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POLYNOMIALS WITH VALUES

WHICH ARE POWERS OF INTEGERS

Rachid Boumahdi and Jesse Larone

Abstract. Let P be a polynomial with integral coefficients. Shapiro showed
that if the values of P at infinitely many blocks of consecutive integers are
of the form Q(m), where Q is a polynomial with integral coefficients, then
P (x) = Q(R(x)) for some polynomial R. In this paper, we show that if the
values of P at finitely many blocks of consecutive integers, each greater than
a provided bound, are of the form mq where q is an integer greater than 1,
then P (x) = (R(x))q for some polynomial R(x).

1. Introduction

Several authors have studied the integer solutions of the equation
ym = P (x)

where P (x) is a polynomial with rational coefficients, and m ≥ 2 is an integer. If
P is an irreducible polynomial of degree at least 3 with integer coefficients, then
the above equation is called a hyperelliptic equation if m = 2 and a superelliptic
equation otherwise.

In 1969, Baker [1] gave an upper bound on the size of integer solutions of the
hyperelliptic equation when P (x) ∈ Z[x] has at least three simple zeros, and for
the superelliptic equation when P (x) ∈ Z[x] has at least two simple zeros.

Using a refinement of Baker’s estimates and a criterion of Cassels concerning the
shape of a potential integer solution to xp − yq = 1, Tijdeman [11] proved in 1976
that Catalan’s equation xp − yq = 1 has only finitely many solutions in integers
p > 1, q > 1, x > 1, y > 1.

Suppose that ym − P (x) is irreducible in Q[x, y] where P is monic and
gcd(m,degP ) > 1. Under these conditions, Masser [6] considered the equation
ym = P (x) in the particular case m = 2 and degP = 4. In particular, setting
P (x) = x4 + ax3 + bx2 + cx+ d where P (x) is not a perfect square, it was shown
that for H ≥ 1 and X(H) defined as the maximum of |x| taken over all integer
solutions of all equations y2 = P (x) with max{|a|, |b|, |c|, |d|} ≤ H, there are ab-
solute constants k > 0 and K such that kH3 ≤ X(H) ≤ KH3. Walsh [13] later
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obtained an effective bound on the integer solutions for the general case. Poulakis
[7] described an elementary method for computing the solutions of the equation
y2 = P (x), where P is a monic quartic polynomial which is not a perfect square.
Later, Szalay [10] established a generalization for the equation yq = P (x), where
P is a monic polynomial and q divides degP .

Suppose that α1, α2, . . . , αr are the roots of P (x) with respective multiplicities
e1, e2, . . . , er. Given an integer m ≥ 3, we define, for each i = 1, . . . , r,

mi = m

(ei,m) ∈ N .

It has been shown by LeVeque [5] that the superelliptic equation ym = P (x) can
have infinitely many solutions in Q only if (m1,m2, . . . ,mr) is a permutation
of either (2, 2, 1, . . . , 1) or (t, 1, 1, . . . , 1) with t ≥ 1. In 1995, Voutier [12] gave
improved bounds for the size of solutions (x0, y0) to the superelliptic equation with
x0 ∈ Z and y0 ∈ Q under the conditions of LeVeque.

Given a polynomial P (x) ∈ Z[x] and an integer q ≥ 2, it is then natural to ask
when the equation

yq − P (x) = 0
will have infinitely many solutions (x0, y0) with x0 ∈ Z and y0 ∈ Q. It is clear
that this will immediately be the case when P (x) =

(
R(x)

)q for some polynomial
R(x) ∈ Q[x]. Indeed, this serves as our motivation.

In 1913, Grösch solved a problem proposed by Jentzsch [4], showing that if a
polynomial P (x) with integral coefficients is a square of an integer for all integral
values of x, then P (x) is the square of a polynomial with integral coefficients. Kojima
[4], Fuchs [2], and Shapiro [9] later proved more general results. In particular, Shapiro
proved that if P (x) and Q(x) are polynomials of degrees p and q respectively, which
are integer-valued at the integers, such that P (n) is of the form Q(m) for infinitely
many blocks of consecutive integers of length at least p/q + 2, then there is a
polynomial R(x) such that P (x) = Q(R(x)).

Recall that the height of a polynomial

P (x) = apx
p + ap−1x

p−1 + · · ·+ a1x+ a0 ∈ C[x]

is defined by
H(P ) = max

i=0,...,p
|ai|

where |ai| denotes the modulus of ai ∈ C for each i = 0, . . . , p. We will prove the
following result:

Theorem 1. Let P (x) = apx
p + ap−1x

p−1 + · · ·+ a0 be a polynomial with integral
coefficients where ap > 0, and let q ≥ 2 be an integer that divides p. Suppose that
there exist integers mi, i = 0, 1, . . . , p/q + 1, such that P (n0 + i) = mi

q for some
consecutive integers n0, n0 + 1, . . . , n0 + p/q + 1 where

n0 > 1 + (p/q + 1)! pqp/q+1H(P )p/q+2
p/q+2∏
j=2

(jp− j + 1)2 .
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Set M :=
∑p/q+1
i=0

(
p/q+1
i

)
|mp/q+1−i|. If there exist at least M more blocks of such

consecutive integers nk+i, i = 0, . . . , p/q+1, such that nk > nk−1 +p/q+1 for each
k = 1, . . . ,M and P (nk + i) = mq

k,i for all k = 1, . . . ,M and i = 0, . . . , p/q + 1 for
some integers mk,i, then there exists a polynomial R(x) such that P (x) = (R(x))q.

2. Preliminaries

Let P (x) and Q(x) be non-zero polynomials with integral coefficients of degrees
p and q respectively. The following properties are easily verified:

(i) H(P ) ≥ 1
(ii) H(P ′) ≤ pH(P )
(iii) H(P +Q) ≤ H(P ) +H(Q)
(iv) H(PQ) ≤ (1 + p+ q)H(P )H(Q)

The first and second properties are trivial, while the third follows immediately from
the triangle inequality. The last property follows by noting that the coefficient of xk
in the product of apxp+ap−1x

p−1 + · · ·+a0 and bqxq + bq−1x
q−1 + · · ·+ b0 is given

by
∑
i+j=k

aibj , where the number of summands is at most d(p+ q)/2e+1 ≤ 1+p+ q.

We recall a result which can be found in Rolle [8].

Lemma 1. Let f(x) ∈ R[x] be a monic polynomial. If t ≥ 1 +H(f), then f(t) > 0.

Proof. Let f(x) = xn+an−1x
n−1 + · · ·+a1x+a0. The result follows from writing

f(t) as

f(t) = tn−1
(
t+
(
an−1 + an − 2

t
+ · · ·+ a0

tn−1

))
,

since from t > 1, we deduce that∣∣∣an−1 + an−2

t
+ · · ·+ a0

tn−1

∣∣∣ ≤ n−1∑
i=0
|ai|(1/t)n−1−i ≤ H(f) t

t− 1 < t ,

and we conclude that t+
(
an−1 + an−2

t + · · ·+ a0
tn−1

)
is positive. �

We will also require the following lemma, which is implicit in the proof of the
sole lemma in [9].

Lemma 2. Let f(x) be a branch of an algebraic function, real and regular for all
x > x0 for some x0, and satisfying |f(x)| < Cxα where C > 0 and α > 0. Then
lim
x→∞

f (r+1)(x) = 0, where r is the least integer greater than or equal to α.

We now establish a bound on the zeros of a particular class of algebraic functions.

Lemma 3. Let P (x) be a polynomial of degree p with integral coefficients, and let
f(x) be a branch of the algebraic function defined by the equation yq = P (x) where
q is an integer greater than 1. For any integer k ≥ 2, Rk(x) = qkf(x)kq−1f (k)(x)
is a polynomial with integral coefficients such that degRk ≤ k(p− 1) and H(Rk) ≤
(k − 1)! pqk−1H(P )k

∏k
j=2(jp− j + 1)2.
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Proof. Differentiating fq = P with respect to x, we obtain qfq−1f ′ = P ′. We
have degP ′ = p− 1 and H(P ′) ≤ pH(P ). We now consider Rk = qkfkq−1f (k) and
prove the result by induction on k.

For the base case k = 2, we differentiate qfq−1f ′ = P ′ with respect to x to
obtain

qfq−1f ′′ + q(q − 1)fq−2f ′f ′ = P ′′ .

Multiplying both sides of this equation by qfq, we obtain

q2f2q−1f ′′ + (q − 1)(qfq−1f ′)(qfq−1f ′) = qfqP ′′

q2f2q−1f ′′ + (q − 1)P ′P ′ = qPP ′′ ,

so that
R2 = q2f2q−1f ′′ = qPP ′′ − (q − 1)P ′P ′ .

We then have

degR2 ≤ max{p+ degP ′′,degP ′ + degP ′}
= max{p+ (p− 1)− 1, p− 1 + p− 1}
= 2(p− 1) ,

and

H(R2) ≤ qH(PP ′′) + (q − 1)H(P ′P ′)
≤ q(1 + p+ degP ′′)H(P )H(P ′′) + q(1 + degP ′ + degP ′)H(P ′)H(P ′)
≤ q(1 + p+ p− 2)H(P )[degP ′H(P ′)] + q(1 + 2p− 2)[pH(P )]2

≤ q(2p− 1)H(P )(p− 1)[pH(P )] + q(2p− 1)[pH(P )]2

= pq(2p− 1)H(P )2[(p− 1) + p]
= pqH(P )2(2p− 1)2 .

Therefore, the result holds for the base case.
We now assume that the result holds for some integer k ≥ 2. Differentiating

Rk = qkfkq−1f (k) with respect to x yields

qkfkq−1f (k+1) + qk(kq − 1)fkq−2f ′f (k) = Rk
′ .

Multiplying both sides of the equation by qfq, we obtain

qk+1f [k+1]q−1f (k+1) + (kq − 1)[qfq−1f ′][qkfkq−1f (k)] = qfqRk
′

qk+1f [k+1]q−1f (k+1) + (kq − 1)P ′Rk = qPRk
′,

so that
Rk+1 = qk+1f [k+1]q−1f (k+1) = qPRk

′ − (kq − 1)P ′Rk .
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By hypothesis, we have degRk ≤ k(p− 1). Thus,
degRk+1 ≤ max{p+ degRk′,degP ′ + degRk}

= max{p+ degRk − 1, p− 1 + degRk}
= p− 1 + degRk
≤ p− 1 + k(p− 1)
= (k + 1)(p− 1) .

In addition,
H(Rk+1) ≤ qH(PRk′) + (kq − 1)H(P ′Rk)

≤ kq(1 + p+ degRk′)H(P )H(Rk′)
+ kq(1 + degP ′ + degRk)H(P ′)H(Rk)
≤ kq(p+ degRk)H(P )[degRkH(Rk)]

+ kq(p+ degRk)[pH(P )]H(Rk)
= kq(p+ degRk)2H(P )H(Rk) .

By hypothesis, we have degRk ≤ k(p− 1) and

H(Rk) ≤ (k − 1)!pqk−1H(P )k
k∏
j=2

(jp− j + 1)2 .

Thus,

H(Rk+1) ≤ kq
(
p+ k(p− 1)

)2
H(P )(k − 1) !pqk−1H(P )k

k∏
j=2

(jp− j + 1)2

= k! pqkH(P )k+1
k+1∏
j=2

(jp− j + 1)2 ,

proving the result. �

Corollary 1. Let P (x) be a polynomial of degree p with integral coefficients, and
let f(x) be a branch of the algebraic function defined by the equation yq = P (x)
where q is an integer greater than 1. If β is a real zero of f (k)(x) for any integer
k ≥ 2 such that β > 1 +H(P ), then β ≤ 1 + (k−1)!pqk−1H(P )k

∏k
j=2(jp− j+ 1)2.

Proof. Let β be a zero of f (k)(x) such that β > 1 + H(P ). If f(β) = 0, then
0 = f(β)q = P (β) and β ≤ 1 +H(P ) by Lemma 1. We conclude that β is not a
zero of f(x).

Since β must be a zero of the polynomial Rk = qkfkq−1f (k), we conclude from
Lemma 1 and Lemma 3 that

β ≤ 1 +H(Rk) ≤ 1 + (k − 1)!pqk−1H(P )k
k∏
j=2

(jp− j + 1)2 ,

as claimed. �
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Defining the difference operator ∆ by ∆f(x) = f(x+ 1)− f(x) and recursively
defining higher order difference operators, we have the following lemma from [3]:

Lemma 4. Let k ≥ 1 be an integer. Then ∆kf(x) =
k∑
i=0

(
k

i

)
(−1)if(x+ k − i).

3. Proof of Theorem 1

Proof. Let x = φ(y) denote the branch of the algebraic function inverse to
the polynomial y = xq, that is, φ(y) = y1/q. Then φ(y) is positive and free of
singularities for all y ≥ 0.

Set f(x) = φ(P (x)). Then f(x) is asymptotically a1/q
p xp/q, and f(n) = ±m for

any n such that P (n) = mq.
We show by contradiction that f(x) is a polynomial. Suppose that f(x) is not a

polynomial. Then f (p/q+2)(x) is not identically zero. By Corollary 1, any real zero
β of f (p/q+2)(x) satisfying β > 1 +H(P ) must also satisfy

β ≤ 1 + (p/q + 1)!pqp/q+1H(P )p/q+2
p/q+2∏
j=2

(jp− j + 1)2 .

Thus, f (p/q+1)(x) is either monotone decreasing or monotone increasing for

x > 1 + (p/q + 1)!pqp/q+1H(P )p/q+2
p/q+2∏
j=2

(jp− j + 1)2 .

Suppose that f (p/q+1)(x) is monotone decreasing. It must then be strictly positive
for x > 1+(p/q+1) !pqp/q+1H(P )p/q+2∏p/q+2

j=2 (jp−j+1)2, since lim
x→∞

f (p/q+1)(x) =
0 by Lemma 2.

Applying the difference operator ∆ to f(x) p/q+1 times, we find that ∆p/q+1f(n0)
is an integer. We now apply the Mean Value Theorem repeatedly to obtain a number
c0 ∈ (n0, n0 + p/q + 1) such that f (p/q+1)(c0) = ∆p/q+1f(n0) is an integer.

For each k = 1, . . . ,M , we repeat the above process with each block of consecutive
integers nk + i, i = 0, . . . , p/q + 1, to obtain numbers ck such that ck ∈ (nk, nk +
p/q + 1) and f (p/q+1)(ck) = ∆p/q+1f(nk) are integers.

By Lemma 4, the integer f (p/q+1)(c0) = ∆p/q+1f(n0) is such that

|f (p/q+1)(c0)| =
∣∣∣∣ p/q+1∑
i=0

(
p/q + 1

i

)
(−1)if(n0 + p/q + 1− i)

∣∣∣∣
≤
p/q+1∑
i=0

(
p/q + 1

i

)
|mp/q+1−i|

= M .

Since f (p/q+1)(x) is monotone decreasing, f (p/q+1)(ck) < f (p/q+1)(ck−1) for each
k = 1, . . . ,M . Thus f (p/q+1)(cj) ≤ M − j for j = 0, . . . ,M . This implies that
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f (p/q+1)(cM ) ≤ 0, which contradicts f (p/q+1)(x) being strictly positive at

cM > c0 > n0 > 1 + (p/q + 1)!pqp/q+1H(P )p/q+2
p/q+2∏
j=2

(jp− j + 1)2 .

Similarly, the case where f (p/q+1)(x) is monotone increasing leads to a contra-
diction. Therefore, f(x) is a polynomial and P (x) = f(x)q. �
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