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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 2 , P A G E S 2 8 9 – 3 0 3

A FAST NUMERICAL TEST OF MULTIVARIATE
POLYNOMIAL POSITIVENESS WITH APPLICATIONS

Petr Augusta and Petra Augustová

The paper presents a simple method to check a positiveness of symmetric multivariate poly-
nomials on the unit multi-circle. The method is based on the sampling polynomials using the
fast Fourier transform. The algorithm is described and its possible applications are proposed.
One of the aims of the paper is to show that presented algorithm is significantly faster than
commonly used method based on the semi-definite programming expression.

Keywords: multidimensional systems, positive polynomials, fast Fourier transforms, sta-
bility, numerical algorithm

Classification: 12D10, 47N70, 65T50, 65Y20

1. INTRODUCTION

Multidimensional (n-D) systems are a very active topic in the last decades with appli-
cations in many areas and, as it was stated by [28], the n-D systems approach does
bring advantages in solving control problems. The n-D systems can be used to for-
mulate a large number of problems in, e. g., digital image processing, biomedicine, and
control of systems described by partial differential equations. The interested reader is
referred to [8, 9] for fundamentals and basic informations. The essential difference of
n-D systems from the classical (1-D) ones is that an information propagates in more
than one independent directions. The class of n-D systems includes, e. g., repetitive
processes [25, 27], spatially invariant systems [10, 11], positive n-D systems [20], or n-D
systems of the fractional order [21], and iterative learning control [10, 11, 12]. The n-D
systems approach is applied in control of ladder circuits [32, 31], and in modelling of
complex systems [5, 6]. Methods for identification of n-D systems are also developed in,
for instance, [1, 26]. Linear n-D systems can be described by rational functions or matri-
ces of several independent variables. The variables represent different space coordinates
or mixed time and space coordinates.

In the stability and stabilisation of n-D systems, positive and sum-of-square poly-
nomials [16, 18, 19] play a role. Roughly speaking, a system is stable if (and only
if) a certain polynomial is positive. Numerical algorithms for stability analysis based
on the checking polynomial positiveness are discussed in, e. g., [14, 15, 17]. The pa-
per [14] reviews stability tests for n-D discrete-time systems. In [15], a stability test
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for n-D discrete-time systems is based on Gram matrix associated with a polynomial
whose positiveness on the unit n-circle is checked using the sum-of-squares decomposi-
tion. In [17], a stability test is proposed based on positivstellensatz for trigonometric
polynomials.

In this paper we show an another approach to test the positiveness of polynomials.
A very simple method is based on sampling a polynomial at points on the unit circle.
Our numerical simulations and experiments show that if a great many points are used,
it can be stated that a polynomial is positive on the unit circle if and only if all samples
are positive. It is shown that the implementation using the fast Fourier transform (FFT)
gives an efficient tool to check the positiveness. Computation times are compared with
one of the methods given in [15]. One of the aims of this paper is to show that the
proposed test is dramatically faster than the method of [15].

The algorithm was originally published in [2]. This paper brings an extension to the
multivariate case and proposes its applications in n-D systems theory, in particular, in
stability analysis of repetitive processes and spatially invariant systems.

The paper is organised as follows. In Sec. 2, the problem of positiveness of polynomials
on the unit n-circle is outlined and the algorithm of [15] is briefly described. The
numerical algorithm based on fast sampling using FFT is given in Sec. 3. Applications of
the proposed algorithm are discussed in Sec. 4. Numerical experiments and simulations
are performed in Sec. 5. Some remarks conclude the paper in Sec. 6.

2. POSITIVENESS OF POLYNOMIALS

We shall concentrate on stability of linear discrete-time repetitive processes and time-
-invariant spatially distributed systems. We make clear later that this stability relates
to a multivariate polynomial, say, f(z1, z2, . . . , zn) in n indeterminates z1 ∈ C, z2 ∈
C, . . . , zn ∈ C. Let f be of the form

f =

d1∑
k1=0

d2∑
k2=0

· · ·
dn∑
kn=0

fk1,k2,...,kn z
k1
1 zk22 · · · zknn , fk1,k2,...,kn ∈ R. (1)

Let us study when f has no zero inside the unit n-circle, that is, when

f 6= 0 for all |z1| ≤ 1, |z2| ≤ 1, . . . , |zn| ≤ 1. (2)

It was proved in [29, Theorem 3] that (2) is equivalent to the set of conditions

1. for some β1, . . . , βn such that |βr| = 1, r = 1, . . . , n and for all i, i = 1, . . . , n,

f 6= 0 when zr = βr, r 6= i and |zi| ≤ 1, (3)

2.
f 6= 0 when |z1| = |z2| = · · · = |zn| = 1. (4)

The univariate conditions (3) can be verified by well-known methods. The condition (4)
is multivariate one. It can be formulated using the positiveness of a polynomial as
follows, see [15, 16]. Let

g(z1, z2, . . . , zn) = f(z−1
1 , z−1

2 , . . . , z−1
n ) f(z1, z2, . . . , zn), (5)
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so, it can be expressed as

g =

d1∑
k1=−d1

d2∑
k2=−d2

· · ·
dn∑

kn=−dn

gk1,k2,...,kn z
k1
1 zk22 · · · zknn , gk1,k2,...,kn ∈ R (6)

with coefficients symmetric about the origin, i. e., gk1,k2,...,kn = g−k1,−k2,...,−kn and sim-
ilarly. The following lemma follows from, e. g., [15].

Lemma 2.1. The condition (2) is satisfied if and only if (3) holds and (5) is strictly
positive for all |z1| = |z2| = · · · = |zn| = 1.

In [15], a numerical test of positiveness of (5) is implemented by taking an appropri-
ately small ε > 0 and testing if

g(z1, z2, . . . , zn)− ε is sum-of-squares. (7)

Using the semi-definite programming (SDP), (7) can be formulated as a feasibility prob-
lem

find Q

s. t. gk1,...,kn = trace [Tk1,...,kn ·Q]

Q ≥ ε I,
(8)

where Tk1,...,kn = Tkn ⊗ · · · ⊗ Tk1 and Tki ∈ R(di+1)×(di+1) are elementary Toeplitz
matrices with ones only on the kith diagonal, the symbol ⊗ denotes Kronecker product,
and traceX is the trace of the matrix X. In what follows the above approach is called
SDP-based method.

3. FAST NUMERICAL ALGORITHM

The positiveness of (5) for all |z1| = |z2| = · · · = |zn| = 1 can be checked directly by
substituting points from the unit n-circle for z1, z2, . . . , zn. Let N1, N2, . . . , Nn denote
numbers of points on the unit n-circle. These points are

e−2πj
i1
N1 , e−2πj

i2
N2 , . . . , e−2πj in

Nn , i1 = 0, . . . , N1 − 1,
i2 = 0, . . . , N2 − 1,

...
in = 0, . . . , Nn − 1.

Substituting these points into (5) results in N1 · N2 · · · · · Nn numerical values. This
operation is exactly the same what the discrete Fourier transform (DFT) algorithm
performs. Let us recall the basic definitions. For an n-D array of complex numbers g,
its direct DFT is an n-D array G, where

Gk1,k2,...,kn =

N1−1∑
i1=0

(
e−2πj

i1 k1
N1

N2−1∑
i2=0

(
e−2πj

i2 k2
N2 · · ·

Nn−1∑
in=0

e−2πj in kn
Nn gi1,i2,...,in

))
.
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If an n-D array of complex numbers G is given, its inverse DFT is an n-D array of
complex numbers g

gi1,i2,...,in =
1

n∏
i=1

Ni

N1−1∑
k1=0

(
e2πj

i1k1
N1

N2−1∑
k2=0

(
e2πj

i2k2
N2 · · ·

Nn−1∑
kn=0

e2πj
inkn
Nn Gk1,k2,...,kn

))
.

The both above definitions are well known. The DFT is in common use in many en-
gineering areas, most frequently in the signal processing. To accelerate the numerical
computation, the efficient fast Fourier transform (FFT) algorithms are available. The
most common one is the Cooley-Tukey algorithm derived and described by [13]. Since
FFT algorithms play an important role, they are available as built-in functions in many
computing packages.

The stability test can be performed as follows. Convert coefficients gk1,k2,...,kn of the
polynomial (5) to the n-D array. In the case n = 1, we have coefficients gk1 and the
array is of the form(

g0 g1 g2 · · · gd1 0 · · · 0 gd1 · · · g2 g1
)

and of the size 1×N1. For example, letN1 = 8 andG(z1) = 10+3 (z1+z−1
1 )+4 (z21+z−2

2 ).
The above array reads (

10 3 4 0 0 0 4 3
)
.

Applying DFT algorithm gives 8 samples 24, 14.2426, 2, 5.7574, 12, 5.7574, 2, 14.2426.
One can insure that substituting points

e−2πj
i1
8 , i1 = 0, . . . , 7,

that is, points

1,
√

2

(
1

2
− j

2

)
,−j,

√
2

(
−1

2
− j

2

)
,−1,

√
2

(
−1

2
+
j

2

)
, j,
√

2

(
1

2
+
j

2

)
into G(z1) for z1 results in the same values as the DFT before.

In case n = 2, the array is of the form

g0,0 g0,1 · · · g0,d2 0 · · · 0 g0,d2 · · · g0,1
g1,0 g1,1 · · · g1,d2 0 · · · 0 g1,d2 · · · g1,1

...
...

...
... 0 · · · 0

...
...

...
gd1,0 gd1,1 · · · gd1,d2 0 · · · 0 gd1,d2 · · · gd1,1

0 0 · · · · · ·
... · · ·

... · · · · · · 0
...

...
...

...
...

...
...

...
...

...

0 0 · · · · · ·
... · · ·

... · · · · · · 0
gd1,0 gd1,1 · · · gd1,d2 0 · · · 0 gd1,d2 · · · gd1,1

...
...

...
... 0 · · · 0

...
...

...
g1,0 g1,1 · · · g1,d2 0 · · · 0 g1,d2 · · · g1,1
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and of the size N1 ×N2. Similarly for n > 2.
Applying the Fourier transform to the n-D array, we got N1 · N2 · · · · · Nn samples

on the unit n-circle. The stability condition can be based on the following fact: If (5) is
positive for all |z1| = |z2| = · · · = |zn| = 1 then all N1 ·N2 · · · · ·Nn samples on the unit
n-circle obtained above by FFT are positive. The below lemma follows immediately.

Lemma 3.1. If the condition (2) is satisfied then all N1 · N2 · · · · · Nn samples of (5)
on the unit n-circle obtained by FFT are positive.

The above condition is necessary, not sufficient, since we consider only the finite
number of samples. However, our experiments confirm that if the number of samples
is sufficiently high, say 10–50 times higher than di, this method analyses the stability
correctly. In what follows, the approach described in this section is called FFT-based
method.

4. APPLICATIONS

The above proposed method can be used in stability analysis of n-D systems. Two
particular examples are shown in this section. The first one deals with stability of
repetitive processes, the second one with stability of spatially invariant systems.

4.1. Stability of linear repetitive processes

Linear repetitive processes are a special class of n-D systems. Their comprehensive
description is provided by [27]. A discrete linear repetitive process can be described by
the state-space model of the form

xk+1(p+ 1) = Axk+1(p) +B0 yk(p) +B uk+1(p)

yk+1(p) = C xk+1(p) +D0 yk(p) +Duk+1(p)
(9)

over 0 ≤ p ≤ α, α constant, k ≥ 0, with the boundary conditions given by

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), p = 0, 1, . . . , α− 1,
(10)

where dk+1 is a vector with constant entries and f(p) ∈ Rm is a vector whose entries are
known function of p. Let shift operators z1, z2 in the along the pass (p) and pass-to-pass
(k) direction, respectively, be defined as

xk(p) = z1 xk(p+ 1)

yk(p) = z2 yk+1(p).
(11)

The following lemma holds, see, e. g. [24].

Lemma 4.1. A discrete linear repetitive process described by (9) is stable along the
pass if, and only if,

c(z1, z2) = det

([
I − z1A −z1B0

−z2 C I − z2D0

])
6= 0 (12)

for all |z1| ≤ 1, |z2| ≤ 1.
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Using the same principle as in Sec. 2, we obtain (12) in the equivalent form of the set
of conditions

1. for some β1, β2 such that |βr| = 1, r = 1, . . . , 2 and for all i, i = 1, 2,

c 6= 0 when zr = βr, r 6= i and |zi| ≤ 1, (13)

2.

c 6= 0 when |z1| = |z2| = 1. (14)

The univariate conditions (13) can be verified by well-known methods. The condi-
tion (14) is multivariate one. Let

G(z1, z2) = c(z−1
1 , z−1

2 ) c(z1, z2). (15)

Applying Lemma 2.1 we can state the following.

Lemma 4.2. A discrete linear repetitive process described by (11) is stable if (13) holds
and (15) is strictly positive for all |z1| = |z2| = 1.

P r o o f . It follows from Lemmas 2.1 and 4.1. �

Now, we can formulate the following lemma.

Lemma 4.3. If a repetitive process described by (11) is stable then all N1 ·N2 samples
of (15) on the unit bi-circle obtained by FFT are positive.

Once again we note that the above condition is necessary, not sufficient. However, if
the number of samples is sufficiently high, say 10–50 times higher than Ni, this method
analyses the stability correctly.

4.2. Stability of spatially invariant systems

In the second example, we shall concentrate on linear time-invariant spatially invariant
systems with one temporal and two spatial variables. For instance, papers [7, 10, 11]
deals with control and stabilisation of the spatial-temporal dynamics. Mathematically,
such systems are described by partial differential equations. Stability of spatially invari-
ant systems is discussed in, e. g., [4, 7, 9]. Here, we briefly recall the basic knowledge.
The reader is referred to [4] and references therein for more details.

A (2 + 1)-D linear spatially invariant system discrete in both time and space can be
described by the transfer function of the form

P (z, w) =
b(z, z1, z2)

a(z, z1, z2)
, (16)

where a and b are bivariate polynomials, variable z corresponds to time delay and
variables z1, z2 correspond to shift along the spatial coordinate axis. Since (16) describes
a system causal in time and non-causal in space, a and b are one-sided in z and two-sided
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in z1, z2. Furthermore, for physical systems, it is reasonable to assume spatial symmetry,
hence, a can be assumed in the form

a(z, z1, z2) =

m∑
k=0

s1∑
l1=0

s2∑
l2=0

ak,l1,l2 z
k
(
zl11 + z−l11

)(
zl22 + z−l22

)
, (17)

ak,l1,l2 ∈ R, and (17) can be written in the form

a[z1, z2](z) =

m∑
k=0

ak(z1, z2) zk, (18)

where ak(z1, z2), k = 0, . . . ,m are two-sided bivariate polynomials. Similarly for b.

A system described by (16) with a and b free of a common factor is structurally stable
if and only if

a(z, z1, z2) 6= 0 for all {|z| ≤ 1} ∩ {|z1| = 1} ∩ {|z2| = 1} . (19)

The criterion (19) is equivalent to the positiveness on the unit circle of the Schur–Cohn
matrix corresponding to a(z, z1, z2). The Schur–Cohn matrix [33] reads

H(z1, z2) = ST
1 S1 − ST

2 S2, (20)

where

S1 =


a0(z1, z2) a1(z1, z2) · · · am−1(z1, z2)

0 a0(z1, z2) · · · am−2(z1, z2)
...

. . .
. . .

...
0 · · · 0 a0(z1, z2)

 ,

S2 =


am(z1, z2) am−1(z1, z2) · · · a1(z1, z2)

0 am(z1, z2) · · · a2(z1, z2)
...

. . .
. . .

...
0 · · · 0 am(z1, z2)

 ,

where ak(z1, z2), k = 0, . . . ,m are given in (18). The Schur–Cohn matrix (20) is the
symmetric polynomial matrix of size m and can be written in the form

H(z1, z2) =

2 s1∑
k1=−2 s1

2 s2∑
k2=−2 s2

Hk1,k2 z
k1
1 zk22 , (21)

that is, in the form of (6). Hence, we can formulate the following lemma.

Lemma 4.4. The criterion (19) is satisfied if and only if the Schur–Cohn matrix (20)
corresponding to (18) is positive definite on the unit circle, that is, H(z1, z2) � 0 for all
|z1| = 1, |z2| = 1.
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Fig. 1. A plate with nodes placed in the square grid.

For example, consider a system of a controlled heat conduction in a plate equipped
with an array of temperature sensors and heaters as it is depicted in Figure 1. Suppose
the input heat to be the input and the temperature to be the output. This system
was described by the transfer function of the form (16) by [3]. Suppose a plate of the
dimension 1 m×1 m equipped with 9 nodes×9 nodes and the sampling time period equal
to 1 s. The transfer function corresponding to these values is

P =
b(z, z1, z2)

a(z, z1, z2)
=

z

1− 0.4 z − 0.15 z (z1 + z−1
1 + z2 + z−1

2 )
. (22)

The Schur–Cohn matrix corresponding to a(z, z1, z2) of (22) is scalar and reads

Ha(z1, z2) = 0.75 + 0.12 (z1 + z−1
1 + z2 + z−1

2 )

+ 0.045 (z1 z2 + z1 z
−1
2 + z−1

1 z2 + z−1
1 z−1

2 ) + 0.0225 (z21 + z−2
1 + z22 + z−2

2 ). (23)

Let N1 = N2 = 8 and form the N1 ×N2 array



0.75 −0.12 −0.0225 0 0 0 −0.0225 −0.12
−0.12 −0.045 0 0 0 0 0 −0.045
−0.0225 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−0.0225 0 0 0 0 0 0 0
−0.12 −0.045 0 0 0 0 0 −0.045


.
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Applying the FFT on the above array gives the N1 ×N2 array of samples

0 0.168 0.51 0.762 0.84 0.762 0.51 0.168
0.168 0.3206 0.6253 0.84 0.9026 0.84 0.6253 0.3206
0.51 0.6253 0.84 0.9647 0.99 0.9647 0.84 0.6253
0.762 0.84 0.9647 0.9994 0.9874 0.9994 0.9647 0.84
0.84 0.9026 0.99 0.9874 0.96 0.9874 0.99 0.9026
0.762 0.84 0.9647 0.9994 0.9874 0.9994 0.9647 0.84
0.51 0.6253 0.84 0.9647 0.99 0.9647 0.84 0.6253
0.168 0.3206 0.6253 0.8400 0.9026 0.84 0.6253 0.3206


.

One can see that there is a sample that is not positive. Hence, the system is not
stable. Applying the criterion (19) directly leads to the same result. One can check that
a(z, z1, z2) of (22) has a root on the stability margin (z1 = 1, z2 = 1 and z = 1).

Numerical simulations confirm the above result. Consider the input signal given in
Figure 2. The response of the system is given in Figure 3. Clearly, the system is not
stable since the temperature goes to infinity.
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Fig. 2. Input signal of the system of temperature conduction in a

plate, (a) at the middle of the plate, (b) in a plate from 5 s.

Now, consider the control scheme of Figure 4 and the controller

R =
z

1 + 0.5 z + 0.15 z (z1 + z−1
1 + z2 + z−1

2 )
.

The closed-loop characteristic polynomial is

c(z, z1, z2) = −0.0225 z2 (z1 + z−1
1 + z2 + z−1

2 )2 − 0.135 z2 (z1 + z−1
1 + z2 + z−1

2 )

+ 0.8 z2 + 0.1 z + 1

and the corresponding Schur–Cohn matrix is given by (20) with

S1 =

(
1 0.1
0 1

)
, S2

(
∗ 0.1
0 ∗

)
,
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Fig. 3. Response of the system to the input signal of Figure 2,

temperature (a) at the middle of the plate, (b) at the time 0 s, (c) at

the time 6 s, (d) at the time 50 s.

where ∗ = −0.0225
(
z1 + z−1

1 + z2 + z−1
2

)2−0.135
(
z1 + z−1

1 + z2 + z−1
2

)
+0.8, so it 2×2

matrix. The stability test can be performed as follows. Three polynomials arising in the
(symmetric) Schur–Cohn matrix can be sampled as independent scalars using the 2-D

uv +

−

y
P

R

Fig. 4. Standard feedback configuration.
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FFT algorithm. All samples can be given back into matrices. To obtain the resulting
feedback system stable, all N1 ·N2 matrices have to be definitely positive.

One can insure that control P by R leads to stable closed-loop system. Our numerical
simulations confirms this fact, see Figure 5.
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Fig. 5. Response of the controlled system to the input signal of

Figure 2, (a) temperature at the middle of the plate, (b) temperature

at the time 50 s.

5. NUMERICAL EXPERIMENTS

In this section we perform experiments and tests of the above described approaches.
The FFT-based method proposed in the previous section is compared with the SDP-
based method by [15] in the sense of the computational time. We also show how the
correctness of results returned by FFT-based method depends on numbers of samples
N1, N2, . . . , Nn.

5.1. Computational time

SDP-based method and the FFT-based method are compared in the sense of the com-
putational time. Other attributes are not taken into account in this subsection. Stable
polynomials A(z1, z2) in two variables z1 and z2 are generated. The corresponding poly-
nomials (5) is computed and its positiveness on the unit bi-circle is checked. This is
repeated many times and the mean time needed for the calculation is taken. The FFT-
based method is applied in the first case with 25-point FFT, in the second one with
27-point FFT.

The results of the experiments are shown in Table 1. The degrees in z1 and z2 of
the polynomial are given in the first and the second columns of the table, respectively.
Computing times in seconds taken by the SDP-based method, 25-point FFT and 27-
point FFT are shown in the next three columns. The star (*) means that computation
takes over 60 seconds.
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FFT (s)
degz (–) degv (–) SDP (s) N = 25 N = 27

1 1 0.28 0.03 0.16
2 2 0.28 0.03 0.17
5 5 1.3 0.04 0.17
10 10 * 0.05 0.18
10 1 0.33 0.03 0.17
10 2 1.1 0.04 0.17
10 5 24 0.05 0.18

Tab. 1. Computational times the methods.

All experiments were made on a supercomputer within the Matlab Software by [23].
The implementation of the SDP-based algorithm uses SeDuMi [30] and Yalmip [22].
Standard Matlab implementation of FFT was used for implementation of the method
based on FFT. The times were taken using tic and toc Matlab commands.

5.2. False results for small number of samples

This subsection shows that FFT-based method can return false result if the polynomial
is sampled at too small number of points. Consider the polynomial

G(z1) = 4 + (z1 + z−1
1 ) + (z21 + z−2

1 )− (z31 + z−3
1 ).

The graph of G(z1)|z1=ejω for 0 ≤ ω ≤ 2π is in Figure 6 and Figure 7, where it is
depicted that G(z1) is not positive for all values z1 on the unit circle. Choose the
number of interpolation points N1 = 8. It can be seen from Figure 6, that all 8 samples
are positive. For this value of N1, the above polynomial is classified as stable. This is
not the correct result.

� ✁ ✂ ✄ ☎ ✆

✝✞

✟

✠

✡

☛

☞

✌

✍

✎

✏✑✒✓✔✕✖✗✘✙

�✁ ✂

✄☎

✆

✝✞

✟✠

Fig. 6. Graph of G(z1) for all |z1| = 1, N = 8 interpolation points

are marked by the red crosses.
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✍
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✏✑✒✓✔✕✖✗✘✙

�✁ ✂

✄☎

✆

✝✞

✟✠

Fig. 7. Graph of G(z1) for all |z1| = 1, N = 16 interpolation points

are marked by the red crosses.

Now, choose N1 = 16. One can see from Figure 7, that there are negative samples.
In this case the polynomial is classified correctly as unstable.

6. CONCLUSIONS

A numerical test of positiveness of symmetric polynomial was presented in this paper.
The test is simply based on sampling the matrix polynomial using the fast Fourier
transform. It was shown that this method is dramatically faster than one proposed
in the literature based on the semi-definite programming expression. Our method re-
turns results within a few milliseconds. The adopted method required a longer time for
computing in all considered cases.

In spite of the fact that the proposed method provides necessary but not sufficient
condition it can find applications in stability analysis of multidimensional systems, repet-
itive processes, or spatially distributed systems. It can serve as a very fast numerical
stability test. The number of variables is not limited since for test of positiveness on the
unit n-circle the algorithm for n-dimensional FFT is available.
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[4] P. Augusta and P. Augustová: On stabilisability of 2-D MIMO shift-invariant systems.
J. Franklin Inst. 350 (2013), 2949–2966. DOI:10.1016/j.jfranklin.2013.05.021

[5] P. Augusta, B. Cichy, K. Galkowski, and E. Rogers: An unconditionally stable finite
difference scheme systems described by second order partial differential equations. In:
Proc. IEEE 9th International Workshop on Multidimensional Systems, 2015, pp. 134–
139. DOI:10.1109/nds.2015.7332655

[6] P. Augusta, B. Cichy, K. Galkowski, and E. Rogers: An unconditionally stable approx-
imation of a circular flexible plate described by a fourth order partial differential equa-
tion. In: Proc. 21st International Conference on Methods and Models in Automation and
Robotics, 2016. DOI:10.1109/mmar.2016.7575281

[7] P. Augusta and Z. Hurák: Distributed stabilisation of spatially invariant systems –
positive polynomial approach. Multidimensional Systems Signal Process. 24 (2013), 3–
21. DOI:10.1007/s11045-011-0152-5

[8] N. K. Bose: Multidimensional Systems Theory – Progress, Directions and Open Problems
in Multidimensional Systems. D. Riedel Publishing Company, 1985. DOI:10.1007/978-
94-009-5225-6

[9] N. K. Bose: Multidimensional Systems Theory and Applications. Second edition. Kluwer
Academic Publishers, 2003.

[10] B. Cichy, K. Ga lkowski, and E. Rogers: Iterative learning control for spatio-temporal
dynamics using Crank-Nicolson discretization. Multidimensional Systems Signal Process.
23 (2012), 185–208.

[11] B. Cichy, K. Ga lkowski, E. Rogers and A. Kummert: An approach to iterative learning
control for spatio-temporal dynamics using nD discrete linear systems models. Multidi-
mensional Systems Signal Process. 22 (2011), 83–96. DOI:10.1007/s11045-010-0108-1

[12] B. Cichy, L. Hladowski, K. Ga lkowski, A. Rauh, and H. Aschemann: Iterative learning
control of an electrostatic microbridge actuator with polytopic uncertainty models. IEEE
Trans. Control Systems Technol. 23 (2015), 2035–2043. DOI:10.1109/tcst.2015.2394236

[13] J. W. Cooley and J. W. Tukey: An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation 19 (1965), 297–301. DOI:10.2307/2003354

[14] B. Dumitrescu: Sum-of-squares polynomials and the stability of discrete-time systems. In:
Proc. Fourth International Workshop on Multidimensional Systems, 2005, pp. 223–228.
DOI:10.1109/nds.2005.195358

[15] B. Dumitrescu: Stability test of multidimensional discrete-time systems via
sum-of-squares decomposition. IEEE Trans. Circuts Systems 53 (2006), 928–936.
DOI:10.1109/tcsi.2005.859624

[16] B. Dumitrescu: Positive Trigonometric Polynomials and Signal Processing Applications.
Springer, 2007.

[17] B. Dumitrescu: Positivstellensatz for trigonometric polynomials and multidi-
mensional stability tests. IEEE Trans. Circuits Systems 54 (2007), 353–356.
DOI:10.1109/tcsii.2006.890409
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