., G ∼= G∗
n.

Then combining this with induction,

HM (G) 6 HM (G′) +
(3k

2
− 1

)

k
∑

i=1

dG(ui)(3.14)

+
∑

u∈VG\N [v]

dG(u)
( 1

dG(u1, u)
+ . . .+

1

dG(uk, u)

)

+ k2n−
k3

2
−

3k2

2
+

k

2

6 HM (G′) +
(3k

2
− 1

)

k
∑

i=1

dG(ui) + 2k2n− k3 − 2k2 −
k

2
(3.15)

− k
k

∑

i=1

dG(ui) + k2n−
k3

2
−

3k2

2
+

k

2

= HM (G′) +
(k

2
− 1

)

k
∑

i=1

dG(ui) + 3k2n−
3k3

2
−

7k2

2

6 HM (G∗
n−1) +

(k

2
− 1

)

(kn− k − 1) + 3k2n−
3k3

2
−

7k2

2
(3.16)
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=
((7k2

4
−

k

2

)

(n− 1)2 −
(3k3

2
+

9k2

4
− 1

)

(n− 1)

+
k4

4
+

5k3

4
+

3k2

2
+

k

2
− 2

)

+
(7

2
k2n− kn−

3k3

2
− 4k2 +

k

2
+ 1

)

=
(7k2

4
−

k

2

)

n2 −
(3k3

2
+

9k2

4
− 1

)

n+
k4

4
+

5k3

4
+

3k2

2
+

k

2
− 2.

The equality in (3.14) holds if and only if the equality in (3.12) holds, i.e., G ∼= G∗
n;

the equality in (3.15) and (3.16) holds if and only if G ∼= G∗
n and G′ ∼= G∗

n−1,

respectively. By the definition of k-trees and the fact that G′ ≇ Sk,n−k−1, we have

G′ ∼= G∗
n−1 when G ∼= G∗

n holds. Hence, our result holds.

This completes the proof. �

4. The minimal and the second minimal DD and ξd of k-trees

In this section, the minimal and the second minimal values on DD and ξd of n-

vertex k-trees are determined. The corresponding extremal graphs are characterized.

Theorem 4.1. Let T k
n be a k-tree on n > k + 3 vertices. Then

DD(T k
n ) > 3kn2 − 3k2n− 4kn+ k3 + 2k2 + k

and the equality holds if and only if T k
n
∼= Sk,n−k.

P r o o f. We show our result by induction on n. If n = k + 3, then T k
n =

{P k
k+3, Sk,3}. By simple calculations,DD(P k

k+3) = k3+7k2+16k+2 andDD(Sk,3) =

k3 + 7k2 + 16k. Our result follows immediately in this case.

Suppose our result is true for T k
m with k + 3 6 m < n, and consider T k

n . Choose

a vertex v ∈ S1(T
k
n ), then dTk

n
(v) = k and let NTk

n
(v) = {u1, u2, . . . , uk}. For

simplicity, let G = T k
n and G

′ = T k
n−v. By the definition of the k-tree and v ∈ S1(G),

we can easily get G[{v, u1, u2, . . . , uk}] ∼= Kk+1 and G
′ is also a k-tree. Furthermore,

we have

DD(G)−DD(G′)

=
∑

v∈VG

dG(v)DG(v)−
∑

v∈VG′

dG′(v)DG′(v)

= dG(v)DG(v) +

k
∑

i=1

(dG(ui)DG(ui)− dG′(ui)DG′(ui))

+
∑

u∈VG\N [v]

(dG(u)DG(u)− dG′(u)DG′(u))
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= k

(

k +
∑

u∈VG\N [v]

dG(u, v)

)

+

k
∑

i=1

(dG(ui)DG(ui)− (dG(ui)− 1)(DG(ui)− 1))

+
∑

u∈VG\N [v]

dG(u)dG(u, v)

= k2 +
∑

u∈VG\N [v]

(dG(u) + k)dG(u, v) +

k
∑

i=1

(dG(ui) +DG(ui))− k

= k2 − k +
∑

u∈VG\N [v]

(dG(u) + k)dG(u, v)

+

(

2|EG| − k −
∑

u∈VG\N [v]

dG(u)

)

+

k
∑

i=1

(

k +
∑

u∈VG\N [v]

dG(u, ui)

)

= k2 + 2kn− 3k +
∑

u∈VG\N [v]

(dG(u)(dG(u, v)− 1) + kdG(u, v)

+ dG(u, u1) + . . .+ dG(u, uk))

> k2 + 2kn− 3k + (n− k − 1)(k + 2k + k)(4.1)

= 6kn− 3k2 − 7k.

The equality in (4.1) holds if and only if dG(u) = k, dG(u, v) = 2 and dG(u, u1) =

dG(u, u2) = . . . = dG(u, uk) = 1 for any vertex u ∈ VG \N [v]. Hence, by induction

we have

DD(G) > DD(Sk,n−k−1) + 6kn− 3k2 − 7k(4.2)

= 3k(n− 1)2 − 3k2(n− 1)− 4k(n− 1)

+ k3 + 2k2 + k + 6kn− 3k2 − 7k

= 3kn2 − 3k2n− 4kn+ k3 + 2k2 + k.

The equality in (4.2) holds if and only if G′ ∼= Sk,n−k−1 and the equality in (4.1)

holds. Hence, G ∼= Sk,n−k.

This completes the proof. �

Theorem 4.2. Let T k
n be in T k

n \ {Sk,n−k} with n > k + 3. Then

DD(T k
n ) > 3kn2 − 3k2n− 4kn+ 2n+ k3 + 2k2 − k − 4,

and the equality holds if and only if T k
n
∼= G∗

n as depicted in Fig. 1.
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P r o o f. Choose a vertex v ∈ S1(T
k
n ) with NTk

n
(v) = {u1, u2, . . . , uk} such that

k
∑

i=1

dTk
n
(ui) is as large as possible. For simplicity, let G = T k

n and G′ = T k
n − v.

Note that v ∈ S1(G) and by the definition of the k-tree, we can easily get

G[{v, u1, u2, . . . , uk}] ∼= Kk+1 and G′ is also a k-tree. If G′ ∼= Sk,n−k−1, then

combining it with T k
n ≇ Sk,n−k, we can easily get T

k
n
∼= G∗

n by the definition of T
k
n ,

our result holds in this case. Otherwise we consider G′ ≇ Sk,n−k−1 and we proceed

by induction on n.

If n = k + 3, then T k
n = {P k

k+3} = {G∗
k+3} since T k

n ≇ Sk,n−k. By simple

calculations, DD(P k
k+3) = k3 + 7k2 + 16k + 2, our result holds in this subcase.

Suppose our result is true for T k
m with k + 3 6 m < n, and consider T k

n . Since

G ≇ Sk,n−k, by Lemma 3.2 (ii) we can easily get

k
∑

i=1

dG(ui) 6 kn− k − 1

with equality if and only if G ∼= G∗
n.

Notice that n > k+3. Hence, by Lemma 1.7, |S1(G)| > 2. Choose v′ ∈ S1(G)\{v}

such that |N(v′) ∩NG(v)| is as small as possible. As G ≇ Sk,n−k, we have |N(v′) ∩

NG(v)| 6 k− 1. So there exists a vertex ui ∈ NG(v) such that v
′ui 6∈ ETk

n
. Then we

can easily get

dG(v
′, u1) + dG(v

′, u2) + . . .+ dG(v
′, uk) > k + 1

and

dG(u, u1) + dG(u, u2) + . . .+ dG(u, uk) > k

for any u ∈ VG \ (NG[v] ∪ {v′}). Hence,

∑

u∈VG\NG[v]

(dG(u, u1)+dG(u, u2)+. . .+dG(u, uk)) > k+1+k(n−k−2) = kn−k2−k+1

with equality if and only if there is only one vertex ui ∈ {u1, u2, . . . , uk} and one

vertex v′ ∈ VG \NG[v] such that uiv
′ 6∈ EG and v′ ∈ S1(G), i.e., G ∼= G∗

n.

Furthermore, based on the proof of Theorem 4.1, we have

DD(G) −DD(G′) = k2 + 2kn− 3k +
∑

u∈VG\N [v]

(dG(u)(dG(u, v)− 1)

+ kdG(u, v) + dG(u, u1) + . . .+ dG(u, uk))
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> k2 + 2kn− 3k +
∑

u∈VG\N [v]

(dG(u) + 2k)(4.3)

+
∑

u∈VG\N [v]

(dG(u, u1) + dG(u, u2) + . . .+ dG(u, uk))

= k2 + 2kn− 3k + 2k(n− k − 1) +

(

2|EG| − k −
k

∑

i=1

dG(ui)

)

+
∑

u∈VG\N [v]

(dG(u, u1) + dG(u, u2) + . . .+ dG(u, uk))

> 6kn− 2k2 − 7k − (kn− k − 1) + kn− k2 − k + 1(4.4)

= 6kn− 3k2 − 7k + 2.

The equality in (4.3) holds if and only if dG(u, v) = 2 for any vertex u ∈ VG \N [v],

whereas the equality in (4.4) holds if and only if
k
∑

i=1

dG(ui) = kn − k − 1 and
∑

u∈VG\N [v]

(dG(u, u1)+dG(u, u2)+ . . .+dG(u, uk)) = kn−k2−k+1. Hence, G ∼= G∗
n.

Combining this with induction,

DD(G) > DD(G∗
n−1) + 6kn− 3k2 − 7k + 2(4.5)

= 3k(n− 1)2 − 3k2(n− 1)− 4k(n− 1) + 2(n− 1)

+ k3 + 2k2 − k − 4 + 6kn− 3k2 − 7k + 2

= 3kn2 − 3k2n− 4kn+ 2n+ k3 + 2k2 − k − 4.

The equality in (4.5) holds if and only if G′ ∼= G∗
n−1 and the equality in (4.3) and (4.4)

holds. Hence, G ∼= G∗
n.

This completes the proof. �

Theorem 4.3. Let T k
n be a k-tree on n > k + 3 vertices. Then

ξd(T k
n ) > 4n2 − 5kn− 4n+ 2k2 + 3k

and the equality holds if and only if T k
n
∼= Sk,n−k.

P r o o f. We proceed by induction on n. If n = k+3, then T k
k+3 = {P k

k+3, Sk,3}.

By simple calculations, we have

ξd(P k
k+3) = k2 + 9k + 26, ξd(Sk,3) = k2 + 8k + 24.

Our result holds immediately in this case.
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Suppose our result is true for T k
m with k + 3 6 m < n, and next consider T k

n .

Choose a vertex v ∈ S1(T
k
n ), then dTk

n
(v) = k and let NTk

n
(v) = {u1, u2, . . . , uk}. For

simplicity, let G = T k
n and G′ = T k

n − v. By the definition of k-tree and v ∈ S1(G),

it is routine to check that G[{v, u1, u2, . . . , uk}] ∼= Kk+1 and G′ is also a k-tree.

Furthermore, we have

ξd(G) =
∑

u∈VG

εG(u)DG(u) = εG(v)DG(v) +

k
∑

i=1

εG(ui)DG(ui)

+
∑

u∈VG\N [v]

εG(u)DG(u) = εG(v)DG(v) +
k
∑

i=1

εG′(ui)(DG′(ui) + 1)

+
∑

u∈VG\N [v]

εG(u)(DG′(u) + dG(u, v))

=

k
∑

i=1

εG′(ui)DG′(ui) +
∑

u∈VG\N [v]

εG(u)DG′(u) + εG(v)DG(v)

+

k
∑

i=1

εG′(ui) +
∑

u∈VG\N [v]

εG(u)dG(u, v).

Obviously, εG(v) > 2, D(v) > k+2(n−1−k) = 2n−k−2, εG′(ui) > 1 for 1 6 i 6 k

and εG(u) > 2, dG(u, v) > 2 for any u ∈ VG \ N [v]. Combining this with the fact

that εG(u) > ε′G(u) for u ∈ VG \N [v] and by induction, we have

ξd(G) > ξd(G′) + εG(v)DG(v) +

k
∑

i=1

εG′(ui) +
∑

u∈VG\N [v]

εG(u)dG(u, v)(4.6)

> ξd(Sk,n−k−1) + 2(2n− k − 2) + k + 2 · 2(n− k − 1)(4.7)

= 4n2 − 5kn− 4n+ 2k2 + 3k.

The equality in (4.6) holds if and only if εG(u) = ε′G(u) for any vertex u ∈ VG\N [v],

whereas the equality in (4.7) holds if and only if εG′(ui) = 1 for 1 6 i 6 k, εG(v) =

εG(u) = 2 for any u ∈ VG \N [v] and G′ ∼= Sk,n−k−1, which implies G ∼= Sk,n−k.

This completes the proof. �

Theorem 4.4. Let T k
n be in T k

n \ {Sk,n−k} with n > k + 3. Then

ξd(T k
n ) > 4n2 − 5kn− 3n+ 2k2 + 3k − 1

with equality if and only if T k
n
∼= G∗

n, where G
∗
n is depicted in Fig. 1.
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P r o o f. Choose a vertex v ∈ S1(T
k
n ), then dTk

n
(v) = k and let NTk

n
(v) =

{u1, u2, . . . , uk}. For simplicity, let G = T k
n and G′ = T k

n − v. As v ∈ S1(G), by

the definition of the k-tree, it is routine to check that G[{v, u1, u2, . . . , uk}] ∼= Kk+1

and G′ is also a k-tree. If G′ ∼= Sk,n−k−1, combining it with G ≇ Sk,n−k, then we

can easily get G ∼= G∗
n by the definition of k-trees, our result holds in this case.

Otherwise we consider G′ ≇ Sk,n−k−1 and complete our proof by induction on n.

If n = k + 3, as T k
n ≇ Sk,n−k, we have T k

n = {P k
k+3} = {G∗

k+3}. By simple

calculations, ξd(P k
k+3) = k2 + 9k + 26, our result holds in this case. Suppose this

is true for T k
m with k + 3 6 m < n, and consider T k

n . According to the proof of

Theorem 4.3, we have

ξd(G) =
k
∑

i=1

εG′(ui)DG′(ui) +
∑

u∈VG\N [v]

εG(u)DG′(u) + εG(v)DG(v)

+

k
∑

i=1

εG′(ui) +
∑

u∈VG\N [v]

εG(u)dG(u, v).

Note that G ≇ Sk,n−k, there exists a vertex ui ∈ NG(v) and a vertex x ∈ VG\N [v]

such that xui 6∈ EG. It is routine to check that εG′(ui) > 2. Hence,
k
∑

i=1

εG′(ui) >

k+1. Obviously, εG(v) > 2, DG(v) > k+2(n−1−k) = 2n−k−2 and εG(u) > εG′(u),

εG(u) > 2, dG(u, v) > 2 for any u ∈ VG\N [v]. According to the proof of Theorem 4.3

and by induction, we get

ξd(G) > ξd(G′) + εG(v)DG(v) +

k
∑

i=1

εG′(ui) +
∑

u∈VG\N [v]

εG(u)dG(u, v)(4.8)

> ξd(G∗
n−1) + 2(2n− k − 2) + k + 1 + 2 · 2(n− k − 1)(4.9)

= 4n2 − 5kn− 3n+ 2k2 + 3k − 1.

The equality in (4.8) holds if and only if εG(u) = ε′G(u) for u ∈ VG \ N [v], while

the equality in (4.9) holds if and only if εG(v) = εG(u) = 2 for any u ∈ VG \ N [v],
k
∑

i=1

εG′(ui) = k + 1 and G′ ∼= G∗
n−1, which implies that G

∼= G∗
n. Hence, our result

holds.

This completes the proof. �
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5. Conclusion remark

In this paper we determine the sharp upper and sharp lower bound on Wiener

index and Harary index, respectively, of k-trees; The k-tree with the maximal and

the second maximal HA and HM are characterized. Furthermore, the k-tree with the

minimal and the second minimal DD and ξd are also identified. It may be interesting

to determine the sharp lower and sharp upper bound on Wiener index and Harary

index, respectively, of k-trees; to characterize the k-tree with the minimal and the

second mimimal HA and HM . Furthermore, it would be also interesting to identify

the k-tree with the maximal and the second maximal DD and ξd.

A c k n ow l e d g em e n t . The authors would like to express their sincere grat-

itude to the referee for his/her very careful reading of this paper and for all the

insightful comments, which led to a number of improvements to this paper.

References

[1] P.Ali, S.Mukwembi, S.Munyira: Degree distance and vertex-connectivity. Discrete
Appl. Math. 161 (2013), 2802–2811. zbl MR doi
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